Lecture 11

types cont'd

topics

- HW Prop.4.3.2 (p.138)
- the existence of saturated structures
- isolated types
- the Omitting types thm
- Peano arithmetic PA
- the MacDowell-Specker thm:
 - countable case via omitting types,
 - general case via definable ultrapower.

HW

The task: show that any structure that realizes all 1-types over less than κ parameters is κ -saturated.

Need to show that all *n*-types over less than κ parameters are realized in **M**. Prf by induction on *n*:

Case n=1: this is the hypothesis

Induction step $n \rightarrow n = 1$:

Let $p(\overline{x}, y)$ be an (n + 1)-type over A, $|A| < \kappa$. Define an n-type

$$p'(\overline{x}) := \{\varphi(\overline{x}) \mid \varphi \in p\}$$
.

By induction hypothesis p' is realized by some *n*-tuple $\overline{b} \in M^n$. Now define a 1-type q(y) over $A' := A \cup \{b_1, \ldots, b_n\}$:

$$\{\psi(\overline{b}, y) \mid \psi \in p\}$$
.

As still $|A'| < \kappa$, it is realized (by the original hypothesis) by some $c \in M$ and it is easy to check that

$$(\overline{b}, c)$$
 realizes type p .

existence

L: countable

T: complete L-theory with infinite models

Theorem

For all κ , T has an infinite κ^+ -saturated model of cardinality at most 2^{κ} .

Corollaries

- If CH (the continuum hypothesis) holds then there is a saturated model of cardinality ℵ₁.
- If GCH (the generalized CH holds, i.e. $\kappa^+ = 2^{\kappa}$) the then are saturated models of all uncountable successor cardinalities (i.e. of the form κ^+).

We shall prove the thm (and hence the first corollary) for $\kappa = \aleph_0$.

ultraproduct

We shall prove the following statement.

Theorem

Let \mathbf{M}_i , $i \in \omega$, be any *L*-structures and let \mathcal{U} be a non-principal ultrafilter on ω . Then

$$\mathsf{M}^* \ := \ \prod_i \mathsf{M}_i / \mathcal{U}$$

is \aleph_1 -saturated.

To see that this implies the previous thm for $\kappa = \aleph_0$ note:

•
$$\aleph_0^+ = \aleph_1$$
,

• $|M^*| \leq \prod_i |M_i|$ which is $\leq \aleph_0^{\aleph_0} = 2^{\aleph_0}$ for countable models \mathbf{M}_i ,

• and $\mathbf{M}^* \models T$ if all $\mathbf{M}_i \models T$.

prf

Prf.: Let $A \subseteq M^*$ be a countable set of parameters $[\alpha_j]$, and let

 $p := \{\varphi_i(x) \mid i \ge 0\}$

be any 1-type over A (by the HW it suffices to consider 1-types).

Because p is finitely satisfiable, for all $k \ge 0$ the set

$$D_k := \langle \langle \exists x \bigwedge_{i \leq k} \varphi_i(x) \rangle \rangle$$

is in \mathcal{U} . Clearly these set form a descending chain:

$$D_0\supseteq D_1\supseteq\ldots$$
 .

prf-pic

prf cont'd

Define a function $\gamma \in \prod_i M_i$ by:

 $\gamma(j)$:= any witness to $\exists_{i\leq k} arphi_i(x)$ in \mathbf{M}_j if $j\in D_k\setminus D_{k+1}$.

In words: $\gamma(j)$ witnesses as long initial sequence of formulas $\varphi_0(x), \ldots, \varphi_k(s)$ as possible.

For all $i \ge 0$ we have

 $\langle\!\langle \varphi_i(\gamma) \rangle\!\rangle \supseteq D_i \in \mathcal{U}$

and hence

 $\langle\!\langle \varphi_i(\gamma) \rangle\!\rangle \in \mathcal{U}$.

By Loš's thm then

$$\mathbf{M}^* \models \varphi_i([\gamma])$$
, all $i \ge 0$.

countable case

Define the Stone space w.r.t. theory T:

 $S_n(T)$:= all complete *n*-types consistent with T.

It is the same as putting

$$S_n(T) := S_n^{\mathsf{M}}(\emptyset)$$

for any model \mathbf{M} of \mathcal{T} .

Theorem

T has a countable saturated model iff all $S_n(T)$ are countable, $n \ge 1$.

The only-if direction is immediate, the if-direction is proved by a variant of the Henkin construction used to prove the completeness thm.

isolated types

Definition

A type $p \in S_n(T)$ is isolated (= principal) iff there is a fla $\varphi(\overline{x}) \in p$ such that

$$\mathcal{T} \vdash \varphi(\overline{x}) o \psi(\overline{x}) \ , \ \ ext{for all} \ \psi \in p \ .$$

That is: $\{p\} = [p]$ in the topology of $S_n(T)$.

Lemma

If p is isolated then it is realized in all models of T.

Prf.:

Assume p is isolated by $\varphi(\overline{x}) \in p$. As T is complete $T \vdash \exists \overline{x} \varphi(\overline{x})$ and hence

 $T \vdash \exists \overline{x} \psi(\overline{x})$, for all $\psi \in p$.

The next statement says that being isolated is the only obstruction to omitting a type.

The omitting types theorem (Henkin-Orey) Let *L* be countable, *T* complete and let p_i , $i \ge 0$ be a countable set of non-isolated types. Then there is a model of *T* that omits all p_i , $i \ge 0$.

The theorem is proved by a variant of the Henkin construction used usually when proving the Completeness theorem.

PA

Peano arithmetic: an important theory when studying the foundations of mathematics

language
$$L_{PA}$$
: 0, 1, +, \cdot , < axioms:

a finite set of axioms called often Robinson's arithmetic Q:

•
$$x + 0 = x$$

• $x + (y + 1) = (x + y) + 1$
• $x \cdot 0 = 0$,
• $x \cdot (y + 1) = (x \cdot y) + x$,
• $x + 1 \neq 0$,

•
$$x+1 = y+1 \rightarrow x = y$$
,

 the axioms of discrete linear orders for < with x + 1 being the successor of x,

•
$$(x = y \lor x < y) \equiv (\exists z \ x + z = y),$$

IND

and by infinitely many instances of the induction scheme IND:

$$[\varphi(0) \land \forall x(\varphi(x) \rightarrow \varphi(x+1))] \rightarrow \forall x \varphi(x)$$

for all formulas φ that may contain other free variables than x.

end-extensions

Definition

Let $M \subseteq M'$ be two models of PA. Then M' is a end-extension of M, denoted by $M \subseteq_e M'$, iff

$$\forall v \in M' \setminus M \forall u \in M \; \mathbf{M}' \models u < v \; .$$

In words: all elements not in M are at the end.

Theorem (MacDowell-Specker)

All models of PA have proper end-extensions.

We shall first outline a proof of

- the countable case via the omitting types thm

and then give a proof of

- the general case using definable ultrapowers.

Prf. outline - countable case:

Let **M** be a countable model of PA. Consider the following theory T: language: L_{PA} plus names for all elements of M and a new constant caxioms: axioms of PA with IND in the extended language, and new axioms

$$c > m$$
, for all $m \in M$.

Any model of T properly extends M but to arrange that it is an end-extension we need to omit all - countably many - types:

$$p_u := \{x < u\} \cup \{x \neq m \mid m \in M, \mathbf{M} \models m < u\} .$$

The heart of the proof is to show that all these types are non-isolated (this uses some facts about PA).

general case

Let $\mathbf{M} \models PA$. We shall construct its proper end-extension \mathbf{M}' by definable ultrapower, a variant of the earlier ultrapower construction.

index set: I := M (i.e. the model itself) individual structures: $M_i := M$, all $i \in I$

The change in the construction is in how we construct the universe M' of the new structure: we do not start with the set $\prod_i M_i$ of all functions

$$\alpha: I(=M) \to M$$

but with the set of definable functions:

 $DefFuc(\mathbf{M}) =$ all α that are definable in \mathbf{M}

i.e. the graph of α is definable by a fla ψ with parameters from *M*:

$$\alpha(u) = v \Leftrightarrow_{df} \mathbf{M} \models \psi(u, v, \overline{m}) .$$

universe - pic

universe

Lemma

 $DefFuc(\mathbf{M})$ is closed under + and \cdot , and for each $m \in M$ it contains function λ_m that is constantly equal to m.

Next we replace the Boolean algebra $\mathcal{P}(M)$ by the algebra of definable subsets:

 $Def(\mathbf{M}) :=$ all definable subsets of M.

Lemma

 $Def(\mathbf{M})$ is a Boolean algebra and it contain all finite and cofinite subsets of M.

ultrafilter

It remains to choose a suitable ultrafilter \mathcal{U} on the Boolean algebra. In earlier constructions it sufficed to take any non-principal \mathcal{U} . Here we need a more specific choice.

Definition

 \mathcal{U} is **M**-closed iff for all $\alpha \in DefFuc(\mathbf{M})$ and all $m \in M$, if

$$\alpha: M \rightarrow [0, m]$$

then for some $u \leq m$, $\alpha^{(-1)}(u) \in \mathcal{U}$.

In words, if M is partitioned definably into m pieces then \mathcal{U} contains at least one: this generalizes the property that \mathcal{U} must contain a set or its complement (that is the case m = 2).

Lemma

A non-principal and **M**-closed \mathcal{U} exists.

This is not proved via Zorn's lemma but by defining \mathcal{U} in **M**. This step uses that we talk about models of PA: PA is strong enough to show that if

$$\alpha: \pmb{M} \rightarrow [\pmb{0}, \pmb{m}]$$

then at least one of the preimages $\alpha^{(-1)}(u)$, $u \leq m$ must be "large". This is a form of pigeon-hole principle.

the structure

Now we are ready to complete the definition of the definable ultrapower \mathbf{M}' (this goes back to Skolem).

universe M': Take a non-principal **M**-closed ultrafilter \mathcal{U} and put

 $M' := DefFuc(\mathbf{M})/\mathcal{U}$.

That is, we identify $\alpha, \beta \in DefFuc(\mathbf{M})$ iff

$$\langle\!\langle \alpha - \beta \rangle\!\rangle \in \mathcal{U}$$
.

Loš's thm

Loš's thm goes through in this set-up: the treatment of ax's of equality and of propositional connectives uses just properties of Boolean algebras and ultrafilters. The only non-trivial thing to check are the quantifiers.

Lemma

For any fla $\exists x \psi(x)$ (with parameters from M'):

 $\mathsf{M}' \models \exists x \psi(x) \text{ iff } \langle \langle \exists x \psi(x) \rangle \rangle \in \mathcal{U} .$

Prf.:

The only-if direction is trivi. For the if-direction define $\gamma \in DefFuc(\mathbf{M})$ by:

 $\gamma(i) := \min\{u \mid \psi(u)\}, \text{ if it exists, and } := 0 \text{ otherwise }$.

This uses IND: it implies the least number principle and hence min u exists and so γ is definable.

To conclude the proof of the MacDowell-Specker thm note first that

- **M**' is proper extension:
- for $\delta \in DefFuc(M)$ defined by $\delta(u) := u$ we have

 $[\delta] \in M' \setminus M$.

Lemma

 \mathbf{M}' is an end-extension of \mathbf{M} .

prf - lemma

Prf.: Let $m \in M$ and $\beta \in DefFuc(\mathbf{M})$, and assume

 $\mathbf{M}' \models [\beta] < m$

(*m* is represented by $[\lambda_m]$). Hence

$$D:=\langle\!\langle \beta < m \rangle\!\rangle \in \mathcal{U}$$
.

Define

 $\alpha(u) := \beta(u)$, if $u \in D$ and := m, otherwise.

By the property of \mathcal{U} , one of $\alpha^{(-1)}(u)$ for some $u \leq m$ has to be in \mathcal{U} . But it cannot be $\alpha^{(-1)}(m)$ because that is $M \setminus D$. So for some u < m:

$$\alpha^{(-1)}(u) = \langle \langle \beta = u \rangle \rangle \in \mathcal{U} .$$