Lecture 11

types cont'd

topics

- HW - Prop.4.3.2 (p.138)
- the existence of saturated structures
- \aleph_{1}-saturation via ultraproduct
- isolated types
- the Omitting types thm
- Peano arithmetic PA
- the MacDowell-Specker thm:
- countable case via omitting types,
- general case via definable ultrapower.

HW

The task: show that any structure that realizes all 1-types over less than κ parameters is κ-saturated.
Need to show that all n-types over less than κ parameters are realized in M. Prf by induction on n :

Case $n=1$: this is the hypothesis Induction step $n \rightarrow n=1$:
Let $p(\bar{x}, y)$ be an $(n+1)$-type over $A,|A|<\kappa$. Define an n-type

$$
p^{\prime}(\bar{x}):=\{\varphi(\bar{x}) \mid \varphi \in p\}
$$

By induction hypothesis p^{\prime} is realized by some n-tuple $\bar{b} \in M^{n}$. Now define a 1-type $q(y)$ over $A^{\prime}:=A \cup\left\{b_{1}, \ldots, b_{n}\right\}$:

$$
\{\psi(\bar{b}, y) \mid \psi \in p\}
$$

As still $\left|A^{\prime}\right|<\kappa$, it is realized (by the original hypothesis) by some $c \in M$ and it is easy to check that

$$
(\bar{b}, c) \text { realizes type } p
$$

existence

L: countable
T : complete L-theory with infinite models
Theorem
For all κ, T has an infinite κ^{+}-saturated model of cardinality at most 2^{κ}.

Corollaries

- If CH (the continuum hypothesis) holds then there is a saturated model of cardinality \aleph_{1}.
- If GCH (the generalized CH holds, i.e. $\kappa^{+}=2^{\kappa}$) the then are saturated models of all uncountable successor cardinalities (i.e. of the form κ^{+}).

We shall prove the thm (and hence the first corollary) for $\kappa=\aleph_{0}$.

ultraproduct

We shall prove the following statement.
Theorem
Let $\mathbf{M}_{i}, i \in \omega$, be any L-structures and let \mathcal{U} be a non-principal ultrafilter on ω. Then

$$
\mathbf{M}^{*}:=\prod \mathbf{M}_{i} / \mathcal{U}
$$

is \aleph_{1}-saturated.
To see that this implies the previous thm for $\kappa=\aleph_{0}$ note:

- $\aleph_{0}^{+}=\aleph_{1}$,
- $\left|M^{*}\right| \leq \prod_{i}\left|M_{i}\right|$ which is $\leq \aleph_{0}^{\aleph_{0}}=2^{\aleph_{0}}$ for countable models \mathbf{M}_{i},
- and $\mathbf{M}^{*} \models T$ if all $\mathbf{M}_{i} \models T$.

prf

Prf.:
Let $A \subseteq M^{*}$ be a countable set of parameters $\left[\alpha_{j}\right]$, and let

$$
p:=\left\{\varphi_{i}(x) \mid i \geq 0\right\}
$$

be any 1-type over A (by the HW it suffices to consider 1-types).
Because p is finitely satisfiable, for all $k \geq 0$ the set

$$
D_{k}:=\left\langle\left\langle\exists x \bigwedge_{i \leq k} \varphi_{i}(x)\right\rangle\right\rangle
$$

is in \mathcal{U}. Clearly these set form a descending chain:

$$
D_{0} \supseteq D_{1} \supseteq \ldots
$$

prf-pic

prf cont'd

Define a function $\gamma \in \prod_{i} M_{i}$ by:

$$
\gamma(j):=\text { any witness to } \exists_{i \leq k} \varphi_{i}(x) \text { in } \mathbf{M}_{j} \text { if } j \in D_{k} \backslash D_{k+1} .
$$

In words: $\gamma(j)$ witnesses as long initial sequence of formulas $\varphi_{0}(x), \ldots, \varphi_{k}(s)$ as possible.

For all $i \geq 0$ we have

$$
\left\langle\left\langle\varphi_{i}(\gamma)\right\rangle\right\rangle \supseteq D_{i} \in \mathcal{U}
$$

and hence

$$
\left\langle\left\langle\varphi_{i}(\gamma)\right\rangle\right\rangle \in \mathcal{U} .
$$

By Loš's thm then

$$
\mathbf{M}^{*} \models \varphi_{i}([\gamma]), \quad \text { all } i \geq 0
$$

countable case

Define the Stone space w.r.t. theory T :

$$
S_{n}(T):=\text { all complete } n \text {-types consistent with } T .
$$

It is the same as putting

$$
S_{n}(T):=S_{n}^{\mathrm{M}}(\emptyset)
$$

for any model \mathbf{M} of T.
Theorem
T has a countable saturated model iff all $S_{n}(T)$ are countable, $n \geq 1$.

The only-if direction is immediate, the if-direction is proved by a variant of the Henkin construction used to prove the completeness thm.

isolated types

Definition

A type $p \in S_{n}(T)$ is isolated (= principal) iff there is a fla $\varphi(\bar{x}) \in p$ such that

$$
T \vdash \varphi(\bar{x}) \rightarrow \psi(\bar{x}), \quad \text { for all } \psi \in p .
$$

That is: $\{p\}=[p]$ in the topology of $S_{n}(T)$.

Lemma

If p is isolated then it is realized in all models of T.
Prf.:
Assume p is isolated by $\varphi(\bar{x}) \in p$. As T is complete $T \vdash \exists \bar{x} \varphi(\bar{x})$ and hence

$$
T \vdash \exists \bar{x} \psi(\bar{x}), \quad \text { for all } \psi \in p
$$

Henkin-Orey

The next statement says that being isolated is the only obstruction to omitting a type.

The omitting types theorem (Henkin-Orey)
Let L be countable, T complete and let $p_{i}, i \geq 0$ be a countable set of non-isolated types.
Then there is a model of T that omits all $p_{i}, i \geq 0$.

The theorem is proved by a variant of the Henkin construction used usually when proving the Completeness theorem.

PA

Peano arithmetic: an important theory when studying the foundations of mathematics
language $L_{P A}: 0,1,+, \cdot,<$
axioms:
a finite set of axioms called often Robinson's arithmetic Q :

- $x+0=x$
- $x+(y+1)=(x+y)+1$
- $x \cdot 0=0$,
- $x \cdot(y+1)=(x \cdot y)+x$,
- $x+1 \neq 0$,
- $x+1=y+1 \rightarrow x=y$,
- the axioms of discrete linear orders for $<$ with $x+1$ being the successor of x,
- $(x=y \vee x<y) \equiv(\exists z x+z=y)$,

IND

and by infinitely many instances of the induction scheme IND:

$$
[\varphi(0) \wedge \forall x(\varphi(x) \rightarrow \varphi(x+1))] \rightarrow \forall x \varphi(x)
$$

for all formulas φ that may contain other free variables than x.

end-extensions

Definition
Let $\mathbf{M} \subseteq \mathbf{M}^{\prime}$ be two models of $\mathbf{P A}$. Then \mathbf{M}^{\prime} is a end-extension of \mathbf{M}, denoted by $\mathbf{M} \subseteq_{e} \mathbf{M}^{\prime}$, iff

$$
\forall v \in M^{\prime} \backslash M \forall u \in M \mathbf{M}^{\prime} \models u<v
$$

In words: all elements not in M are at the end.

MacDowell-Specker

Theorem (MacDowell-Specker)
All models of PA have proper end-extensions.

We shall first outline a proof of

- the countable case via the omitting types thm
and then give a proof of
- the general case using definable ultrapowers.

countable case

Prf. outline - countable case:

Let \mathbf{M} be a countable model of PA. Consider the following theory T : language: $L_{P A}$ plus names for all elements of M and a new constant c axioms: axioms of PA with IND in the extended language, and new axioms

$$
c>m, \text { for all } m \in M
$$

Any model of T properly extends M but to arrange that it is an end-extension we need to omit all - countably many - types:

$$
p_{u}:=\{x<u\} \cup\{x \neq m \mid m \in M, \mathbf{M} \models m<u\} .
$$

The heart of the proof is to show that all these types are non-isolated (this uses some facts about PA).

general case

Let $\mathbf{M} \models P A$. We shall construct its proper end-extension \mathbf{M}^{\prime} by definable ultrapower, a variant of the earlier ultrapower construction.
index set: $l:=M$ (i.e. the model itself)
individual structures: $\mathbf{M}_{i}:=\mathbf{M}$, all $i \in I$
The change in the construction is in how we construct the universe M^{\prime} of the new structure: we do not start with the set $\prod_{i} M_{i}$ of all functions

$$
\alpha: I(=M) \rightarrow M
$$

but with the set of definable functions:

$$
\operatorname{DefFuc}(\mathbf{M})=\text { all } \alpha \text { that are definable in } \mathbf{M}
$$

i.e. the graph of α is definable by a fla ψ with parameters from M :

$$
\alpha(u)=v \quad \Leftrightarrow_{d f} \quad \mathbf{M} \models \psi(u, v, \bar{m}) .
$$

universe - pic

universe

Lemma

$\operatorname{DefFuc}(\mathbf{M})$ is closed under + and \cdot, and for each $m \in M$ it contains function λ_{m} that is constantly equal to m.

Next we replace the Boolean algebra $\mathcal{P}(M)$ by the algebra of definable subsets:

$$
\operatorname{Def}(\mathbf{M}):=\quad \text { all definable subsets of } M
$$

Lemma
$\operatorname{Def}(\mathbf{M})$ is a Boolean algebra and it contain all finite and cofinite subsets of M.

ultrafilter

It remains to choose a suitable ultrafilter \mathcal{U} on the Boolean algebra. In earlier constructions it sufficed to take any non-principal \mathcal{U}. Here we need a more specific choice.

Definition

\mathcal{U} is \mathbf{M}-closed iff for all $\alpha \in \operatorname{DefFuc}(\mathbf{M})$ and all $m \in M$, if

$$
\alpha: M \rightarrow[0, m]
$$

then for some $u \leq m, \alpha^{(-1))}(u) \in \mathcal{U}$.

In words, if M is partitioned definably into m pieces then \mathcal{U} contains at least one: this generalizes the property that \mathcal{U} must contain a set or its complement (that is the case $m=2$).

ultrafilter

Lemma

A non-principal and \mathbf{M}-closed \mathcal{U} exists.

This is not proved via Zorn's lemma but by defining \mathcal{U} in M . This step uses that we talk about models of PA: PA is strong enough to show that if

$$
\alpha: M \rightarrow[0, m]
$$

then at least one of the preimages $\alpha^{(-1))}(u), u \leq m$ must be "large". This is a form of pigeon-hole principle.

the structure

Now we are ready to complete the definition of the definable ultrapower \mathbf{M}^{\prime} (this goes back to Skolem).
universe M^{\prime} :
Take a non-principal M-closed ultrafilter \mathcal{U} and put

$$
M^{\prime}:=\operatorname{DefFuc}(\mathbf{M}) / \mathcal{U}
$$

That is, we identify $\alpha, \beta \in \operatorname{DefFuc}(\mathbf{M})$ iff

$$
\langle\langle\alpha-\beta\rangle\rangle \in \mathcal{U} .
$$

Loš's thm

Loš's thm goes through in this set-up: the treatment of ax's of equality and of propositional connectives uses just properties of Boolean algebras and ultrafilters. The only non-trivial thing to check are the quantifiers.

Lemma

For any fla $\exists x \psi(x)$ (with parameters from M^{\prime}):

$$
\mathbf{M}^{\prime} \models \exists x \psi(x) \text { iff }\langle\langle\exists x \psi(x)\rangle\rangle \in \mathcal{U} .
$$

Prf.:
The only-if direction is trivi. For the if-direction define $\gamma \in \operatorname{DefFuc}(\mathbf{M})$ by:

$$
\gamma(i):=\min \{u \mid \psi(u)\} \text {, if it exists, and }:=0 \text { otherwise. }
$$

This uses IND: it implies the least number principle and hence $\min u$ exists and so γ is definable.

prf - thm

To conclude the proof of the MacDowell-Specker thm note first that

- \mathbf{M}^{\prime} is proper extension:
for $\delta \in \operatorname{DefFuc}(\mathbf{M})$ defined by $\delta(u):=u$ we have

$$
[\delta] \in M^{\prime} \backslash M .
$$

Lemma
\mathbf{M}^{\prime} is an end-extension of \mathbf{M}.
prf - lemma
Prf.:
Let $m \in M$ and $\beta \in \operatorname{DefFuc}(\mathbf{M})$, and assume

$$
\mathbf{M}^{\prime} \models[\beta]<m
$$

(m is represented by $\left[\lambda_{m}\right]$). Hence

$$
D:=\langle\langle\beta<m\rangle\rangle \in \mathcal{U}
$$

Define

$$
\alpha(u):=\beta(u), \text { if } u \in D \text { and }:=m \text {, otherwise. }
$$

By the property of \mathcal{U}, one of $\alpha^{(-1)}(u)$ for some $u \leq m$ has to be in \mathcal{U}. But it cannot be $\alpha^{(-1)}(m)$ because that is $M \backslash D$. So for some $u<m$:

$$
\alpha^{(-1)}(u)=\langle\langle\beta=u\rangle\rangle \in \mathcal{U} .
$$

