Lecture 3

back-and-forth, Ehrenfeucht-Fraisse

topics

- diagram of a structure
- Cantor's thm
- Ehrenfeucht-Fraisse games
- DLO
- the theory of the countable random graph

leftovers

HW: Show that $\operatorname{Th}(\mathbf{A})$ determines \mathbf{A} up to iso if \mathbf{A} is finite.

Our debt: $(Q,<) \preceq(R,<)$.

We shall solve the first task now and the second later in the lecture.

the diagram:

$$
R(a, a), R(a, b), \neg R(b, a), R(b, b)
$$

Getting rid of the names:

$$
\theta:=\exists x, y[x \neq y \wedge R(x, x) \wedge R(x, y) \wedge \neg R(y, x) \wedge R(y, y)] .
$$

diagram

L, \mathbf{A} : any, L_{A} : L with names for all elements of A
Definition - diagram
The diagram of \mathbf{A}, denoted $\operatorname{Diag}(\mathbf{A})$, is the set of all

- atomic L_{A}-sentences true in \mathbf{A}, and
- the negations of atomic L_{A}-sentences false in \mathbf{A}.

The diagram is sometimes also called atomic diagram to distinguish it from elementary diagram which is $T h_{A}(\mathbf{A})$ we introduced last time.

Lemma

\mathbf{A} can be embedded in \mathbf{B} (both L-structures) iff there is an expansion \mathbf{B}^{\prime} of \mathbf{B} by an interpretation of constants from $L_{A} \backslash L$ such that

$$
\mathbf{B}^{\prime} \models \operatorname{Diag}(\mathbf{A}) .
$$

ex. of an embedding

L : constant c and binary function symbol \circ

A: $(R, 0,+)$
B: $\left(R_{>0}, 1, \cdot\right)$
An embedding:

$$
a \in A \longrightarrow e^{a} \in B
$$

This works because

$$
e^{0}=1 \text { and } e^{x+y}=e^{x} \cdot e^{y} .
$$

(Base e could be any, e.g. 2 or 10.)

Cantor's thm

Let us append the earlier definition of theory DLO:
theory DLO (dense linear ordering without endpoints):

- ax's of LO,
- $\forall z \exists x, y(x<z \wedge z<y)$ (no endpoints),
- $\forall x, y(x<y \rightarrow \exists z(x<z \wedge z<y))$ (density).

Cantor's theorem

DLO is countably categorical: all countable models of DLO are isomorphic to $(Q,<)$.

Prf.:

Let \mathbf{A} and \mathbf{B} be two countable models of DLO. We can enumerate their universes:

A: a_{0}, a_{1}, \ldots
$B: b_{0}, b_{1}, \ldots$
and construct an increasing sequence of partial isomorphisms:

$$
h_{i}: \subseteq A \rightarrow B
$$

such that

$$
\left\{a_{0}, \ldots, a_{i}\right\} \subseteq \operatorname{dom}\left(h_{i}\right) \text { and }\left\{b_{0}, \ldots, b_{i}\right\} \subseteq r n g\left(h_{i}\right) .
$$

Then $\bigcup_{i} h_{i}$ is an isomorphism $\mathbf{A} \cong \mathbf{B}$.

End of the proof.

our debt

uncountable DLOs

games

Ehrenfeucht-Fraisse games
L : finite, no function symbols
A, B: L-structures (not necessarily finite)
games $G_{n}(\mathbf{A}, \mathbf{B})$ and $G_{\omega}(\mathbf{A}, \mathbf{B})$

2 players:

- Spoiler (or ヨ-player, Eloise),
- Duplicator (or \forall-player, Abelard).

moves

1st move:

- Spoiler picks either (i) some $a_{1} \in A$ or (ii) some $b_{1} \in B$,
- Duplicator replies (i) with some $b_{1} \in B$ or (ii) with some $a_{1} \in A$.

That is, they determined a pair $\left(a_{1}, b_{1}\right) \in A \times B$.
$(k+1)$ st move:
After first k moves they have already determined pairs $\left(a_{1}, b_{1}\right), \ldots,\left(a_{k}, b_{k}\right) \in A \times B$ and proceed as above:

- Spoiler picks either (i) some $a_{k+1} \in A$ or (ii) some $b_{k+1} \in B$,
- Duplicator replies (i) with some $b_{k+1} \in B$ or (ii) with some $a_{k+1} \in A$.

rules

For G_{n} the game goes on for n rounds, determining

$$
\left(a_{1}, b_{1}\right), \ldots,\left(a_{n}, b_{n}\right) \in A \times B
$$

and for G_{ω} there are infinitely (countably) many rounds, determining

$$
\left(a_{1}, b_{1}\right), \ldots,\left(a_{i}, b_{i}\right), \ldots, \quad \text { all } i \in \mathbf{N}
$$

Rules:

- Duplicator wins if the resulting set of pairs is a partial isomorphism from \mathbf{A} into \mathbf{B},
- otherwise Spoiler wins.

D wins

S wins

$$
[0,1]
$$

$(0,1)$

infinite game

a strategy of a player: any function determining the next move of the player from the history of the play

Lemma

Let A, B be countable. Then Duplicator has a winning strategy for $G_{\omega}(\mathbf{A}, \mathbf{B})$ iff $\mathbf{A} \cong \mathbf{B}$.

Prf.: \Leftarrow
If $h: A \rightarrow B$ is an isomorphism define Duplicator's strategy by:

$$
b_{k}:=h\left(a_{k}\right) \text { or } a_{k}:=h^{(-1)}\left(b_{k}\right) .
$$

Spoiler's strategy

\Rightarrow
Spoiler enumerates both universes:
$A: u_{0}, u_{1}, \ldots$
$B: v_{0}, v_{1}, \ldots$
and in round k plays:

- $k=2 i+1$ odd: chooses u_{i},
- $k=2 i+2$ odd: chooses v_{i}.

If Duplicator were to win his answers would form a total isomorphism between \mathbf{A} and \mathbf{B}.

finite game

Lemma

Let A, B be countable. Then Duplicator has a winning strategy for $G_{k}(\mathbf{A}, \mathbf{B})$ for all $k \geq 1$ iff $\mathbf{A} \equiv \mathbf{B}$.

Prf.:
We shall prove only \Rightarrow : this is enough for our applications.

Assume $\mathbf{A} \not \equiv \mathbf{B}$ and, in particular,

$$
\mathbf{A} \models \theta \text { while } \mathbf{B} \models \neg \theta
$$

where θ has the form

$$
\forall x_{1} \exists x_{2} \forall x_{3} \ldots Q_{k} x_{k} \alpha(\bar{x}) .
$$

Spoiler's strategy

Spoiler: always pick witnesses for \exists quantifier
1st move: $b_{1} \in B$ such that

$$
\mathbf{B} \models \forall x_{2} \exists x_{3} \ldots \bar{Q}_{k} x_{k} \neg \alpha\left(b_{1}, x_{2}, \ldots, x_{k}\right)
$$

where \bar{Q} is the quantifier opposite to Q.
Key fact: no matter which $a_{1} \in A$ Duplicator chooses it will hold:

$$
\mathbf{A} \models \exists x_{2} \forall x_{3} \ldots Q_{k} x_{k} \alpha\left(a_{1}, x_{2}, \ldots, x_{k}\right)
$$

Ex.

$$
\begin{align*}
& \mathbb{A} \quad \begin{array}{l}
\left.\exists x_{1} \forall x_{2} \forall x_{3} \alpha\left(x_{1}, x_{1}\right) x_{3}\right) \\
\forall x_{2} \forall x_{3},\left(a_{1}, x_{2}, t_{3}\right) \\
\left.7 \alpha\left(b_{2}, b_{2}, b_{3}\right)<a_{3}\right)
\end{array} \\
& \forall x_{2} \exists x_{3} 7 \alpha\left(b_{1}, r_{2}, x_{2}\right. \\
& \forall x_{1} \exists x_{2} \exists x_{3} 7 \alpha\left(x_{1}, r_{2}, x_{3}\right)
\end{align*}
$$

concluding the proof

If Duplicator were to win, the k pairs:

$$
\left(a_{1}, b_{k}\right), \ldots,\left(a_{k}, b_{k}\right)
$$

would form a partial isomorphism while it would also hold:

$$
\mathbf{A} \models \alpha(\bar{a}) \text { and } \mathbf{B} \models \neg \alpha(\bar{b}) .
$$

That is a contradiction.

Rado graph

theory RG: the theory of the countable random graph
language L : binary relation $R(x, y)$
Axioms:

- $\exists x, y x \neq y$,
- $\forall x \neg R(x, x)$,
- $\forall x, y R(x, y) \rightarrow R(y, x)$,
- extension axioms, one for each $n \geq 1$:

$$
\forall x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n} \bigwedge_{i, j} x_{i} \neq y_{j} \rightarrow\left[\exists z \bigwedge_{i} R\left(x_{i}, z\right) \wedge \bigwedge_{j} \neg R\left(y_{j}, z\right)\right] .
$$

The 2nd and the 3rd axioms just define undirected graphs without loops.
ext. axioms

categoricity

Lemma
RG has a countable infinite model.

This is a HW problem: construct such a model.

Theorem
RG is countably categorical.

Prf.:
Use G_{ω} game, as in the next picture.
prf

determinacy

Are the games determined? I.e. does one of the players alwyas have a winning strategy? Yes for finite games:
Spoiler has a wining strategy iff

- \exists Spoiler's first move s_{1} such that
- \forall Duplicator's reply d_{1} it holds that
- \exists Spoiler's second move s_{2} such that ...
- Spoiler winns.
and Duplicator has one iff
- \forall Spoiler's first moves s_{1} it holds
- \exists Duplicator's reply d_{1} such that
- \forall Spoiler"s second move $s_{2} \ldots$
- Duplicator winns.

Negations of each other!

ax. of determinacy

For infinite games this argument does not work: we do not have formulas with infinitely many quantifiers.

We could define such flas but would the DeMorgan rules still apply? Are

$$
\begin{gathered}
\exists x_{1} \forall x_{2} \ldots Q_{i} x_{i} \ldots \alpha\left(x_{1}, \ldots\right) \\
\Downarrow \text { negation } \\
\forall x_{1} \exists x_{2} \ldots \bar{Q}_{i} x_{i} \ldots \neg \alpha\left(x_{1}, \ldots\right)
\end{gathered}
$$

complemenary?

ZFC rules this out as a general rule but it holds for some special games.

