Lecture 6

skolemization and full Löwenheim-Skolem theorem

- the last HW problem: The reverse of the Ax-Grothendieck thm?
- skolemization of a theory
- a proof of the downwards Löwenheim-Skolem theorem
- the full Löwenheim-Skolem theorem

Last time we proved the Ax-Grothendieck thm:

$$\textit{Inj} \Rightarrow \textit{Sur}$$

for polynomial maps on C^n .

The proof goes by showing that

- (1) if the thm fails then it also fails over \mathbf{F}_{q}^{alg} , for some prime q
- ② if that happens then the thm actually fails over some finite subfield $K \subseteq \mathbf{F}_q^{alg}$
- 3 that is impossible as the implication above holds over finite sets

HW cont'd

The opposite implication

Sur
$$\Rightarrow$$
 Inj

also holds over finite sets, and the item 1 works for any FO sentence. Hence a problem with the argument must occur in item 2.

The key step in item 2 is the observations that if a map F is injective on $(\mathbf{F}_q^{alg})^n$ then it is also injective when restricted to K^n .

The error in an argument that would attempt to prove the reverse Ax-Grothendieck is that if map F is surjective on $(\mathbf{F}_q^{alg})^n$ then it does not imply

that it is also surjective when restricted to K^n . (See pic on the next page.) HW - pic

L-S thm so far

In Lect.2:

The Löwenheim-Skolem theorem upwards

Let **A** be an infinite structure in language *L* and let κ be an arbitrary cardinality. Then there is **B** such that:

 $\mathbf{A} \preceq \mathbf{B}$ and $|B| \ge \kappa$.

and in Lect.5:

The Löwenheim-Skolem thm.

Let T be a theory in a countable language which has an infinite model. Then T has models of all infinite cardinalities. In this lecture we prove

The Löwenheim-Skolem theorem downwards

Let **B** be an *L*-structure and $U \subseteq B$ be arbitrary. Then there is **D** such that:

$$\mathbf{D} \leq \mathbf{B}$$
, $D \supseteq U$ and $|U| \leq |D| \leq \max(\aleph_0, |L|, |U|)$.

In particular, if L is finite or countable and U is infinite then

$$|D|=|U|.$$

L-S down pic

prf for Lect.5

Prf. of the L-S thm from Lecture 5:

Take T in a countable language that has an infinite model **A**, and let κ be any cardinality. Then do:

- By L-S up get **B** s.t. $\mathbf{A} \preceq \mathbf{B}$ and $|B| \ge \kappa$,
- take any $U \subseteq B$ of cardinality precisely κ ,
- by the new L-S down there is $\mathbf{D} \preceq \mathbf{B}$ of cardinality κ .

We have that all three $\mathbf{A}, \mathbf{B}, \mathbf{D}$ are elementarily equivalent and hence all are models of T.

pic

our task

Given: **B** and $U \subseteq B$

we want: $D: U \subseteq D \subseteq B$ such that

 $\mathbf{D} \preceq \mathbf{B}$ and $|U| \le |D| \le \max(leph_0, |L|, |U|)$.

In particular,

- D has to be closed under all L-functions and contain all L-constants, and
- for all $\overline{a} \in D^n$ and any formula φ :

 $\mathbf{D} \models \varphi(\overline{a})$ iff $\mathbf{B} \models \varphi(\overline{a})$.

simple case

Assume $\varphi(\overline{x})$ is open and *D* defines a substructure.

Then for all $\overline{a} \in D^n$:

because open flas are absolute between structure-substructure (Lect.2).

An idea how to prove the thm is to reduce to the simple case above; expand L to $L_{Sk} \supseteq L$ such that:

- **B** can be expanded to an L_{Sk} -structure **B**',
- any L-fla φ is equivalent to an open L_{Sk} -fla φ' ,
- D is closed under L_{Sk} -functions too.

Then, as before:

$$\mathsf{B}\models\varphi(\overline{a})\Leftrightarrow\mathsf{B}'\models\varphi(\overline{a})\Leftrightarrow\mathsf{B}'\models\varphi'(\overline{a})\Leftrightarrow\mathsf{D}\models\varphi'(\overline{a})\Leftrightarrow\mathsf{D}\models\varphi(\overline{a})\ .$$

A subtle point:

Where do the red equivalences \Leftrightarrow of φ and φ' hold?

idea technically

We shall implement the informal idea by a construction that will define language $L_{Sk} \supseteq L$ and an L_{Sk} -theory Sk such that:

- $|L_{Sk}| \leq \max(\aleph_0, |L|)$,
- Sk is universal,
- **B** can be expanded to an L_{Sk} -structure **B**' \models Sk,
- any L_{Sk} -fla φ is equivalent to an open L_{Sk} -fla φ' , provably in theory Sk,
- **D** is an *L_{Sk}*-substructure of **B**′,
- and finally: $U \subseteq D$ and $|D| \leq \max(\aleph_0, |L|, |U|)$.

prf of L-S down

Having L_{Sk} and Sk we can prove the L-S thm down as follows:

$$\mathbf{B}\models\varphi(\overline{\mathbf{a}})\Leftrightarrow\mathbf{B}'\models\varphi(\overline{\mathbf{a}})\Leftrightarrow\mathbf{B}'\models\varphi'(\overline{\mathbf{a}})$$

because $\mathbf{B}' \models Sk$ the equivalence holds in Sk, and then

$$\Leftrightarrow \mathbf{D} \models \varphi'(\overline{a})$$

because φ' is open and **D** is an L_{Sk} -substructure, and

$$\Leftrightarrow \mathbf{D} \models \varphi(\overline{a})$$

because, Sk being universal, holds in **D** too.

\exists -example

Let $\varphi(\overline{x})$ be an *L*-formula of the form

 $\exists y \ \psi(\overline{x}, y)$

with ψ open.

Introduce new Skolem function symbol f_{φ} and corresponding Skolem axiom:

$$\psi(\overline{x}, y) \to \psi(\overline{x}, f_{\varphi}(\overline{x}))$$
.

Lemma

Formula $\varphi(\overline{x})$ is equivalent to

$$\psi(\overline{x}, f_{\varphi}(\overline{x}))$$

modulo the Skolem axiom.

∃-ex pic

\forall -example

Let $\varphi(\overline{x})$ be now an *L*-formula of the form

 $\forall y \ \psi(\overline{x}, y)$

with ψ open. Write it as

$$\neg \exists y \ \neg \psi(\overline{x}, y)$$
.

Introduce Skolem function g for $\exists y \neg \psi(\overline{x}, y)$ and the corresponding Skolem axiom for g:

$$\neg \psi(\overline{x}, y) \rightarrow \neg \psi(\overline{x}, g(\overline{x}))$$
.

Note: symbol g ought to be $f_{\exists y \neg \psi(\overline{x}, y)}$ but that is typographically cumbersome.

∀-ex pic

$\mathsf{ex}\ \mathsf{cont'd}$

Lemma

Formula $\varphi(\overline{x})$ is equivalent to

 $\psi(\overline{x},g(\overline{x}))$

modulo the Skolem axiom for g.

We have:

$$\exists y\psi(\overline{x},y) \Leftrightarrow \psi(\overline{x},f(\overline{x}))$$

and also

$$\forall y\psi(\overline{x},y) \Leftrightarrow \psi(\overline{x},g(\overline{x}))$$

which looks identical?!

The point is that f was introduced to find a witness y such that

 $\psi(\overline{x}, y)$

while g was introduced to find a witness y such that

 $\neg \psi(\overline{x}, y)$.

Informally:

if $\psi(\overline{x}, y)$ fails for some element y then g finds one. Hence if $\psi(\overline{x}, g(\overline{x}))$ holds, there is no such y.

We shall define the language L_{Sk} and the theory Sk in countably many step, creating chains

$$L_0 \subseteq L_1 \subseteq \ldots$$
 and $T_0 \subseteq T_1 \subseteq \ldots$

and putting

$$L_{Sk} := \bigcup_i L_i$$
 and $Sk := \bigcup_i T_i$.

Start:

$$L_0 := L$$
 and $T_0 := \emptyset$.

step i + 1

language L_{i+1} and theory T_{i+1} :

for every L_i formula $\varphi(\overline{x})$ of the form $\exists y \psi(\overline{x}, y)$ with ψ open

• add to L_i new function symbol f, and

• add to T_i new Skolem axiom for f:

$$\psi(\overline{x}, y) \to \psi(\overline{x}, f(\overline{x}))$$

Note:

 $|L_{i+1} \setminus L_i| \leq \text{ the nb. of } L_i \text{-flas } \leq \max(\aleph_0, |L_i|) = \max(\aleph_0, |L|)$

(the last step by induction). So:

 $|L_i| \le \max(leph_0, |L|)$, for all *i* and hence $|L_{Sk}| = \max(leph_0, |L|)$.

the construction cont'd

Lemma

- $1 |L_{Sk}| \leq \max(\aleph_0, |L|),$
- ② Sk is universal,
- **3** any *L*-structure **B** can be expanded to an L_{Sk} -structure **B**' \models Sk,
- (a) any L_{Sk} -fla φ is equivalent to an open L_{Sk} -fla φ' , provably in theory Sk,

Prf.:

Items 1. and 2. are obvious, item 3 is also obvious (but needs AC).

prf cont'd

Item 4.:

if $\varphi(\overline{x})$ is and L_i -formula of the form $Q_1y_1 \dots Q_ky_k \ \psi(\overline{x}, \overline{y})$

with Q_i either \exists or \forall quantifiers and ψ open:

- use a Skolem function in L_{i+1} and a Skolem axiom in T_{i+1} to write $Q_k y_k \ \psi(\overline{x}, \overline{y})$ as an equivalent open L_{i+1} -formula,
- this reduces the nb. of quantifiers in φ by 1 at the expenses of rewriting the open kernel as an L_{i+1} -fla,
- repeat k-times.

end of the construction

The lemma provides the first four of the six properties of L_{Sk} and Sk we needed:

- $|L_{Sk}| \leq \max(\aleph_0, |L|)$,
- Sk is universal,
- **B** can be expanded to an L_{Sk} -structure **B**' \models Sk,
- any L_{Sk} -fla φ is equivalent to an open L_{Sk} -fla φ' , provably in theory Sk,
- **D** is an L_{Sk} -substructure of **B**',

•
$$U \subseteq D$$
 and $|D| \leq \max(\aleph_0, |L|, |U|)$.

To get the last two properties define subseteq $D \subseteq B$ by:

D := all elements of B that are generated from U by L_{Sk} -terms .

 \Box_{L-S} down

The following take-away problem is often called the Skolem paradox:

Take set theory ZFC. Assume that it is satisfiable and argue first precisely that it has in infinite model.

Then it follows by the L-S theorem that its has also countable model.

How do you reconcile this with the fact that ZFC proves the existence of an uncountable set?