Lecture 1

uncountable categoricity, complete theories

Topics

- some remarks on $A D$
- uncountable categoricity
- ex's of uncountably categorical theories:
$T h(\mathbf{Z}$, suc $)$, Vect $_{\mathbf{Q}}, A C F_{p}$
- complete theories and Vaught's test (we shall prove it in Lect.5)

AD - ax. of determinacy

a type of topological games:
moves: $a_{1}, b_{1}, \cdots \in N$ (natural numbers)
a play: infinite sequence of natural numbers

$$
\left(a_{1}, b_{1}, \ldots, a_{i}, b_{i}, \ldots\right) \in \mathcal{N}
$$

where \mathcal{N} is the topological Baire space (set th. terminology)
Other notation: $N^{N}=N^{\omega}=\omega^{\omega}$

Fact: \mathcal{N} is homeomorphic to $R \backslash Q$ (the set if irrational numbers)
Warning: \mathcal{N} is the arena for descriptive set theory and they often talk about \mathcal{N} as about "reals".
picture of \mathcal{N}

games

a game is defined by any subset $W \subseteq \mathcal{N}$:

$$
\text { player I wins play } \alpha=\left(a_{1}, b_{1}, \ldots\right) \text { iff } \alpha \in W
$$

Ehrenfeucht-Fraisse:
for countable universes A, B we can take w.l.o.g. $A=B=N$ and define W to be the set of all plays

$$
\left(a_{1}, b_{1}, \ldots, a_{i}, b_{i}, \ldots\right)
$$

such that

$$
\left\{\left(a_{i}, b_{i}\right) \mid i \geq 1\right\}
$$

is not a partial iso.

AD - formulation

AD (Mycielski-Steinhaus '62
Every game is determined, i.e. one of the players has a winning strategy.

Known facts:
YES for Borel sets W (D.Martin), and some more set theory ... NO in general: AD contradicts AC
E.x:
$\mathrm{AD} \Rightarrow$ all sets of reals are Lebesgue measurable
AC \Rightarrow not all sets ...
many variants in between: take both $A D$ and $A C$ in some restricted forms only

HW problem

a model for RG

Marker (pp.50-51): a generic construction by an infinite process
A specific definition:
universe: N (natural numbers)
edges:

- first define $R_{0}: R_{0}(a, b)$ iff
2^{a} occurs in the unique expression of b as a sum of powers of 2 .
- edge relation R : symmetrization of R_{0}

$$
R(x, y) \text { iff }\left(R_{0}(x, y) \vee R_{0}(y, x)\right)
$$

RG model

uncountable categoricity

We consider primarily theories T in a countable language L - this allows for simpler formulations of statements and covers the cases we shall be interested in.
uncountable categoricity: T has unique model (up to iso) in every uncountable power

By Morley's thm we stated earlier this is equal to having a unique model in some uncountable power, so it suffice to think about models having the cardinality of continuum.

successor function

$(Z, \operatorname{suc}): \operatorname{suc}(x):=x+1$.
Th(Z, suc $)$
This theory contains as axioms universal closures of the following formulas:

- suc is a bijection:

$$
(x \neq y \rightarrow \operatorname{sux}(y) \neq \operatorname{suc}(y)) \wedge(\exists z \operatorname{suc}(z)=x)
$$

- no finite cycles: for each $k \geq 1$:

$$
\operatorname{suc}(\operatorname{suc}(\ldots(x) \ldots) \neq x
$$

where suc occurs k-times.

Call this theory SUC.
models of SUC

SUC

Theorem
 SUC is uncountably categorical.

Prf.: continuum size \Leftrightarrow continuum many blocks
So any two models of this size are isomorphic: put the blocks into a bijection.

We will note in Lect. 5 - as a corollary to the construction behind Vaught's test - the following statement.

Corollary
SUC axiomatizes $\operatorname{Th}(Z, s u c)$.

vector spaces

theory Vect_{Q} of vector spaces of \mathbf{Q}
language:

- constant 0 (for the zero vector),
- binary f.symbol + (for the vector addition),
- infinitely many unary f.symbols λ_{q}, one for each $q \in Q$.

Intended meaning of λ_{q} : scalar multiplication by q

$$
\lambda_{q}: x \rightarrow q \cdot x
$$

This choice of language is because we do not want to have scalars (i.e. rationals) as elements of our structures and be able to quantify over them - we want to subject to FO logic (and to quantification) only vectors.

Vect $_{Q}$

axioms:

- axioms forcing that $0,+$ define a commutative group,
- axioms about scalar multiplication, universal closures of formulas:
- $\lambda_{0}(x)=0$ and $\lambda_{1}(x)=x$,
- $\lambda_{q}(x)+\lambda_{r}(x)=\lambda_{q+r}(x)$,
- $\lambda_{q}(x+y)=\lambda_{q}(x)+\lambda_{q}(y)$,
- $\lambda_{q}\left(\lambda_{r}(x)\right)=\lambda_{q \cdot r}(x)$

Lemma

Models of Vect $_{Q}$ are exactly vector spaces over \mathbf{Q}.

categoricity

Theorem

Vect $_{Q}$ is uncountably categorical but not countably categorical.
Prf.:
The iso type of a vector space V is determined by its dimension. If the dimension is κ (possibly infinite cardinality), i.e. it has a basis B of size κ, then vectors V are of the form

$$
q_{1} v_{1}+\cdots+q_{n} v_{n}
$$

with $q_{i} \in Q$ and $v_{i} \in B$, and there are

$$
\max \aleph_{0}, \kappa
$$

such choices (see next slide). Hence if V us uncountable, it must be that $\kappa=|V|$ and hence all spaces of that cardinality have the same dimension, i.e. are iso.

In the countable case there are more options for dim: $1,2, \ldots$ or \aleph_{0}.

counting

recall that for infinite cardinalities λ, η it holds:

$$
\lambda+\eta=\lambda \cdot \eta=\max \lambda, \eta
$$

number of choices $q v$, with $q \in Q$ and $v \in B$:

$$
\aleph_{0} \cdot \kappa=\kappa
$$

number of choice of n-tuples of such $q v$:

$$
\kappa \cdots \kappa(n \text {-times })=\kappa
$$

sum of these options for all $n \geq 1$:

$$
\aleph_{0} \cdot \kappa=\kappa
$$

fields

theory Fields:
language: $0,1,+, \cdot$ (sometimes also binary - is included)
axioms: universal closures of

- 0 and $=$ form a commutative group:

$$
x+0=x, x+y=y+x, x+(y+z)=(x+y)+z, \exists y(x+y=0)
$$

- 1 and form a commutative group on non-zero elements:

$$
x \neq 0 \rightarrow x \cdot 1=x, \ldots, x \neq 0 \rightarrow \exists y(x \cdot y=1)
$$

- distributivity:

$$
x \cdot(y+z)=(x \cdot y)+(x \cdot z)
$$

algebraic closure

Definition

A field K (i.e $K \models$ Fields) is algebraically closed iff all non-constant polynomials $f(x) \in K[x]$ over K have roots in K.
axioms:

$$
\forall x_{0}, \ldots, x_{n} \exists y\left(x_{n} \neq 0 \rightarrow \sum_{i \leq n} x_{i} y^{i}=0\right)
$$

where y^{i} abbreviates the term $y \cdots \cdot y$ (i-times).
theory ACF: Fields + these axioms for all $n \geq 1$.

Key example: the complex field \mathbf{C}

alg.closure

Algebraic fact:
For every field K there exists the smallest algebraically closed field containing K : the algebraic closure $K^{\text {alg }}$ of K.
It is countable if K is finite and has the cardinality of K if K is infinite.

Ex's:
$\mathbf{R}^{\mathrm{alg}}=\mathbf{C}$
$\mathbf{Q}^{\text {alg }} \neq \mathbf{C}$
$\mathbf{F}_{p}^{a l g}$, where \mathbf{F}_{p} is the finite field of counting modulo a prime p, is a countable field

alg. independence

Definition

Elements $a_{1}, \ldots, a_{n} \in K$ are algebraically independent iff the only polynomial $f\left(x_{1}\right.$, dots, $\left.x_{n}\right) \in \mathbf{Z}[\bar{x}]$ for which

$$
f\left(a_{1}, \ldots, a_{n}\right)=0
$$

is the zero polynomial. (A special case of a more general definition.)
Informally: there is no non-trivial algebraic relation among the elements.

This is analogous to the linear independence in vector spaces. And similarly to that situation we have

Definition

$B \subseteq K$ is a transcendence basis iff B is the maximal subset w.r.t \subseteq such that all n-tuples of its elements are algebraically independent.

characteristic

Algebraic fact

The cardinality of all bases of transcendence is the same, the transcendence degree of K.

In vector space the cardinality of a basis determines the space. Here we need additional info:

Definition
The characteristic of K is prime p, char $K=p$, iff
$1+\cdots+1$ (p-times) $=0$.
It is 0 , char $K=0$, iff it is not p for any prime p.

Algebraic fact
The characteristic and the transcendence degree determine K up to iso.

$A C F_{p}$

theory $A C F_{p}$ for p a prime or $p=0$: $A C F$ plus

- axiom $1+\cdots+1$ (p-times) $=0$, if p is a prime
- axioms $1+\cdots+1$ (q-times) $\neq 0$ for all primes q, if $p=0$

Ex's:

$$
\mathbf{C} \models A C F_{0} \quad \text { and } \quad \mathbf{F}_{p}^{\text {alg }} \models A C F_{p} .
$$

Theorem

Theory $A C F_{p}, p$ a prime or 0 , is uncountably categorical.
Prf.:
Entirely analogous to the case of Vect_{Q}, using the transcendence degree and the characteristic.

So what?

What does follow about T if we know that it is categorical in some power?

A deeper/intrinsic consequence:
it betrays the existence of some invariants that classify structures.
\Rightarrow modern model theory

A more direct consequence: completeness of the theory (under additional cond.'s)

completeness

Definition

An L-theory T is complete iff for all L-sentences φ :

$$
T \models \varphi \text { or } T \models \neg \varphi \text {. }
$$

Informally: axioms in T already "logically" decide the truth value of all FO statements.
bad news: ZFC is not complete
good news: many theories defining familiar classes of structures are

Vaught's test

Vaught's test

Let T be a satisfiable theory in a countable language that has no finite models.
If T is categorical in some (infinite) power then it is complete.
Proof next time.

Corollary

All theories DLO, RG, SUC, Vect_{Q} and $A C F_{p}$ (any p) are complete.

HW problem

A problem to take away:
Take, for example, theory $A C F_{0}$ and using the fact that it is complete devise an algorithm that upon receiving φ as input decides if $A C F_{0} \models \varphi$ or $A C F_{0} \models \neg \varphi$.

Note that because $\mathbf{C} \models A C F_{0}$, the same algorithm decides what is true or false in the complex field.

