To solve Problem 5 our task is to derive all Δ_{0}-instances of $\mathrm{WPHP}_{x}^{2 x}$ from Δ_{0}-instances of $\mathrm{WPHP}_{x}^{x^{2}}$ (the other implication being obvious). That is, if $f: 2 x \rightarrow x$ violates $\mathrm{WPHP}_{x}^{2 x}$ we want to $\Delta_{0}(f)$-define a map

$$
g: x^{2} \rightarrow x
$$

violating WPHP ${ }_{x}^{x^{2}}$.
Think of f as two injective maps

$$
f_{0}, f_{1}: x \rightarrow x
$$

with disjoint ranges: $r n g\left(f_{0}\right) \cap r n g\left(f_{1}\right)=\emptyset$. Simply put:

$$
f_{0}(u):=f(u) \text { if } u<x
$$

and

$$
f_{1}(u):=f(u+x) \text { if } u \leq u<2 x .
$$

W.l.o.g. we may assume that $x=2^{k}$ (because there is always a power of 2 between $2 x$ and $4 x$ and we could compose h with itself to define a surjection from x onto $4 x$), and identify $x^{2}=x \times x$ with $x \times\{0,1\}^{k}$.

A way how to think about the next definition is to picture a depth k binary tree with 2^{k} different leaves, each hosting a copy of x (i.e. all leaves together represent $x \times x=x^{2}$). With this idea define map $g: x^{2} \rightarrow x$ by taking $y<x^{2}$, identifying it with an ordered pair $(u, i) \in x \times\{0,1\}^{k}$ where $u<x$ and $i=\left(i_{1}, \ldots, i_{k}\right) \in\{0,1\}^{k}$, thinking of it as u being in the copy of x sitting at the leaf which you reach from the root by the path i_{k}, \ldots, i_{1}, and stipulating that:

$$
\begin{equation*}
g(y):=f_{i_{1}}\left(f _ { i _ { 2 } } \left(\ldots\left(f_{i_{k}}(u) \ldots\right)\right.\right. \tag{1}
\end{equation*}
$$

You need to draw the binary tree to understand this clearly but basically if you travel from the leaf where (u, i) belongs to towards the root, you start with u and then in succession apply f_{0} if you go left and f_{1} if you go right.

We need to check two things:

- g is injective,
- the condition in (1) (and hence map g) can be actually defined by a bounded formula.
The first condition is proved by induction on k, assuming we know how to arrange the second condition and so we can also talk about the values along the i path in (1). To arrange the 2nd condition and define the graph $g(y)=z$ we shall need axiom Ω_{1}. To formalize (1) you say $y=(u, i)$ and

$$
\exists s, s \text { is a sequence } s=\left(s_{0}, \ldots, s_{k}\right) \text { of length } k+1
$$

s.t.:

$$
s_{0}=u \wedge \forall t<k, s_{t+1}=f_{i_{t+1}}\left(s_{t}\right) \wedge s_{k}=z
$$

Number s codes a sequence of $k+1 \sim|x|$ numbers $<x$ and hence its bit length is about $|x|^{2}$ and axiom Ω_{1} says exactly that such a big number exists for any x.

You ought to work out the details of this construction.

