
Lecture 9

ultraproduct
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topics

HW - cell decomposition

filters and ultrafilters, the Zorn lemma

ultraproduct

Loš’s theorem

ex’s: N
∗, R

∗

a proof of the compactness thm via ultraproduct
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HW-1

task 1: χ(U) is well-defined on R and is additive on disjoint unions

C and D two cell-decompositions: take their common refinement:

A ∩ B , for A ∩ B 6= ∅,A ∈ C,B ∈ D .
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HW-2

task 2: generalization to R
2

If W ⊆ R
2 decomposes into a 0-cells, b 1-cells and c 2-cells, put:

χ(W ) := a − b + c .

Ex.:
For U,V ⊆ R two open intervals and W := U × V :

χ(W ) = χ(U) · χ(V ) .
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HW-2: pic
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HW-3

task 3: decompose sets in R
2 defined by a < y < b ∧ f (y) < x < g(y)

(these are cells rotated by 90 degrees)
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motivation

From a given collection of L-structures

{Ai}i∈I

construct a new L-structure A
∗ that has those FO properties that are

”common to most” Ai .

Generalizes direct product.
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idea - pic
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filters

Definition - filter

For I 6= ∅, a filter on I is F ⊆ P(I ) s.t.:

I ∈ F and ∅ /∈ F (non-triviality),

X ∈ F ,X ⊆ Y ⇒ Y ∈ F (closed upwards),

X ,Y ∈ F ⇒ X ∩ Y ∈ F (closed under intersections).

Ex.:
For I infinite the Fréchet filter consists of all cofinite subsets of I .
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filter-pic
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more ex’s

Ex.:
I = [0, 1]
F : all X ⊆ [0, 1] containing a measure 1 set

Ex.:
I = R

F : all X ⊆ R such that R \ X is countable (or finite)

Ex.:
I = P(N)
F : all X ⊆ N such that their density

lim
n→∞

|[0, n] ∩ X |

n + 1

exists and goes to 1.

11 / 36



a leap

Definition - ultrafilter

For I 6= ∅, an ultrafilter on I is a filter U on I s.t.:

for all X ⊆ I : X ∈ U ∨ I \ X ∈ U .

When I is clear we shall denote I \ X simply X .
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existence

Theorem

For all I 6= ∅, any filter on I can be extended to an ultrafilter.

Prf.:
Let F be a filter. Consider partial ordering P consisting of all filters
extending F ordered by inclusion.

It satisfies the condition in Zorn’s lemma: every chain has an upper bound.

ZL implies that there is a maximal element U in P: it must be an
ultrafilter because if neither X nor X were in U we could extend U .

�
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prf-pic
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ax’s

Ex’s of existence statements of set theory:

ZL (Zorn’s lemma): Every p.o. in which all chains have an upper bound
has a maximal element.

AC (ax. of choice): If all Ui 6= ∅, i ∈ I , then
∏

i Ui 6= ∅: there is some
function f : i ∈ I → f (i) ∈ Ui .

WO (well-ordering principle): Every set can be well-ordered (a strict linear
order in which every non-empty set has minimum).

Fact

ZL, AC and WO are equivalent in set theory ZF.
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non-principality

Definition

An ultrafilter U on I is principal iff there is i0 ∈ I s.t. for all X ⊆ I :

X ∈ U iff i0 ∈ X .

Note:

All ultrafilters on a finite set are principal.

An ultrafilter is non-principal iff it extends the Frechet filter.

We shall use non-principal ultrafilters in all example constructions.
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notation

Given:

I 6= ∅,

L-structures Ai for i ∈ I ,

an ultrafilter U on I ,

we shall define a new structure denoted

∏

i∈I

Ai/U .

To ease on notation, when the data above (I , Ai ’s and U) are clear from
the context, we shall denote the structure just

A
∗ .
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construction start

We start with the Cartesian product

∏

i∈I

Ai

of the universes. It is non-empty by AC.

Given a formula ϕ(x1, . . . , xk) and α1, . . . , αk ∈
∏

i∈I Ai

define the subset of I :

〈〈ϕ(α1, . . . , αk)〉〉 := {i ∈ I | Ai |= ϕ(α1(i), . . . , αk(i)) .
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equiv.rel.

On
∏

i∈I Ai define a relation:

α ≈ β ⇔df 〈〈α = β〉〉 ∈ U .

Lemma

Relation ≈ is an equivalence relation.

Prf.:
〈〈α = α〉〉 = I ∈ U by definition of filters, so ≈ is reflexive.

〈〈α = β〉〉 = 〈〈β = α〉〉, so ≈ is symmetric.

〈〈α = β〉〉 ∩ 〈〈β = γ〉〉 ⊆ 〈〈α = γ〉〉, so ≈ is transitive.

�
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universe

Using it define the universe A∗ of the future structure by

A∗ :=
∏

i∈I

Ai/ ≈ .

Notation: [α] is the ≈-block of α. I.e.:

A∗ = {[α] | α ∈
∏

i∈I

Ai} .
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interpretation of rel.symbols

Interpret relation symbols of L on A∗ as follows:

RA∗

([α1], . . . , [αk ]) ⇔df 〈〈R(α1, . . . , αk)〉〉 ∈ U .

Lemma

The interpretation is well-defined: it does not depend on the choice of
representants of the ≈-blocks:

∧

j

[αj ] = [βj ] → RA∗

(α1, . . . , αk) ≡ RA∗

(β1, . . . , βk) .

In other words, A
∗ satisfies axioms of equality:

∧

j

αj = βj → R(α1, . . . , αk) ≡ R(β1, . . . , βk) .
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prf of the lemma

Prf.:

That all [αj ] = [βj ] means that all 〈〈αj = βj 〉〉 ∈ U and hence also their
intersection is in U .

Then note that

⋂

j

〈〈αj = βj〉〉 ⊆ 〈〈R(α1, . . . , αk) ≡ R(β1, . . . , βk)〉〉 .

Hence 〈〈R(α1, . . . , αk) ≡ R(β1, . . . , βk)〉〉 ∈ U . But this means that

〈〈R(α1, . . . , αk)〉〉 ∈ U iff 〈〈R(β1, . . . , βk)〉〉 ∈ U .

�
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interpret. cont’d

Now we interpret constants and function symbols of L:

cA∗

:= [αc ], where
αc(i) := cA

∗

i .

f A∗

([α1], . . . , [αk ]) := β, where

β(i) := f A
∗

i (α1(i), . . . , αk(i)) .

This looks complicated but it simply says that we apply f coordinate wise
in each structure Ai separately.
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lemma

Lemma

The interpretation is well-defined: it does not depend on the choice of
representants of the ≈-blocks and A

∗ satisfies axioms of equality:

∧

j

αj = βj → f (α1, . . . , αk) = f (β1, . . . , βk) .

Prf. is analogous to the proof of the previous lemma about the
interpretation of relation symbols.

This completes the definition of A
∗!

It looks quite complicated and we may worry how shall we ever decide
what is true there.
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key thm

Loš’s theorem

For any L-formula ϕ(x1, . . . , xk) and any elements [α1], . . . , [αk ] ∈ A∗ it
holds:

A
∗ |= ϕ([α1], . . . , [αk ]) iff 〈〈ϕ(α1, . . . , αk)〉〉 ∈ U .

Prf.:
By induction in the complexity of ϕ.

atomic flas: this is how the structure is defined!
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prf cont’d

Boolean connectives:
conjunction:

|= η ∧ ρ ⇔ [|= η and |= ρ]

We have:

〈〈η ∧ ρ〉〉 ∈ U ⇔ 〈〈η〉〉 ∩ 〈〈ρ〉〉 ∈ U ⇔1 〈〈η〉〉 ∈ U ∧ 〈〈ρ〉〉 ∈ U .

The equivalence ⇔1 holds because of the filter definition.

negation:

6|= η ⇔ 〈〈η〉〉 /∈ U ⇔2 〈〈¬η〉〉 ∈ U ⇔ |= ¬η .

The equivalence ⇔2 holds because of the ultrafilter definition.
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prf cont’d

disjunction:
[|= η or |= ρ] ⇔ |= η ∨ ρ

If 〈〈η〉〉 ∈ U (or ρ is in) then also 〈〈η ∨ ρ〉〉 ∈ U because

〈〈η〉〉 ∈ U ⊆ 〈〈η ∨ ρ〉〉 .

Opposite direction:

[〈〈η〉〉 /∈ U and 〈〈η〉〉 /∈ U ] ⇔ [〈〈¬η〉〉 ∈ U and 〈〈¬η〉〉 ∈ U ]

hence if also 〈〈η ∨ ρ〉〉 ∈ U we would have

∅ ∈ U

which is a contradiction.
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end of prf

∃-quantifier:
|= ∃xη(x) ⇔ for some α |= η(α) .

Because for any α
〈〈η(α)〉〉 ⊆ 〈〈∃xη(x)〉〉

the right-to-left implication follows.

Assume I0 = 〈〈∃xη(x)〉〉. Define β by:

i ∈ I0: α(i) is some witness for x in ∃xη(x),

i /∈ I0: α(i) is arbitrary.

Then
〈〈η(β)〉〉 = 〈〈∃xη(x)〉〉 .

∀-quantifier: analogous.

�
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extensions

Corollary

Let A be an L-structure. Let I be an infinite set, Ai = A for all i ∈ I , and
assume U is a non-principal ultrafilter on I .
Then

A 6� A
∗ .

(It is called ultrapower.)

Prf.:
pic next slide.
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prf by pic
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non-standard N

I = ω
Ai := N, all i ∈ ω

αk(i) := k, all i ∈ I and k ∈ N (represents constant k)

β(i) := i (represents non-standard element)

N
∗: the ultraproduct

Theorem

Elements [αk ], for k ∈ N, define a substructure of N
∗ isomorphic to N and

in N
∗:

αk < β , for all k ∈ N .
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pic
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nonstandard reals

R
∗: ultrapower of R as before

αr (i) := r , for all i (represents r ∈ R)
ǫ(i) := 1/(1 + i), for all i (represents an infinitesimal)
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compactness

compactness via ultraproduct

Given:

language L,

an L-theory T ,

for each finite S ⊆fin T a model AS |= S .

Want: a model for tho whole of T .
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Take:
I : all finite subsets of T , w.l.o.g. we may assume T (and hence I ) is
infinite
F : a filter generated by all sets for all S ⊆fin T

{Z ∈ I | Z ⊇ S} .

It is non-trivial because the intersection of any finite nb. of them (say
determined by S1, . . . ,Sℓ) is non-empty (contains all Z ⊇

⋃
i≤ℓ

Si).
U : a non-principal ultrafilter extending F

Theorem

A
∗ |= T .

Prf.:
For any ϕ ∈ T the set of all Z ∈ I such that AZ |= ϕ is in F ⊆ U : just
apply the above definition to S := {ϕ}. Use Loš’s thm.

�

35 / 36



HW

Two problems to take away:

(1)
Take an ultrapower of Fp with infinite I and non-principal U .
How does the ultraproduct look like?

(2)
Now take I to be the set of primes and take an ultraproduct of all fields
Fp with a non-principal ultrafilter U .
What can you say about the resulting structure?
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