
Lecture 7

quantifier elimination
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topics

HW: Skolem paradox

quantifier elimination (QE)

non-examples (theories of the semiring of natural numbers, of the ring
of integers and of the field of rationals)

simple examples: DLO and RG

reduction to primitive formulas

a sufficient model-theoretic condition

QE for ACF
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HW

Skolem paradox:

Assume that ZFC is satisfiable and argue first precisely that it has in
infinite model.

By the L-S theorem its has then also a countable model.

How do you reconcile this with the fact that ZFC proves the existence
of an uncountable set?

3 / 28



models of ZFC

M |= ZFC ⇒ M |= ∃ an infinite set .

But the term infinite is just a name: you can use any other name. By itself
it does not imply that M is infinite.

Need to show that

M |= ∃x1, . . . , xk

∧

i 6=j

xi 6= xj

for all k ≥ 1.

Use axioms of ZFC to prove that there are sets

∅, {∅}, {∅, {∅}}, {∅, {∅}, {∅, {∅}}}, . . .

and that they are all different.
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HW cont’d

That ZFC proves the existence of an uncountable set just means that

M |= ∀f , ¬(f : N →onto A)

for some set A ∈ M.

That is, no f ∈ M maps N onto A.

But M (and hence A) are countable and thus there is such a map g but

no such map g is in M!
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QE via skolemization

In Lecture 6 we reduced all L-formulas to quantifier-free formulas (= open
flas) but at the expense that the language was extended by new function
symbols. The price we paid was that we had little specific knowledge how
the new f.symbols are interpreted.

Ex.: Over C look at
∃y

∑

0≤i≤n

xiy
i = 0

stating that the polynomial with coefficients xi has a root.
The Skolem function f (x) is just an abstract function that maps the
coefficients to some root: it does not have to have any algebraic form.

The fla above is also equivalent to simple q-free formula:

xn 6= 0 ∨ · · · ∨ x1 6= 0 ∨ (xn = · · · = x1 = x0 = 0)

which the skolemization ignores.
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QE - def.

Definition - QE

An L-theory T has quantifier elimination (abbreviated QE) iff every
L-formula is provably in T equivalent to a quantifier free (abbreviated
q-free) formula.
An L-structure A has QE iff Th(A) has QE.

NON-examples: theories of

N,Z and Q

in the language 0, 1,+, ·, <.
Definable sets in these structures include many very complex sets and, in
particular, sets that are algorithmically undecidable: this cannot happen
for sets defined by q-free formulas.

7 / 28



DLO

Theorem

DLO has QE.

Prf.:
DLO is complete so we can concentrate on one its model: (Q, <).
For a ∈ Qn define its iso-type itpa(x1, . . . , xn) to be the set of formulas for
all i < j :

xi = xj , if ai = aj ,

xi < xj , if ai < aj ,

xj < xi , if ai > aj .

Claim 1: For all a, b ∈ Qn, if itpa = itpb then

(Q, a, <) ∼= (Q, b, <) .

Prf-claim: start the Ehr-Fr. game with pre-defined first n moves as
(ai , bi ), i ≤ n.
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pic
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prf cont’d

Claim 1 implies
Claim 2: If itpa = itpb then for all formulas ϕ(x):

(Q, <) |= ϕ(a) ⇔ (Q, <) |= ϕ(b) .

Given any formula ψ(x) define a set of iso-types:

Iψ: all itpa for all a ∈ Qn such that (Q, <) |= ψ(a).

Claim 3: Iψ is finite.

Put: ψ′ :=
∨

p∈Iψ

∧
p

(picture next slide)
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prf-end

Claim 4: ψ and ψ′ are equivalent in (Q, <) and hence in DLO.
Prf-claim:

(Q, <) |= ψ(a) ⇒ p := itpa ∈ Iψ ⇒
a satisfies

∧
p ⇒ (Q, <) |= ψ′(a).

(Q, <) |= ψ′(a) ⇒
a satisfies iso-type of some b such that (Q, <) |= ψ(b)
⇒ (Claim 2) (Q, <) |= ψ(b) too.

�thm
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a remark

An analogous argument works for theory RG as well.

In the theorem we were lucky that the Ehr-Fr game worked so well: it
established even countable categoricity.

For incomplete theories (like is ACF without the axiom about
characteristic) or for more complex theories as is RCF - the theory of the
real closed ordered field we shall discuss in Lect.8 - we shall need a less ad
hoc approach.
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primitive flas

basic fla: an atomic of the negation of an atomic fla
primitive fla: a fla of the form

∃y ψ(x , y )

where ψ is a conjunction of basic flas.

positive primitive fla: primitive fla without negations

Ex.: if L has no relation symbols then basic flas are equalities and
inequalities between terms:

t(x , y) = s(x , y) , t(x , y) 6= s(x , y) .

Hence positive primitive formulas state that a system of equations with
parameters x is solvable for y .

14 / 28



a reduction

Lemma

Assume that every primitive formula with one ∃ quantifier

∃y ψ(x , y)

is in T equivalent to a q-free formula. Then T has QE.

Prf.:
Any fla can be put into prenex form:

Q1y1 . . .Qkyk α(x , y)

with α open. If we could remove one quantifier at a time we remove
subsequently Qk , then Qk−1 etc. Because ∀ can be replaced by ¬∃¬ it
suffices to show that any fla of the form:

∃y β(x , y)

with β q-free is T -equivalent to a q-free fla.
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prf cont’d

Write β in DNF: ∨

i

∧

j

γi ,j

with γi ,j basic flas and note that in logic only:

∃y
∨

i

∧

j

γi ,j ≡
∨

i

(∃y
∧

j

γi ,j) .

The hypothesis states that each fla ∃y
∧

j γi ,j is T -equivalent to a q-free
fla.
Hence is the whole fla.

�
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DLO again

Let us look back at DLO:

Negated atomic flas are DLO equivalent to disjunctions of atomic flas

u 6= v ≡ (u < v ∨ v < u) and ¬u < v ≡ (u = v ∨ v < u)

and hence any primitive fla is equivalent to a disjunction of positive
primitive flas.

Therefore by the lemma it suffices to show that each positive primitive fla
with one ∃ quantifier

∃y ψ(x , y)

is DLO equivalent to a q-free one.
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DLO cont’d

The equivalent q-free fla ψ′ can be constructed as follows:

if xi = y occurs in ψ, replace everywhere in ψ y by xi and stop.

Otherwise for each pair i , j such that both xi < y and y < xj occur in
ψ add into ψ′ fla xi < xj .

If neither case occurs put ψ′ := (x1 = x1).
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a model th. condition

Theorem

Assume that for any L-formula ϕ(x) it holds that whenever the following
situation occurs:

A,B are models of T ,

D is a substructure of both A and B,

a ∈ Dn,

A |= ϕ(a)

then also B |= ϕ(a).

Then T has QE.
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a corollary

Corollary

To establish QE for T is suffices to show that for each primitive fla with
one ∃ quantifier

∃y ψ(x , y)

it holds that whenever

A,B are models of T ,

D is a substructure of both A and B,

a ∈ Dn,

A |= ψ(a, u) for some u ∈ A

then there is v ∈ B such that also

B |= ψ(v) .
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prf

Prf of the thm: Let Γ(x) be the set of all q-free flas α(x) such that

T |= ϕ(x) → α(x) .

Claim 1: T |= Γ(x) → ϕ(x).
Prf - Claim 1:
If not, then there is some A and a ∈ An:

A |= T + Γ(a) + ¬ϕ(a) .

Take Σ(a) the diagram of the substructure D generated by a.

Claim 2: T + Σ(a) + ϕ(a) is satisfiable.
If not, it would hold that

T + ϕ(a) |=
∨

¬Σ(a)

and so Σ(a) ∪ Γ(a) is inconsistent. That is a contradiction - we have A.
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prf cont’d

Claim 2 implies that there is some B such that

B |= T + Σ(a) + ϕ(a)

i.e. also D ⊆ B.
That contradicts the hypothesis of the thm.

�Claim2

By compactness and by Claim 1 there is a finite Γ0 ⊂ Γ such that

T |= Γ0(x) → ϕ(x)

Hence ϕ(x) is in T equivalent to the disjunction of the q-free formulas in
Γ0.

�thm
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QE for ACF

Now we apply the corollary to ACF.

Theorem (Tarski, Chevalley)

ACF has QE.

Prf.:
An atomic formula is an equality between terms t(z) = s(z) and terms
compute polynomials over N (coefficients are generated from 0, 1 by the
operations). Such an equality is thus equivalent to polynomial equation

p(z) = 0

where p is over Z.
Hence a primitive formula with one ∃ quantifier asserts that a finite system
of polynomial equations and inequalities:

{pi (x , y) = 0}i and {qj(x , y) 6= 0}j

has, for a given tuple x , a solution for y .
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prf cont’d

We need to show that the condition in the corollary is met.
Let A and B be two ACF and let D be a common substructure. Note that
we have 0, 1 ∈ D and hence the characteristic of both fields is the same.

The substructure is a ring which is an integral domain. It thus has the
quotient field which itself has a unique algebraic closure; we shall call it K.
It is the smallest ACF containing D and hence it is contained in both A

and B.

Now assume a ∈ Dn ⊆ Kn. Hence all polynomials pi (a, y) and qj(a, y) are
now polynomials in y over K. Assume further that u ∈ A witnesses the
solvability of the system for y .

We consider two cases:
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prf cont’d

Case 1: The equation part of the substituted system is non-empty, i.e.
some equation

pi (a, y) = 0

is non-trivial. Then u is a root of a polynomial over K and hence it is in
K , as K is ACF, and thus also in B .

Case 2: Not Case 1. Then either the system is independent of y or
contains only some non-trivial satisfiable inequalities qj(a, y) 6= 0.

Each such inequality is satisfied by all elements of K except finitely many.
Hence the system rules out finitely many possible values for y . But K,
being ACF, is infinite. Hence there is v ∈ K ⊆ B satisfying the system.

�thm
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HW problem

A take away problem: Establish QE for VectQ , the theory of vector spaces
over Q.
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