
Lecture 5

Vaught’s test
application of compactness to RG and ACF0
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Topics

from completeness to decidability (HW problem)

formulation of the Lowenheim-Skolem theorem down (a proof in
Lect.6)

Vaught’s test and its proof

two particular complete theories: RG and ACF0

0-1 law for finite graphs

the Ax-Grothendieck theorem on polynomial maps on the complex
field
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from completeness to decidability

The HW problem was to devise - using the fact that ACF0 is complete -
an algorithm that decides whether or not a sentence is a logical
consequence of the theory.

Idea:
By the Completeness thm ACF0 |= ϕ is equivalent to ACF0 ⊢ ϕ and hence
the completeness of ACF0 means that for all ϕ

ACF0 ⊢ ϕ or ACF0 ⊢ ¬ϕ.

Algorithm: enumerate systematically all finite sequences of symbols in the
language of ACF0 (plus the common FO symbols) until you find a valid
proof of either ϕ or of ¬ϕ.
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HW cont’d

For this to work you have to be able to algorithmically verify various
syntactic notions:

a string is a term, a formula, ...,

a fla is a valid logical axiom (propositional, quantifier or equality ax.),

a fla was derived using a valid inference rule,

a fla is an axiom of ACF0.

The first three items can be algorithmically decided because they have a
schematic character: e.g. a valid use of modus ponens

α α → β

β

means that the 2nd fla is an implication whose antecedent is the 1st fla
and whose succedent is the bottom fla, i.e. you need to check that some
strings are flas and that a string equals to a substring, etc.
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HW cont’d

To be able to algorithmically verify also the last condition:

a fla is an axiom of ACF0

note that ACF0 has some finite number of ad hoc axioms (Fields) which
the algorithm can remember, plus two infinite sets of axioms:

∀x0, . . . , xn∃y (xn 6= 0 →
∑

i≤n xiy
i = 0), all n ≥ 1,

0 6= 1 + · · · + 1 (p-times) , all primes p

which are also ”schematic” and easy to recognize.

Theorem

Let T be a theory in a finite language whose set of axioms (i.e. T ) is
algorithmically decidable (these theories are also called recursive).
If T is complete then it is decidable: there is an algorithm deciding if a
sentence is a logical consequence of T .
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Lowenheim-Skolem thm

In the proof of Vaught’s test we shall need the following special case of
the Lowenheim-Skolem thm: we shall prove it in Lect.6 (we proved the
upwards L.-S. thm. already but this needs the downwards version).

The Lowenheim-Skolem thm.

Let T be a theory in a countable language which has an infinite model.
Then T has models of all infinite cardinalities.
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Vaught’s test

Last time we formulated

Vaught’s test

Let T be a satisfiable theory in a countable language that has no finite
models.
If T is categorical in some (infinite) power then it is complete.

and we need to prove it now.

Recall important

Corollary

All theories DLO, RG, SUC, VectQ and ACFp (any p) are complete.
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prf of Vaught’s test

Prf.:
Assume for the sake of a contradiction that T satisfies the hypothesis of
Vaught’s test and, in particular, is κ-categorical, but is not complete:

for some sentence ϕ neither the sentence nor its negation are logical
consequences of T .

By the completeness thm. this means that both theories

T1 := T + ϕ and T0 := T + ¬ϕ

have some models A and B, and because T has no finite models both A

and B are infinite. Hence by the Lowenheim-Skolem thm. both T1 and T0

have models of size κ but these - as they are, in particular, models of T -
must be isomorphic.
But that is a contradiction because they are not elem.equivalent.

�
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injective maps

Consider
F : U → U

where U is infinite. We can always choose such F injective but not
surjective.

We shall study the situation when there is an additional requirement on F

and U: U is a universe of a structure and F ought to be definable in it.

Our example:

the complex field C := (C , 0, 1,+, ·) and U := Cn,
polynomial maps:

F : Cn → Cn

where
F (z1, . . . , zn) := (f1(z), . . . , fn(z))

with fi being polynomials over C.
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Ax-Grothendieck

The Ax-Grothendieck theorem

If a polynomial map F : Cn → Cn is injective then it is also surjective.

Towards a formalization: injectivity can be written as

Inj(f1, . . . , fn) ⇔df ∀x1, . . . , xn, y1, . . . , yn (
∨

i

xi 6= yi →
∨

j

fj(x) 6= fj(y))

and surjectivity as

Sur(f1, . . . , fn) ⇔df ∀v1, . . . , vn∃u1, . . . , un

∧

j

fj(u) = vj
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formalization

Hence the thm can be written as

∀n ≥ 1∀f1, . . . , fn ∈ C[z1, . . . , zn] Inj(f1, . . . , fn) → Sur(f1, . . . , fn) .

Difficulty: this is not FO. We cannot quantify over n or over polynomials fi .

Idea: formalize the statement separately for each fixed n, d ≥ 1 by
representing degree ≤ d polynomials in n variables by their coefficients.
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ex

For example, consider n = d = 2. Polynomials in 2 variables z1, z2 of
degree ≤ 2 have only six possible monomials

1, z1, z2, z2
1 , z1z2, z2

2 .

(In general there are
(

n+d
d

)

of them.) Hence such f is determined by six
coefficients w0,w1,w2,w11,w12,w22 as:

f (z1, z2) := w0 · 1 + w1 · z1 + w2 · z2 + w11 · z
2
1 + w12 · z1z2 + w22 · z

2
2 .

Instead of writing ∀f (f (z1, z2) has property . . . ) we can now write

∀w0,w1,w2,w11,w12,w22

(w0 · 1 + w1 · z1 + w2 · z2 + w11 · z
2
1 + w12 · z1z2 + w22 · z

2
2 has . . . )
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final formalization

Φn,d : the formalization of the Ax-Grothendieck theorem for polynomials in
n variables and of degree ≤ d

Ax-Grothendieck ⇔ all axioms Φn,d , n, d ≥ 1
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a proof

Prf.:
Assume for the sake of a contradiction that the theorem is false and that
there is some polynomial map F : Cn → Cn of degree d that violates it. In
particular,

C |= ¬Φn,d .

By the completeness of ACF0:

ACF0 |= ¬Φn,d .
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prf cont’d

Now we remember that ACF0 can be written as

T + {char 6= p | all primes p}

where
T := Fields + axioms that the field is alg.closed

Applying now the compactness we get

T + {char 6= p | p ∈ P} |= ¬Φn,d

where P is some finite set of primes.
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prf cont’d

Choose a prime q /∈ P . Then it is easy to see that for all p 6= q:

Fields |= (char = q) → (char 6= p) .

Thus we have:
T + char = q |= ¬Φn,d

i.e.
ACFq |= ¬Φn,d .

We shall bring this statement to a contradiction.
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prf cont’d

Algebraic fact:

(Fq)
alg , the algebraic closure of Fq, is locally finite: all finitely generated

subfields are finite.

We have (Fq)
alg |= ¬Φn,d so there are some elements witnessing the ∃

quantifiers:

coefficients defining the map F violating φn,d ,

n coordinates of a point in the n-fold Cartesian power that is not in
the range of F .

Define a subset set C of the universe: all these coefficients and
coordinates. It is finite.
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locally finite
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prf end

Take a subfield K of (Fq)
alg generated by C , and note:

because all coefficients of F are in K , K is closed under F and hence

F : Kn → Kn ,

F is injective on Kn (because it is even injective in a bigger structure
(Fq)

alg ).

Key fact: Every injective map from a finite set into itself must be
surjective!

Hence all points in Kn must be in Rng(F ) but that contradicts the choice
of C : we have included coordinates of a point that is not in the range even
in the whole of (Fq)

alg .

�
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HW problem

a problem to take away:

The final step in the proof was the observation that

injective ⇒ surjective

holds for maps on a finite set.
However, this is true also for the opposite implication

surjective ⇒ injective

but the theorem does not hold: consider map

z → z2 .

Find the place in the proof which breaks down in this case.
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combinatorics

We shall consider FO properties of finite, simple, undirected graphs
without loops.

language: R(x , y) (as in theory RG)
structure: sets with irreflexive and symmetric R

We are interested in the following informal question:

Given a sentence ϕ, how likely it is that a graph will satisfy it?

Gn: all graphs with the universe {1, . . . , n}
Important: isomorphic but different graphs are considered different!
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pic
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probabilistic model

We shall define two quantities (probabilities):

Probn[ϕ] :=
|W (ϕ)|

|Gn|
= |W (ϕ)| · 2−(n

2)

where

W (ϕ): the set of all G ∈ Gn satisfying ϕ

Prob[ϕ] := lim
n→∞

Probn[ϕ] , if it exists
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alternative prob. model

Assume that we create a graph in Gn by choosing for each pair of different
vertices whether to include edge or non-edge by throwing a random coin:
with probability 1/2 include the edge, with probability 1/2 do not include
it.

There are
(

n
2

)

different outcomes of how the coin produces (non-)edges:
all graphs in Gn appear in exactly one such random experiment.

We study: How likely it is that a random experiment produces a graph
satisfying ϕ?

This model gives the same probabilities as the first one.
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almost sure theory

Theorem

The 0-1 law: For every ϕ, Prob[ϕ] exists and equals to 0 or 1.

The almost sure theory of graphs:

{ϕ | Prob[ϕ] = 1}

is complete and decidable.

First item due to Glebskii et.al., our proof follows Fagin’s.
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ex.

ϕ := ∃x , y , z , x 6= y 6= z 6= x ∧ R(x , y) ∧ R(y , z) ∧ ¬R(x , z)
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a computation
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∃ sentences

More generally: if ϕ has the form

∃x1, . . . , xk (. . . open fla . . . )

then

either ϕ is not satisfiable and then Prob[ϕ] = 0, or

Prob[ϕ] = 1.

Even if just one of 2(
k
2) configurations on k points witnesses ϕ it will occur

with probability → 1 as n → ∞ (same calculation as before).

Analogously: universal sentences are either logically valid (and then have
probability 1) or their probability → 0.
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more quantifiers

ϕ := ∃x∀y (x 6= y → R(x , y))

Probn[ϕ] ≤ n · 2−(n−1) → 0
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ext. axioms

Recall the extension axioms Exk of theory RG:
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key lemma

We are going to to show that RG equals to the almost sure theory of
graphs.

Key lemma

For any fixed k ≥ 1: Prob[Exk ] = 1.

Prf.:

Probn[∀z (z is not a witness for a, b) ] ≤ (1 − 2−2k)n−2k

as for different c these are independent events.
Hence:

Probn[¬Exk ] ≤ n2k · (1 − 2−2k)n−2k → 0

�
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a prf of the thm

Let ϕ be any sentence. Because RG is complete

(a) either RG |= ϕ, or

(b) RG |= ¬ϕ.

Assume (a) holds (the case of (b) is analogous).

By compactness there is k ≥ 1 such that

(R irrefl. and symmetr. ) + Exk |= ϕ

But by the key lemma Probn[Exk ] → 1 and in all graphs where Exk holds
also ϕ must hold. Hence:

Prob[ϕ] = 1 .

� (thm)
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