
Lecture 11

types cont’d
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topics

HW - Prop.4.3.2 (p.138)

the existence of saturated structures

ℵ1-saturation via ultraproduct

isolated types

the Omitting types thm

Peano arithmetic PA

the MacDowell-Specker thm:

countable case via omitting types,
general case via definable ultrapower.
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HW

The task: show that any structure that realizes all 1-types over less than κ
parameters is κ-saturated.
Need to show that all n-types over less than κ parameters are realized in
M. Prf by induction on n:
Case n=1: this is the hypothesis
Induction step n → n = 1:
Let p(x , y) be an (n + 1)-type over A, |A| < κ. Define an n-type

p′(x) := {ϕ(x) | ϕ ∈ p} .

By induction hypothesis p′ is realized by some n-tuple b ∈ Mn.
Now define a 1-type q(y) over A′ := A ∪ {b1, . . . , bn}:

{ψ(b, y) | ψ ∈ p} .

As still |A′| < κ, it is realized (by the original hypothesis) by some c ∈ M

and it is easy to check that

(b, c) realizes type p .
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existence

L: countable
T : complete L-theory with infinite models

Theorem

For all κ, T has an infinite κ+-saturated model of cardinality at most 2κ.

Corollaries

If CH (the continuum hypothesis) holds then there is a saturated
model of cardinality ℵ1.

If GCH (the generalized CH holds, i.e. κ+ = 2κ) the then are
saturated models of all uncountable successor cardinalities (i.e. of the
form κ+).

We shall prove the thm (and hence the first corollary) for κ = ℵ0.
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ultraproduct

We shall prove the following statement.

Theorem

Let Mi , i ∈ ω, be any L-structures and let U be a non-principal ultrafilter
on ω. Then

M
∗ :=

∏

i

Mi/U

is ℵ1-saturated.

To see that this implies the previous thm for κ = ℵ0 note:

ℵ+
0 = ℵ1,

|M∗| ≤
∏

i |Mi | which is ≤ ℵℵ0
0 = 2ℵ0 for countable models Mi ,

and M
∗ |= T if all Mi |= T .
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prf

Prf.:
Let A ⊆ M∗ be a countable set of parameters [αj ], and let

p := {ϕi (x) | i ≥ 0}

be any 1-type over A (by the HW it suffices to consider 1-types).

Because p is finitely satisfiable, for all k ≥ 0 the set

Dk := 〈〈∃x
∧

i≤k

ϕi (x)〉〉

is in U . Clearly these set form a descending chain:

D0 ⊇ D1 ⊇ . . . .
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prf-pic
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prf cont’d

Define a function γ ∈
∏

i Mi by:

γ(j) := any witness to ∃i≤kϕi (x) in Mj if j ∈ Dk \ Dk+1 .

In words: γ(j) witnesses as long initial sequence of formulas
ϕ0(x), . . . , ϕk(s) as possible.

For all i ≥ 0 we have
〈〈ϕi (γ)〉〉 ⊇ Di ∈ U

and hence
〈〈ϕi (γ)〉〉 ∈ U .

By Loš’s thm then

M
∗ |= ϕi ([γ]) , all i ≥ 0 .

�
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countable case

Define the Stone space w.r.t. theory T :

Sn(T ) := all complete n-types consistent with T .

It is the same as putting

Sn(T ) := SM

n (∅)

for any model M of T .

Theorem

T has a countable saturated model iff all Sn(T ) are countable, n ≥ 1.

The only-if direction is immediate, the if-direction is proved by a variant of
the Henkin construction used to prove the completeness thm.
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isolated types

Definition

A type p ∈ Sn(T ) is isolated (= principal) iff there is a fla ϕ(x) ∈ p such
that

T ⊢ ϕ(x) → ψ(x) , for all ψ ∈ p .

That is: {p} = [p] in the topology of Sn(T ).

Lemma

If p is isolated then it is realized in all models of T .

Prf.:
Assume p is isolated by ϕ(x) ∈ p. As T is complete T ⊢ ∃xϕ(x) and
hence

T ⊢ ∃xψ(x) , for all ψ ∈ p .

�
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Henkin-Orey

The next statement says that being isolated is the only obstruction to
omitting a type.

The omitting types theorem (Henkin-Orey)

Let L be countable, T complete and let pi , i ≥ 0 be a countable set of
non-isolated types.
Then there is a model of T that omits all pi , i ≥ 0.

The theorem is proved by a variant of the Henkin construction used
usually when proving the Completeness theorem.
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PA

Peano arithmetic: an important theory when studying the foundations of
mathematics
language LPA: 0, 1,+, ·, <
axioms:
a finite set of axioms called often Robinson’s arithmetic Q:

x + 0 = x

x + (y + 1) = (x + y) + 1

x · 0 = 0,

x · (y + 1) = (x · y) + x ,

x + 1 6= 0,

x + 1 = y + 1 → x = y ,

the axioms of discrete linear orders for < with x + 1 being the
successor of x ,

(x = y ∨ x < y) ≡ (∃z x + z = y),
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IND

and by infinitely many instances of the induction scheme IND:

[ ϕ(0) ∧ ∀x(ϕ(x) → ϕ(x + 1)) ] → ∀xϕ(x)

for all formulas ϕ that may contain other free variables than x .
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end-extensions

Definition

Let M ⊆ M
′ be two models of PA. Then M

′ is a end-extension of M,
denoted by M ⊆e M

′, iff

∀v ∈ M ′ \ M∀u ∈ M M
′ |= u < v .

In words: all elements not in M are at the end.
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MacDowell-Specker

Theorem (MacDowell-Specker)

All models of PA have proper end-extensions.

We shall first outline a proof of
- the countable case via the omitting types thm

and then give a proof of
- the general case using definable ultrapowers.
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countable case

Prf. outline - countable case:

Let M be a countable model of PA. Consider the following theory T :
language: LPA plus names for all elements of M and a new constant c

axioms: axioms of PA with IND in the extended language, and new axioms

c > m , for all m ∈ M .

Any model of T properly extends M but to arrange that it is an
end-extension we need to omit all - countably many - types:

pu := {x < u} ∪ {x 6= m | m ∈ M,M |= m < u} .

The heart of the proof is to show that all these types are non-isolated (this
uses some facts about PA).
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general case

Let M |= PA. We shall construct its proper end-extension M
′ by definable

ultrapower, a variant of the earlier ultrapower construction.

index set: I := M (i.e. the model itself)
individual structures: Mi := M, all i ∈ I

The change in the construction is in how we construct the universe M ′ of
the new structure: we do not start with the set

∏
i Mi of all functions

α : I (= M) → M

but with the set of definable functions:

DefFuc(M) = all α that are definable in M

i.e. the graph of α is definable by a fla ψ with parameters from M:

α(u) = v ⇔df M |= ψ(u, v ,m) .
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universe - pic
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universe

Lemma

DefFuc(M) is closed under + and ·, and for each m ∈ M it contains
function λm that is constantly equal to m.

Next we replace the Boolean algebra P(M) by the algebra of definable
subsets:

Def (M) := all definable subsets of M .

Lemma

Def (M) is a Boolean algebra and it contain all finite and cofinite subsets
of M.
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ultrafilter

It remains to choose a suitable ultrafilter U on the Boolean algebra. In
earlier constructions it sufficed to take any non-principal U . Here we need
a more specific choice.

Definition

U is M-closed iff for all α ∈ DefFuc(M) and all m ∈ M, if

α : M → [0,m]

then for some u ≤ m, α(−1))(u) ∈ U .

In words, if M is partitioned definably into m pieces then U contains at
least one: this generalizes the property that U must contain a set or its
complement (that is the case m = 2).
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ultrafilter

Lemma

A non-principal and M-closed U exists.

This is not proved via Zorn’s lemma but by defining U in M. This step
uses that we talk about models of PA: PA is strong enough to show that if

α : M → [0,m]

then at least one of the preimages α(−1))(u), u ≤ m must be ”large”.
This is a form of pigeon-hole principle.
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the structure

Now we are ready to complete the definition of the definable ultrapower
M

′ (this goes back to Skolem).

universe M ′:
Take a non-principal M-closed ultrafilter U and put

M ′ := DefFuc(M)/U .

That is, we identify α, β ∈ DefFuc(M) iff

〈〈α− β〉〉 ∈ U .
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Loš’s thm

Loš’s thm goes through in this set-up: the treatment of ax’s of equality
and of propositional connectives uses just properties of Boolean algebras
and ultrafilters. The only non-trivial thing to check are the quantifiers.

Lemma

For any fla ∃xψ(x) (with parameters from M ′):

M
′ |= ∃xψ(x) iff 〈〈∃xψ(x)〉〉 ∈ U .

Prf.:
The only-if direction is trivi. For the if-direction define γ ∈ DefFuc(M) by:

γ(i) := min{u | ψ(u)}, if it exists, and := 0 otherwise .

This uses IND: it implies the least number principle and hence min u exists
and so γ is definable.

�
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prf - thm

To conclude the proof of the MacDowell-Specker thm note first that

M
′ is proper extension:

for δ ∈ DefFuc(M) defined by δ(u) := u we have

[δ] ∈ M ′ \ M .

Lemma

M
′ is an end-extension of M.
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prf - lemma

Prf.:
Let m ∈ M and β ∈ DefFuc(M), and assume

M
′ |= [β] < m

(m is represented by [λm]). Hence

D := 〈〈β < m〉〉 ∈ U .

Define
α(u) := β(u) , if u ∈ D and := m, otherwise.

By the property of U , one of α(−1)(u) for some u ≤ m has to be in U . But
it cannot be α(−1)(m) because that is M \ D. So for some u < m:

α(−1)(u) = 〈〈β = u〉〉 ∈ U .

�
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