Lecture 9

ultraproduct

topics

- HW - cell decomposition
- filters and ultrafilters, the Zorn lemma
- ultraproduct
- Loš's theorem
- ex's: $\mathbf{N}^{*}, \mathbf{R}^{*}$
- a proof of the compactness thm via ultraproduct

HW-1
task 1: $\chi(U)$ is well-defined on \mathbf{R} and is additive on disjoint unions
\mathcal{C} and \mathcal{D} two cell-decompositions: take their common refinement:

$$
A \cap B, \text { for } A \cap B \neq \emptyset, A \in \mathcal{C}, B \in \mathcal{D} .
$$

HW-2

task 2: generalization to \mathbf{R}^{2}
If $W \subseteq \mathbf{R}^{2}$ decomposes into a 0-cells, b 1-cells and c 2-cells, put:

$$
\chi(W):=a-b+c .
$$

Ex.:
For $U, V \subseteq \mathbf{R}$ two open intervals and $W:=U \times V$:

$$
\chi(W)=\chi(U) \cdot \chi(V)
$$

HW-2: pic

HW-3

task 3: decompose sets in \mathbf{R}^{2} defined by $a<y<b \wedge f(y)<x<g(y)$ (these are cells rotated by 90 degrees)

motivation

From a given collection of L-structures

$$
\left\{\mathbf{A}_{i}\right\}_{i \in I}
$$

construct a new L-structure \mathbf{A}^{*} that has those FO properties that are
"common to most" \mathbf{A}_{i}.

Generalizes direct product.

idea - pic

filters

Definition - filter

For $I \neq \emptyset$, a filter on I is $\mathcal{F} \subseteq \mathcal{P}(I)$ s.t.:

- $I \in \mathcal{F}$ and $\emptyset \notin \mathcal{F}$ (non-triviality),
- $X \in \mathcal{F}, X \subseteq Y \Rightarrow Y \in \mathcal{F}$ (closed upwards),
- $X, Y \in \mathcal{F} \Rightarrow X \cap Y \in \mathcal{F}$ (closed under intersections).

Ex.:

For I infinite the Fréchet filter consists of all cofinite subsets of I.

filter-pic

more ex's

Ex.:
$I=[0,1]$
$\mathcal{F}:$ all $X \subseteq[0,1]$ containing a measure 1 set

Ex.:
$I=\mathbf{R}$
$\mathcal{F}:$ all $X \subseteq \mathbf{R}$ such that $\mathbf{R} \backslash X$ is countable (or finite)

Ex.:

$I=\mathcal{P}(\mathbf{N})$
$\mathcal{F}:$ all $X \subseteq \mathbf{N}$ such that their density

$$
\lim _{n \rightarrow \infty} \frac{|[0, n] \cap X|}{n+1}
$$

exists and goes to 1 .

a leap

Definition - ultrafilter
For $I \neq \emptyset$, an ultrafilter on I is a filter \mathcal{U} on I s.t.:

- for all $X \subseteq I: X \in \mathcal{U} \vee I \backslash X \in \mathcal{U}$.

When I is clear we shall denote $I \backslash X$ simply \bar{X}.

existence

Theorem

For all $I \neq \emptyset$, any filter on I can be extended to an ultrafilter.

Prf.:

Let \mathcal{F} be a filter. Consider partial ordering \mathbf{P} consisting of all filters extending \mathcal{F} ordered by inclusion.

It satisfies the condition in Zorn's lemma: every chain has an upper bound.

ZL implies that there is a maximal element \mathcal{U} in \mathbf{P} : it must be an ultrafilter because if neither X nor \bar{X} were in \mathcal{U} we could extend \mathcal{U}.

prf-pic

ax's

Ex's of existence statements of set theory:

ZL (Zorn's lemma): Every p.o. in which all chains have an upper bound has a maximal element.

AC (ax. of choice): If all $U_{i} \neq \emptyset, i \in I$, then $\prod_{i} U_{i} \neq \emptyset$: there is some function $f: i \in I \rightarrow f(i) \in U_{i}$.

WO (well-ordering principle): Every set can be well-ordered (a strict linear order in which every non-empty set has minimum).

Fact

$Z L, A C$ and $W O$ are equivalent in set theory $Z F$.

non-principality

Definition

An ultrafilter \mathcal{U} on I is principal iff there is $i_{0} \in I$ s.t. for all $X \subseteq I$:

$$
X \in \mathcal{U} \text { iff } i_{0} \in X
$$

Note:

- All ultrafilters on a finite set are principal.
- An ultrafilter is non-principal iff it extends the Frechet filter.

We shall use non-principal ultrafilters in all example constructions.

notation

Given:

- $I \neq \emptyset$,
- L-structures \mathbf{A}_{i} for $i \in I$,
- an ultrafilter \mathcal{U} on I,
we shall define a new structure denoted

$$
\prod_{i \in I} \mathbf{A}_{i} / \mathcal{U}
$$

To ease on notation, when the data above (I, \mathbf{A}_{i} 's and \mathcal{U}) are clear from the context, we shall denote the structure just

$$
A^{*} .
$$

construction start

We start with the Cartesian product

$$
\prod_{i \in I} A_{i}
$$

of the universes. It is non-empty by AC .

Given a formula $\varphi\left(x_{1}, \ldots, x_{k}\right)$ and $\alpha_{1}, \ldots, \alpha_{k} \in \prod_{i \in I} A_{i}$ define the subset of I :

$$
\left\langle\left\langle\varphi\left(\alpha_{1}, \ldots, \alpha_{k}\right)\right\rangle\right\rangle:=\left\{i \in I \mid \mathbf{A}_{i} \models \varphi\left(\alpha_{1}(i), \ldots, \alpha_{k}(i)\right) .\right.
$$

equiv.rel.

On $\prod_{i \in I} A_{i}$ define a relation:

$$
\alpha \approx \beta \Leftrightarrow{ }_{d f}\langle\langle\alpha=\beta\rangle\rangle \in \mathcal{U} .
$$

Lemma

Relation \approx is an equivalence relation.

Prf.:
$\langle\langle\alpha=\alpha\rangle\rangle=I \in \mathcal{U}$ by definition of filters, so \approx is reflexive.
$\langle\langle\alpha=\beta\rangle\rangle=\langle\langle\beta=\alpha\rangle\rangle$, so \approx is symmetric.
$\langle\langle\alpha=\beta\rangle\rangle \cap\langle\langle\beta=\gamma\rangle\rangle \subseteq\langle\langle\alpha=\gamma\rangle\rangle$, so \approx is transitive.

universe

Using it define the universe A^{*} of the future structure by

$$
A^{*}:=\prod_{i \in I} A_{i} / \approx
$$

Notation: $[\alpha]$ is the \approx-block of α. I.e.:

$$
A^{*}=\left\{[\alpha] \mid \alpha \in \prod_{i \in I} A_{i}\right\}
$$

interpretation of rel.symbols

Interpret relation symbols of L on A^{*} as follows:

$$
R^{\mathbf{A}^{*}}\left(\left[\alpha_{1}\right], \ldots,\left[\alpha_{k}\right]\right) \Leftrightarrow{ }_{d f}\left\langle\left\langle R\left(\alpha_{1}, \ldots, \alpha_{k}\right)\right\rangle\right\rangle \in \mathcal{U} .
$$

Lemma

The interpretation is well-defined: it does not depend on the choice of representants of the \approx-blocks:

$$
\bigwedge\left[\alpha_{j}\right]=\left[\beta_{j}\right] \rightarrow R^{\mathbf{A}^{*}}\left(\alpha_{1}, \ldots, \alpha_{k}\right) \equiv R^{\mathbf{A}^{*}}\left(\beta_{1}, \ldots, \beta_{k}\right)
$$

In other words, \mathbf{A}^{*} satisfies axioms of equality:

$$
\bigwedge \alpha_{j}=\beta_{j} \rightarrow R\left(\alpha_{1}, \ldots, \alpha_{k}\right) \equiv R\left(\beta_{1}, \ldots, \beta_{k}\right) .
$$

prf of the lemma

Prf.:

That all $\left[\alpha_{j}\right]=\left[\beta_{j}\right]$ means that all $\left\langle\left\langle\alpha_{j}=\beta_{j}\right\rangle\right\rangle \in \mathcal{U}$ and hence also their intersection is in \mathcal{U}.

Then note that

$$
\bigcap_{j}\left\langle\left\langle\alpha_{j}=\beta_{j}\right\rangle\right\rangle \subseteq\left\langle\left\langle R\left(\alpha_{1}, \ldots, \alpha_{k}\right) \equiv R\left(\beta_{1}, \ldots, \beta_{k}\right)\right\rangle\right\rangle
$$

Hence $\left\langle\left\langle R\left(\alpha_{1}, \ldots, \alpha_{k}\right) \equiv R\left(\beta_{1}, \ldots, \beta_{k}\right)\right\rangle\right\rangle \in \mathcal{U}$. But this means that

$$
\left\langle\left\langle R\left(\alpha_{1}, \ldots, \alpha_{k}\right)\right\rangle\right\rangle \in \mathcal{U} \text { iff }\left\langle\left\langle R\left(\beta_{1}, \ldots, \beta_{k}\right)\right\rangle\right\rangle \in \mathcal{U}
$$

interpret. cont'd

Now we interpret constants and function symbols of L :
$c^{\mathbf{A}^{*}}:=\left[\alpha_{c}\right]$, where

$$
\alpha_{c}(i):=c^{\mathbf{A}_{i}^{*}} .
$$

$f^{\mathbf{A}^{*}}\left(\left[\alpha_{1}\right], \ldots,\left[\alpha_{k}\right]\right):=\beta$, where

$$
\beta(i):=f^{\mathbf{A}_{i}^{*}}\left(\alpha_{1}(i), \ldots, \alpha_{k}(i)\right) .
$$

This looks complicated but it simply says that we apply f coordinate wise in each structure \mathbf{A}_{i} separately.

lemma

Lemma

The interpretation is well-defined: it does not depend on the choice of representants of the \approx-blocks and \mathbf{A}^{*} satisfies axioms of equality:

$$
\bigwedge_{j} \alpha_{j}=\beta_{j} \rightarrow f\left(\alpha_{1}, \ldots, \alpha_{k}\right)=f\left(\beta_{1}, \ldots, \beta_{k}\right)
$$

Prf. is analogous to the proof of the previous lemma about the interpretation of relation symbols.

This completes the definition of \mathbf{A}^{*} !
It looks quite complicated and we may worry how shall we ever decide what is true there.

key thm

Loš's theorem

For any L-formula $\varphi\left(x_{1}, \ldots, x_{k}\right)$ and any elements $\left[\alpha_{1}\right], \ldots,\left[\alpha_{k}\right] \in A^{*}$ it holds:

$$
\mathbf{A}^{*} \models \varphi\left(\left[\alpha_{1}\right], \ldots,\left[\alpha_{k}\right]\right) \text { iff }\left\langle\left\langle\varphi\left(\alpha_{1}, \ldots, \alpha_{k}\right)\right\rangle\right\rangle \in \mathcal{U} .
$$

Prf.:

By induction in the complexity of φ.
atomic flas: this is how the structure is defined!

prf cont'd

Boolean connectives:
conjunction:

$$
\models \eta \wedge \rho \Leftrightarrow[\models \eta \text { and } \models \rho]
$$

We have:

$$
\langle\langle\eta \wedge \rho\rangle\rangle \in \mathcal{U} \Leftrightarrow\langle\langle\eta\rangle\rangle \cap\langle\langle\rho\rangle\rangle \in \mathcal{U} \Leftrightarrow_{1}\langle\langle\eta\rangle\rangle \in \mathcal{U} \wedge\langle\langle\rho\rangle\rangle \in \mathcal{U} .
$$

The equivalence \Leftrightarrow_{1} holds because of the filter definition.
negation:

$$
\not \vDash \eta \Leftrightarrow\langle\langle\eta\rangle\rangle \notin \mathcal{U} \Leftrightarrow_{2}\langle\langle\neg \eta\rangle\rangle \in \mathcal{U} \Leftrightarrow \models \neg \eta .
$$

The equivalence \Leftrightarrow_{2} holds because of the ultrafilter definition.

prf cont'd

disjunction:

$$
[\models \eta \text { or } \models \rho] \Leftrightarrow \models \eta \vee \rho
$$

If $\langle\langle\eta\rangle\rangle \in \mathcal{U}$ (or ρ is in) then also $\langle\langle\eta \vee \rho\rangle\rangle \in \mathcal{U}$ because

$$
\langle\langle\eta\rangle\rangle \in \mathcal{U} \subseteq\langle\langle\eta \vee \rho\rangle\rangle
$$

Opposite direction:

$$
[\langle\langle\eta\rangle\rangle \notin \mathcal{U} \text { and }\langle\langle\eta\rangle\rangle \notin \mathcal{U}] \Leftrightarrow[\langle\langle\neg \eta\rangle\rangle \in \mathcal{U} \text { and }\langle\langle\neg \eta\rangle\rangle \in \mathcal{U}]
$$

hence if also $\langle\langle\eta \vee \rho\rangle\rangle \in \mathcal{U}$ we would have

$$
\emptyset \in \mathcal{U}
$$

which is a contradiction.

end of prf

\exists-quantifier:

$$
\models \exists x \eta(x) \Leftrightarrow \text { for some } \alpha \models \eta(\alpha) \text {. }
$$

Because for any α

$$
\langle\langle\eta(\alpha)\rangle\rangle \subseteq\langle\langle\exists x \eta(x)\rangle\rangle
$$

the right-to-left implication follows.

Assume $I_{0}=\langle\langle\exists x \eta(x)\rangle\rangle$. Define β by:

- $i \in I_{0}: \alpha(i)$ is some witness for x in $\exists x \eta(x)$,
- $i \notin I_{0}: \alpha(i)$ is arbitrary.

Then

$$
\langle\langle\eta(\beta)\rangle\rangle=\langle\langle\exists x \eta(x)\rangle\rangle .
$$

\forall-quantifier: analogous.

extensions

Corollary

Let \mathbf{A} be an L-structure. Let I be an infinite set, $\mathbf{A}_{i}=\mathbf{A}$ for all $i \in I$, and assume \mathcal{U} is a non-principal ultrafilter on I.
Then

$$
\mathbf{A} \npreceq \mathbf{A}^{*} .
$$

(It is called ultrapower.)
Prf.:
pic next slide.

prf by pic

non-standard \mathbf{N}

$I=\omega$
$\mathbf{A}_{i}:=\mathbf{N}$, all $i \in \omega$
$\alpha_{k}(i):=k$, all $i \in I$ and $k \in \mathbf{N}$ (represents constant k)
$\beta(i):=i$ (represents non-standard element)
\mathbf{N}^{*} : the ultraproduct

Theorem

Elements $\left[\alpha_{k}\right]$, for $k \in \mathbf{N}$, define a substructure of \mathbf{N}^{*} isomorphic to \mathbf{N} and in \mathbf{N}^{*} :
$\alpha_{k}<\beta$, for all $k \in \mathbf{N}$
pic

nonstandard reals

\mathbf{R}^{*} : ultrapower of \mathbf{R} as before $\alpha_{r}(i):=r$, for all i (represents $r \in R$) $\epsilon(i):=1 /(1+i)$, for all i (represents an infinitesimal)

compactness

compactness via ultraproduct

Given:

- language L,
- an L-theory T,
- for each finite $S \subseteq_{\text {fin }} T$ a model $\mathbf{A}_{S} \models S$.

Want: a model for tho whole of T.

Take:

I : all finite subsets of T, w.l.o.g. we may assume T (and hence I) is infinite
\mathcal{F} : a filter generated by all sets for all $S \subseteq_{\text {fin }} T$

$$
\{Z \in I \mid Z \supseteq S\} .
$$

It is non-trivial because the intersection of any finite nb. of them (say determined by S_{1}, \ldots, S_{ℓ}) is non-empty (contains all $Z \supseteq \bigcup_{i \leq \ell} S_{i}$). \mathcal{U} : a non-principal ultrafilter extending \mathcal{F}

Theorem
$\mathbf{A}^{*} \models T$.

Prf.:

For any $\varphi \in T$ the set of all $Z \in I$ such that $\mathbf{A}_{Z} \models \varphi$ is in $\mathcal{F} \subseteq \mathcal{U}$: just apply the above definition to $S:=\{\varphi\}$. Use Loš's thm.

HW

Two problems to take away:
(1)

Take an ultrapower of \mathbf{F}_{p} with infinite I and non-principal \mathcal{U}. How does the ultraproduct look like?
(2)

Now take I to be the set of primes and take an ultraproduct of all fields \mathbf{F}_{p} with a non-principal ultrafilter \mathcal{U}.
What can you say about the resulting structure?

