Notes on Problems 2 and 3

Let us start with Problem 2. If $\varphi(x)$ violates IND:

$$
\varphi(0) \wedge(\forall x<a, \varphi(x) \rightarrow \varphi(x+1)) \wedge \neg \varphi(a)
$$

then, as in Folwarczny's solution of Problem 1,

$$
I(y) \Leftrightarrow \forall x \leq y \varphi(x)
$$

defines a cut below $a, I<a$. We know that we can define a shorter cut

$$
J(x) \Leftrightarrow \forall y, I(y) \rightarrow I(y+x)
$$

that is closed under addition. Because $I<a$ we can actually bound the quantifier by a :

$$
J(x) \Leftrightarrow \forall y<a, I(y) \rightarrow I(y+x) .
$$

All this is over $P A^{-}$, and J is Δ_{0}-definable because $\varphi \in \Delta_{0}$.
A simple idea would be to proceed as in Problem 1 and define a map sending $J<x<a$ to $\lfloor x / 2\rfloor$ and leaving $x \in J$ in place, but this is not 1-to-1. Note that it is 2 -to- 1 and some non-empty set of $\{0, \ldots, a-1\}$ (namely J) has 1 preimage, and this itself violates an obvious PHP-type principle. However, this is not of the form WPHP.

A less straightforward idea is to express any $x<a$ as a sum of powers of 2 :

$$
\begin{equation*}
x=2^{i_{1}}+\ldots+2^{i_{k}}, \text { with } i_{1}>\ldots>i_{k} \tag{1}
\end{equation*}
$$

and then move each power $2^{i} \notin J$ to 2^{i-1}, while leaving the powers that are in J in place. Note that, because J is closed under addition, this is 1-to-1 and maps a to $a / 2$ (assume w.l.o.g. that a itself is a power of 2).

Formally proceed as follows:

1. Define predicate $\operatorname{Pow}(y): y$ is a power of 2 , by saying that each proper divisor is even.
2. Define relation $P(x, y)$: y is a power of 2 and it occurs in the unique expression (1) for x :

$$
\operatorname{Pow}(y) \wedge \exists u, v \leq x, u+y+v=x \wedge 2 y \mid u \wedge v<y
$$

Note that there are $\leq|x|$ elements y satisfying $P(x, y)$.
3. Define relation $Q(x, z)$:

$$
\exists y \leq x, P(x, y) \wedge[(y \in J \wedge y=z) \vee(y \notin J \wedge y=2 z)]
$$

4. Then define map f :

$$
f(x):=\sum\{z<x \mid Q(x, z)\} .
$$

Note that such f is 1 -to- 1 and its range is $\leq a / 2$. But the issue is how do we know that it is well defined?

In order to prove that the sum exists we can proceed by induction on t to show that

$$
\exists w \leq x, w=\sum\{z<x \mid Q(x, z)\} \cap\{0, \ldots, t\}
$$

and then conclude that $f(x)$ is defined by taking $t=|x|$. But we are supposed to work over $P A^{-}$and we assume a failure of IND, so this cannot be done.

While you will be thinking how to possibly overcome this - I do not know try also:

- Write down the definition of the sum formally: there exists a sequence ...
- Extend the idea to WPHP from n^{2} to n.
- Problem 3: verify that all manipulations so far did not depend on the language, i.e. it is OK to have a new relation symbol.

