
Lecture 6

skolemization and full Löwenheim-Skolem theorem

1 / 27



Topics

the last HW problem: The reverse of the Ax-Grothendieck thm?

skolemization of a theory

a proof of the downwards Löwenheim-Skolem theorem

the full Löwenheim-Skolem theorem
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last HW problem

Last time we proved the Ax-Grothendieck thm:

Inj ⇒ Sur

for polynomial maps on Cn.

The proof goes by showing that

1 if the thm fails then it also fails over F
alg
q , for some prime q

2 if that happens then the thm actually fails over some finite subfield
K ⊆ F

alg
q

3 that is impossible as the implication above holds over finite sets
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HW cont’d

The opposite implication
Sur ⇒ Inj

also holds over finite sets, and the item 1 works for any FO sentence.
Hence a problem with the argument must occur in item 2.

The key step in item 2 is the observations that if a map F is injective on
(Falg

q )n then it is also injective when restricted to Kn.

The error in an argument that would attempt to prove the reverse
Ax-Grothendieck is that if map F is surjective on (Falg

q )n then
it does not imply

that it is also surjective when restricted to Kn.
(See pic on the next page.)
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HW - pic
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L-S thm so far

In Lect.2:

The Löwenheim-Skolem theorem upwards

Let A be an infinite structure in language L and let κ be an arbitrary
cardinality. Then there is B such that:

A � B and |B | ≥ κ .

and in Lect.5:

The Löwenheim-Skolem thm.

Let T be a theory in a countable language which has an infinite model.
Then T has models of all infinite cardinalities.
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new: L-S down

In this lecture we prove

The Löwenheim-Skolem theorem downwards

Let B be an L-structure and U ⊆ B be arbitrary. Then there is D such
that:

D � B , D ⊇ U and |U| ≤ |D| ≤ max(ℵ0, |L|, |U|).

In particular, if L is finite or countable and U is infinite then

|D| = |U| .
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L-S down pic
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prf for Lect.5

Prf. of the L-S thm from Lecture 5:

Take T in a countable language that has an infinite model A, and let κ be
any cardinality. Then do:

By L-S up get B s.t. A � B and |B | ≥ κ,

take any U ⊆ B of cardinality precisely κ,

by the new L-S down there is D � B of cardinality κ.

We have that all three A,B,D are elementarily equivalent and hence all
are models of T .

�
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pic
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our task

Given: B and U ⊆ B

we want: D: U ⊆ D ⊆ B such that

D � B and |U| ≤ |D| ≤ max(ℵ0, |L|, |U|) .

In particular,

D has to be closed under all L-functions and contain all L-constants,
and

for all a ∈ Dn and any formula ϕ:

D |= ϕ(a) iff B |= ϕ(a) .
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simple case

Assume ϕ(x) is open and D defines a substructure.

Then for all a ∈ Dn:

B |= ϕ(a)

m

D |= ϕ(a)

because open flas are absolute between structure-substructure (Lect.2).
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idea

An idea how to prove the thm is to reduce to the simple case above;
expand L to LSk ⊇ L such that:

B can be expanded to an LSk -structure B
′,

any L-fla ϕ is equivalent to an open LSk -fla ϕ′,

D is closed under LSk -functions too.

Then, as before:

B |= ϕ(a) ⇔ B
′ |= ϕ(a)⇔B

′ |= ϕ′(a) ⇔ D |= ϕ′(a)⇔D |= ϕ(a) .

A subtle point:
Where do the red equivalences ⇔ of ϕ and ϕ′ hold?
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idea technically

We shall implement the informal idea by a construction that will define
language LSk ⊇ L and an LSk -theory Sk such that:

|LSk | ≤ max(ℵ0, |L|),

Sk is universal,

B can be expanded to an LSk -structure B
′ |= Sk,

any LSk -fla ϕ is equivalent to an open LSk -fla ϕ′, provably in theory
Sk,

D is an LSk -substructure of B
′,

and finally: U ⊆ D and |D| ≤ max(ℵ0, |L|, |U|).
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prf of L-S down

Having LSk and Sk we can prove the L-S thm down as follows:

B |= ϕ(a) ⇔ B
′ |= ϕ(a) ⇔ B

′ |= ϕ′(a)

because B
′ |= Sk the equivalence holds in Sk, and then

⇔ D |= ϕ′(a)

because ϕ′ is open and D is an LSk -substructure, and

⇔ D |= ϕ(a)

because, Sk being universal, holds in D too.

�
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∃-example

Let ϕ(x) be an L-formula of the form

∃y ψ(x , y)

with ψ open.
Introduce new Skolem function symbol fϕ and corresponding Skolem
axiom:

ψ(x , y) → ψ(x , fϕ(x)) .

Lemma

Formula ϕ(x) is equivalent to

ψ(x , fϕ(x))

modulo the Skolem axiom.
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∃-ex pic

17 / 27



∀-example

Let ϕ(x) be now an L-formula of the form

∀y ψ(x , y)

with ψ open. Write it as
¬∃y ¬ψ(x , y) .

Introduce Skolem function g for ∃y ¬ψ(x , y) and the corresponding
Skolem axiom for g :

¬ψ(x , y) → ¬ψ(x , g(x)) .

Note: symbol g ought to be f∃y¬ψ(x ,y) but that is typographically
cumbersome.
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∀-ex pic
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ex cont’d

Lemma

Formula ϕ(x) is equivalent to

ψ(x , g(x))

modulo the Skolem axiom for g .

We have:
∃yψ(x , y) ⇔ ψ(x , f (x))

and also
∀yψ(x , y) ⇔ ψ(x , g(x))

which looks identical?!
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f vs. g

The point is that f was introduced to find a witness y such that

ψ(x , y)

while g was introduced to find a witness y such that

¬ψ(x , y) .

Informally:
if ψ(x , y) fails for some element y then g finds one. Hence if ψ(x , g(x))
holds, there is no such y .
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the construction

We shall define the language LSk and the theory Sk in countably many
step, creating chains

L0 ⊆ L1 ⊆ . . . and T0 ⊆ T1 ⊆ . . .

and putting

LSk :=
⋃

i

Li and Sk :=
⋃

i

Ti .

Start:
L0 := L and T0 := ∅ .
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step i + 1

language Li+1 and theory Ti+1:

for every Li formula ϕ(x) of the form ∃yψ(x , y) with ψ open

add to Li new function symbol f , and

add to Ti new Skolem axiom for f :

ψ(x , y) → ψ(x , f (x)) .

Note:

|Li+1 \ Li | ≤ the nb. of Li -flas ≤ max(ℵ0, |Li |) = max(ℵ0, |L|)

(the last step by induction). So:

|Li | ≤ max(ℵ0, |L|) , for all i and hence |LSk | = max(ℵ0, |L|) .
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the construction cont’d

Lemma

1 |LSk | ≤ max(ℵ0, |L|),

2 Sk is universal,

3 any L-structure B can be expanded to an LSk -structure B
′ |= Sk,

4 any LSk -fla ϕ is equivalent to an open LSk -fla ϕ′, provably in theory
Sk,

Prf.:

Items 1. and 2. are obvious, item 3 is also obvious (but needs AC).
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prf cont’d

Item 4.:

if ϕ(x) is and Li -formula of the form

Q1y1 . . .Qkyk ψ(x , y)

with Qi either ∃ or ∀ quantifiers and ψ open:

use a Skolem function in Li+1 and a Skolem axiom in Ti+1 to write
Qkyk ψ(x , y) as an equivalent open Li+1-formula,

this reduces the nb. of quantifiers in ϕ by 1 at the expenses of
rewriting the open kernel as an Li+1-fla,

repeat k-times.

�
25 / 27



end of the construction

The lemma provides the first four of the six properties of LSk and Sk we
needed:

|LSk | ≤ max(ℵ0, |L|),

Sk is universal,

B can be expanded to an LSk -structure B
′ |= Sk,

any LSk -fla ϕ is equivalent to an open LSk -fla ϕ′, provably in theory
Sk,

D is an LSk -substructure of B
′,

U ⊆ D and |D| ≤ max(ℵ0, |L|, |U|).

To get the last two properties define subseteq D ⊆ B by:

D := all elements of B that are generated from U by LSk -terms .

�L−S down
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HW problem

The following take-away problem is often called the Skolem paradox:

Take set theory ZFC. Assume that it is satisfiable and argue first precisely
that it has in infinite model.

Then it follows by the L-S theorem that its has also countable model.

How do you reconcile this with the fact that ZFC proves the existence of
an uncountable set?
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