Lecture 1

relations between structures, applications of compactness

topics

- substructures, preservation thms
- elementary substructure
- embedding and isomorphism
- elementary equivalence
- non-standard models of theories of \mathbf{N} and \mathbf{R}
- The Löwenheim-Skolem theorem up
- categoricity

substructures

substructures

Definition: substructures
$\mathbf{A} \subseteq \mathbf{B}(\mathbf{A}$ is a substructure of $\mathbf{B})$ iff

- $A \subseteq B$,
- $R^{\mathbf{A}}$ is $R^{\mathbf{B}}$ restricted to A,
- $f^{\mathbf{A}}$ is $f^{\mathbf{B}}$ restricted to A and A is closed under $f^{\mathbf{B}}$.

Ex. $\mathbf{Q}=(Q, 0,1,+, \cdot,<) \subseteq \mathbf{R}=(R, 0,1,+, \cdot,<)$.
Ex. $([0,1], 0,1,+, \cdot,<) \nsubseteq \mathbf{R}=(R, 0,1,+, \cdot,<)$.

absoluteness of open flas

Lemma

Assume $\mathbf{A} \subseteq \mathbf{B}$. Let $\psi(\bar{z})$ be an open (= quantifier-free) formula, $\overline{\mathbf{a}} \in A^{n}$. Then:

$$
\mathbf{A} \models \psi(\bar{a}) \quad \text { iff } \quad \mathbf{B} \models \psi(\bar{a}) .
$$

Prf.:
For atomic flas this is from the definition and for their propositional combinations it follows from Tarski's definition of \models.

existential preservation up

Lemma

Assume $\mathbf{A} \subseteq \mathbf{B}$. Let $\psi(\bar{x}, y)$ be an open formula and $\bar{a} \in A^{n}$. Then:

$$
\mathbf{A} \models \exists y \psi(\overline{\mathbf{a}}, y) \Longrightarrow \mathbf{B} \models \exists y \psi(\overline{\mathbf{a}}, y) .
$$

Prf.:
$\mathbf{A} \models \exists y \psi(\bar{a}, y)$
implies
$\mathbf{A} \models \psi\left(\bar{a}, a^{\prime}\right)$ for some $a^{\prime} \in A$
implies by the previous lemma
$\mathbf{B} \models \psi\left(\bar{a}, a^{\prime}\right)$ for the same $a^{\prime} \in A \subseteq B$
implies
$\mathbf{B} \models \exists y \psi(\bar{a}, y)$.

universal preservation down

The lemma cannot be literally reversed:
$\mathbf{R} \models \exists y(y \cdot y=1+1)$ but $\sqrt{2}$ does not exist in \mathbf{Q}.

But it can be reversed if \exists is changed into \forall :

Lemma
Assume $\mathbf{A} \subseteq \mathbf{B}$. Let $\psi(\bar{x}, y)$ be an open formula and $\bar{a} \in A^{n}$. Then:

$$
\mathbf{B} \models \forall y \psi(\overline{\mathrm{a}}, y) \Longrightarrow \mathbf{A} \models \forall y \psi(\overline{\mathrm{a}}, y) .
$$

Ex.
$\mathbf{R} \models \forall y(y \cdot y+1 \neq 0)$ and indeed $\sqrt{-1}$ does not exist in \mathbf{Q} either.

elementary substructures

When all flas are preserved we have a stronger notion:

Definition - elem.substructure
$\mathbf{A} \preceq \mathbf{B}(\mathbf{A}$ is elementary substructure of $\mathbf{B})$ iff for all formulas $\varphi(\bar{x})$ and all $\bar{a} \in A^{n}$:

$$
\mathbf{A} \models \varphi(\bar{a}) \quad \text { iff } \quad \mathbf{B} \models \varphi(\bar{a}) .
$$

Ex. \mathbf{Q} is not elem.substructure of \mathbf{R} but

$$
(Q,<) \preceq(R,<) .
$$

This needs a proof and we shall prove this later.

embedding

embedding and isomorphism

The following notion generalizes the notion of a substructure to the case when A is not literally a subset of B.

Definition - embedding
Map $h: A \rightarrow B$ is embedding of \mathbf{A} into \mathbf{B} iff

- h is 1-to-1,
- $\bar{a} \in R^{\mathbf{A}} \Leftrightarrow h(\bar{a}) \in R^{\mathbf{B}}$,
- $h\left(f^{\mathbf{A}}(\bar{a})\right)=f^{\mathbf{B}}(h(\bar{a}))$.

That is, for all open flas $\psi(\bar{x})$:

$$
\mathbf{A} \models \psi(\bar{a}) \quad \text { iff } \quad \mathbf{B} \models \psi(h(\bar{a})) .
$$

$h(\bar{a}):=\left(h\left(a_{1}, \ldots, h\left(a_{n}\right)\right)\right.$.
Definition - isomorphism
Isomorphism $=$ embedding + onto. Notation: $\mathbf{A} \cong \mathbf{B}$.

isomorphism and elem.equivalence

Isomorphic structures are often just identified. In fact:
Lemma
Assume $\mathbf{A} \cong \mathbf{B}$ via map h. Let $\varphi(\bar{x})$ be any fla and $\bar{a} \in A^{n}$. Then:

$$
\mathbf{A} \models \varphi(\bar{a}) \text { iff } \quad \mathbf{B} \models \varphi(h(\bar{a})) .
$$

Prf.:
By ind. on the complexity of φ. The key step is: $\mathbf{B} \models \exists y \psi(h(\bar{a}), y)$ implies

$$
\mathbf{B} \models \psi(h(\bar{a}), b), \quad \text { for some } b \in B .
$$

But any b is in the range of h, so $b=h\left(a^{\prime}\right)$ and we have:

$$
\mathbf{B} \models \psi\left(h(\bar{a}), h\left(a^{\prime}\right)\right) .
$$

By ind. hypothesis $\mathbf{A} \models \psi\left(\bar{a}, a^{\prime}\right)$ and $\mathbf{A} \models \exists y \psi(\bar{a}, y)$ follows.

theory of a structure

Corollary
Assume $\mathbf{A} \cong \mathbf{B}$ via map h. Then for all sentences θ :

$$
\mathbf{A} \models \theta \quad \text { iff } \mathbf{B} \models \theta .
$$

This statement can be elegantly phrased using the following notions
Definition: elem. equivalence and theory of a structure
Theory of $\mathbf{A}: \operatorname{Th}(\mathbf{A}):=$ the set of all sentences true in \mathbf{A}.
Two structures \mathbf{A}, \mathbf{b} (in a common lang.) are elementarily equivalent, $\mathbf{A} \equiv \mathbf{B}$, iff

$$
\operatorname{Th}(\mathbf{A})=\operatorname{Th}(\mathbf{B}) .
$$

$$
A \cong B \Rightarrow A \equiv B
$$

a question

What about $A \equiv B \Rightarrow A \cong B$?

Our first applications of the compactness will be several counter-examples to this implication.

A problem to take away: Show that this is true whenever \mathbf{A} is a finite structure in a finite language.

Set up:

- $\mathrm{L}: \mathbf{0}, 1,+, \cdot,<$
- $\mathbf{N}:=(N, 0,1,+, \cdot,<)$
- c: a new constant
- theory $T:=\operatorname{Th}(\mathbf{N}) \cup\{c>1+\cdots+1$ (n times) $\mid n \geq 1\}$.

non-standard integers

The compactness implies:
Lemma
T is satisfiable.

infinitesimal reals

A bit harder example. Take the same L and \mathbf{R} and define:

- ϵ : a new constant,
- new constants c_{r}, one for each real $r \in R$, L_{R} is L plus all these constants c_{r},
- \mathbf{R}^{\prime} : an expansion of \mathbf{R} by interpreting each constant c_{r} by r,
- $T h_{R}(\mathbf{R}): L_{R}$ sentences true in \mathbf{R}^{\prime},
- $T:=\operatorname{Th}_{R}(\mathbf{R}) \cup\{0<\epsilon\} \cup\{1>$ epsilon $+\ldots \epsilon(n$ times $) \mid n \geq 1\}$.

In \mathbf{N} we could use numerals $1+\cdots+1$ to name each element of the universe. In \mathbf{R} this is impossible and the role of the new constants c_{r} is to name all reals. E.g. statement $\pi^{2}<20$ is represented by $c_{\pi} \cdot c_{\pi}<c_{20}$.

Lemma

T is satisfiable.

going up

L: any
A: any infinite
$L_{A}: L$ with names c_{u} for all $u \in A$ (as before)
$T h_{A}(\mathbf{A})$: as before
D : an arbitrary set of new constants
$T:=T h_{A}(\mathbf{A}) \cup\left\{d \neq d^{\prime} \mid\right.$ and two different $\left.d, d^{\prime} \in D\right\}$

Lemma
T is satisfiable.

Prf.:
Any finite number of constants from D can be interpreted in A by different elements because it is infinite.

huge model

Löwenheim-Skolem up

The Löwenheim-Skolem theorem upwards
Let \mathbf{A} be an infinite structure in language L and let κ be an arbitrary cardinality. Then there is \mathbf{B} such that:

$$
\mathbf{A} \preceq \mathbf{B} \text { and }|B| \geq \max \kappa .
$$

Informally: cardinalities of elem. extensions of an infinite structure are unbounded.

Prf.:
Take D of cardinality κ and any model \mathbf{B} of T from previous slide.

Note that we do not know that the model has cardinality exactly κ.

categoricity

It follows that the theory of no infinite \mathbf{A} can determine \mathbf{A} up to isomorphism. The next best thing we can hope for is that

- $\operatorname{Th}(\mathbf{A})$ determines all its models in some particular cardinality (i.e. the theory plus the cardinality determines the structure up to iso).

Definition - categoricity

Let κ be any infinite cardinality and let T be a theory with a model of cardinality κ.
Then T is κ-categorical iff T has a unique model in cardinality κ up to isomorphism.

Morley's thm

This looks like a chaotic situation where many combinations can occur. But fortunately the picture is much simpler for countable T.

Morley's theorem

Let L and T be countable. If T is κ-categorical for some uncountable κ then it is categorical all uncountable cardinalities.

Hence for countable L, T there are only four options, all combinations of:

- T is/is not countably categorical,
- T is/is not uncountably categorical.

We shall not prove Morley's thm but we shall see examples of theories of all four categories.

Vaught's conjecture

Assume L, T are countable, T complete with infinite models. Define:

$$
I(T, \kappa):=\text { the number of cardinality } \kappa \text { models of } T \text { up to iso } .
$$

What are possible values of $I\left(T, \aleph_{0}\right)$?
Finite case: any $n \geq 1$ can appear except 2 ! Infinite case: easy examples with $I\left(T, \aleph_{0}\right)=\aleph_{0}$ and $I\left(T, \aleph_{0}\right)=2^{\aleph_{0}}$.

Vaught's conjecture

No other infinite cardinality is possible.
Informally: Continuum Hypothesis holds as long as you look at structures rather than sets.
The only known general result is:

$$
I\left(T, \aleph_{0}\right)>\aleph_{1} \rightarrow I\left(T, \aleph_{0}\right)=2^{\aleph_{0}}
$$

