Lecture 1

a review of first-order logic

prerequisites

If you need to recall basics of first-order logic see the literature recommended for the

Introduction to Mathematical Logic

course at
www.karlin.mff.cuni.cz/krajicek/ml.html

I particularly recommend the lecture notes by Lou van den Dries available from this page.

topics

FO logic:

- languages (terms, formulas, sentences, ...)
- structures
- satisfiability relation
- theories and their models
- the Completeness and the Compactness theorems
- definable sets and functions

language L

Vocabulary:

- set C_{L} of constants: c, d, \ldots
- set R_{L} of relation symbols: R, S, \ldots, each coming with arity $n_{R} \geq 1$
- set F_{L} of function symbols: f, g, \ldots, each coming with arity $n_{f} \geq 1$

Common symbols:

- equality $=$
- logical connectives: $\vee, \wedge, \neg, \rightarrow, \equiv, \ldots$
- variables x, y, \ldots
- quantifiers \exists and \forall
- brackets of various types: $(),,[],, \ldots$

L-terms

terms:

- variables are terms,
- if s_{1}, \ldots, s_{k} are terms and $f \in F_{L}$ of arity k then

$$
f\left(s_{1}, \ldots, s_{k}\right)
$$

is a term,

- only strings obtained by a finite number of applications of these rules are terms.

Notation:

$$
t\left(x_{1}, \ldots, x_{n}\right)
$$

means that all variables occurring in t are among x_{1}, \ldots, x_{n}

L-formulas

formulas:

- atomic formulas:
- $t=s$, where t, s are any terms,
- $R\left(t_{1}, \ldots, t_{k}\right)$, where $n_{R}=k$ and t_{i} are terms.
- formulas are closed under logical connectives; $(\varphi \vee \psi),(\varphi \wedge \psi), \ldots$,
- quantifiers: if φ is a formula, so are $(\exists x \varphi)$ and $(\forall x \varphi)$,
- only strings obtained in a finite nb. of steps via rules above are formulas.

There are always formulas, even if the vocabulary of L is empty. Ex.:

$$
x=y \text { or }(\forall x x \neq x)
$$

occurrences of variables

A variable x may have free occurrence in a formula, as in

$$
x=x \text { or } \exists y x \neq y
$$

or bounded (= closed), as in

$$
\forall x \exists y x<y \text { or } \exists x x \neq 0
$$

Remarks:

- interpret free as meaning "free for substitution"
- x in a quantifier is not assigned either qualification
sentences: formulas without any free occurrence of a variable

Notation: $\varphi\left(x_{1}, \ldots, x_{n}\right)$ means that all variables with some free occurrence are among x_{1}, \ldots, x_{n}

theories

L-theory: a set of L-sentences (called axioms)

Ex. LO - linear orders

Axioms: the universal closures of formulas

- $\neg x<x$
- $(x<y \wedge y<z) \rightarrow x<z$
- $x<y \vee x=y \vee y<x$

Ex.: DLO - dense linear orders: LO plus

$$
x<y \rightarrow \exists z(x<z \wedge z<y)
$$

L-structures

Ex.: the ordered real closed field:

$$
\mathbf{R}=(R, 0,1,+, \cdot,<)
$$

R : the set of reals
$0,1,+, \cdot,<$: usual meaning

Ex. the countable dense linear order

$$
(Q,<)
$$

rationals Q with their usual ordering $<$
When we target a particular structure or a class of structures it is customary to use symbols that are established. I.e.:

- we use + for addition and not $x \circ y$ or $f(x, y)$
- we use $<$ for ordering and not just generic $R(x, y)$

L-structures

a general L-structure

$$
\mathbf{A}=\left(A, c^{\mathbf{A}}, \ldots, R^{\mathbf{A}}, \ldots, f^{\mathbf{A}}, \ldots\right)
$$

where
$A \neq \emptyset$ is the universe
and $c^{\mathbf{A}}, \ldots, R^{\mathbf{A}}, \ldots, f^{\mathbf{A}}, \ldots$ interpret L :

- $c^{\mathbf{A}} \in A$
- $R^{\mathbf{A}} \subseteq A^{k}$, if $n_{R}=k$
- $f^{\mathbf{A}}: A^{k} \rightarrow A$, if $n_{f}=k$

Remark: we often skip the superscript \mathbf{A} in $c^{\mathbf{A}}$, etc, when there is no danger of a confusion.

term evaluation

Each term $t(\bar{x})$, where $\bar{x}=\left(x_{1}, \ldots, x_{n}\right)$, determines

$$
t^{\mathrm{A}}: A^{n} \rightarrow A
$$

which is defined by induction on the (syntactic) complexity of t :

- for t a constant this is determined by the interpretation of L
- for $t=f\left(s_{1}(\bar{x}), \ldots, s_{k}(\bar{x})\right)$ define for $\bar{a} \in A^{n}$ the value by composition:

$$
t^{\mathbf{A}}(\bar{a}):=f^{\mathbf{A}}\left(s_{1}^{\mathbf{A}}(\bar{a}), \ldots, s_{k}^{\mathbf{A}}(\bar{a})\right)
$$

satisfiability relation

Definition (Tarski)

For $L, \mathbf{A}, \varphi(\bar{x})$ and $\bar{a} \in A^{n}$ define the satisfiability relation

$$
\mathbf{A} \models \varphi(\bar{a})
$$

by induction on the complexity of φ :

- $\mathbf{A} \mid=t(\bar{a})=s(\bar{a})$ iff $t^{\mathbf{A}}(\bar{a})=s^{\mathbf{A}}(\bar{a})$
- $\mathbf{A} \models R(\bar{a})$ iff $\bar{a} \in R^{\mathbf{A}}$
- \models commutes with logical connectives:
$\mathbf{A} \models \varphi(\bar{a}) \wedge \psi(\bar{a})$ iff $\mathbf{A} \models \varphi(\bar{a})$ and $\mathbf{A} \models \psi(\bar{a})$, etc.
- $\mathbf{A} \models \exists y \varphi(\bar{a}, y)$ iff there is $b \in A$ s.t. $\mathbf{A} \models \varphi(\bar{a}, b)$ and analogously for \forall

models of theories

Definition - models
\mathbf{A} is a model of theory T iff

$$
\mathbf{A} \models \theta
$$

for all axioms $\theta \in T$.
T having a model is satisfiable, otherwise it is unsatisfiable.

Ex. $(N,<)$ is a model of LO but not of DLO while $(Q,<)$ is a model of DLO.

Definition - logical consequence
A formula $\varphi(\bar{x})$ is a logical consequence of (or is logically implied by) theory T iff the universal closure $\forall \bar{x} \varphi(\bar{x})$ holds in every model of T. Notation: $T \models \varphi$.

provability

How else can we establish logical consequences of T ? By proofs in predicate calculus:

$$
\psi_{1}, \ldots, \psi_{\ell}(=\varphi)
$$

such that each formula ψ_{i} is

- an axiom of propositional logic, quantifier ax., ax. of equality or of T,
- or follows from some earlier formulas ψ_{j} by one of inference rules.

Ex. of axioms: $\alpha \vee \neg \alpha, \bar{x}=\bar{y} \rightarrow f(\bar{x})=f(\bar{y})$, $\varphi(t) \rightarrow \exists y \varphi(x)$ (subject to a condition on t), etc.

Ex. of rules:

$$
\frac{\alpha \quad \alpha \rightarrow \beta}{\beta} \text { or } \frac{\eta \rightarrow \psi(x)}{\eta \rightarrow \forall x \psi(x)}
$$

the key thms

Notation: $T \vdash \varphi$ iff T proves φ.

Completeness thm - Gödel 1930

$$
T \vdash \varphi \text { iff } T \models \varphi .
$$

Alternatively: S is unsatisfiable iff S in inconsistent (proves everything).

A key corollary for logic and for model theory in particular:

Compactness thm. - Gödel, Mal'tsev
$T \models \varphi$ iff there is a finite $T_{0} \subseteq T$ such that $T_{0} \models \varphi$. Alternatively: S is unsatisfiable iff there is a finite $S_{0} \subseteq S$ that is unsatisfiable.

definable sets

When studying the real closed field in geometry or analysis we often consider more functions and relations than are those in the language: continuous or analytic f 's, all open subsets of some R^{n}, \ldots How can this be treated in FO logic? The key notion is:

Definable sets and functions
A subset $U \subseteq A^{n}$ is definable in \mathbf{A} iff there is a formula

$$
\psi(\bar{x}, \bar{z}),
$$

with $\bar{x}=\left(x_{1}, \ldots, x_{n}\right)$ and $\bar{z}=\left(z_{1}, \ldots, z_{t}\right)$ and $\bar{b} \in A^{t}$ ($=$ parameters) s.t. for all $\bar{a} \in A^{n}$:

$$
\bar{a} \in U \quad \text { iff } \quad \mathbf{A} \models \psi(\bar{a}, \bar{b}) .
$$

A function $h: A^{k} \rightarrow A$ is definable iff its graph is definable.

definable in \mathbf{R}

Ex. Sets definable in $\mathbf{R}=$ semialgebraic sets.

There is a trade-off:

- bigger language implies
- more definable sets and functions
- hence more interesting objects are included
- but if the language is too big we cannot obtain a sensible information about the definable sets and functions and may end-up in - essentially the set theoretic world.

This we do not want: many set-theoretic properties of general sets and functions (even on reals) are not decidable by axioms of contemporary mathematics ($=$ ZFC) and, more importantly, the geometric and algebraic flavor of model theory gets lost.

Ex.: the set-theoretic cardinality of a set versus the topological notion of Euler characteristic

