
A solution of Problem 6

Problem 6 in a sense incorporates all previous problems and its solution is,
I think, the most subtle use of the idea to amplify the input/output ratio along
a binary tree. It is a good idea to draw pictures of what is going on in the
argument below.

Let us start with g : x2 → x violating WPHP. Recall that we assume w.l.o.g.
that x is a power of 2, x = 2k, and that we think of x in a dual way: as set
{0, . . . , x− 1} and also as set {0, 1}k.

Consider a depth k binary tree, starting in a root and growing up: the root
branches into two subtrees which are rooted at its left and right sons, resp.,
and they both have left and right sons themselves, etc. Imagine that we label
the root of the tree by u < x. We extend the labeling to the whole tree by he
following recursive process:

• If u /∈ rng(g) label the sons of the root by ∗, their sons also by ∗, etc. all
the way up to leaves.

• If u = g(v, w) for some v, w < x label the left son by v and the right son
by w, and repeat the whole process for both subtrees.

• Stop when all leaves are labeled.

It may be that only the root gets a label from x all other nodes get ∗ (this
happens when u /∈ rng(g)), or that only some nodes get a proper label and
some get ∗.

Now we want to define the labeling in the theory and the problem is that
the tree has 2x− 1 > 2k nodes (inner nodes together with leaves) and hence a
list of all labels would be a too long sequence: its length would be > 2k = x
of numbers < x, i.e. it needs a code of size > xx and we cannot prove in the
theory that such a number exists.

The key idea is that while we cannot define the whole labeling, we can define
the label of any particular node. Think of i = (i1, . . . , it) ∈ {0, 1}≤k as a partial
path in the binary tree, where 0 means go left and 1 means go right. The empty
string i corresponds to the root, length one strings 0 and 1 correspond to the
left and the right son of the root, resp., and strings of length k correspond to
different leaves of the tree. We want to define in the theory the function:

(u)i := the label of the node corresponding to i .

As an example assume i = (0, 1), i.e. we want to define the label of the right
son of the left son of the original root. We have:

1. either u /∈ rng(g), or

2. u = g(v1, w1) for some v1, w1 < x.

1

In case 1 we just define (u)i := ∗. In case 2 we look at the the left son of the
root, labeled by v1, and consider two cases:

3. If v1 /∈ rng(g) we define, as before, (u)i := ∗.

4. If v1 ∈ rng(g) and v1 = g(v2, w2), we define (u)i := w2.

Note that in order to learn what the label of node i is we only needed to know
labels of the nodes on the path i together with the labels of the nodes paired
with them (the pairs are left and right sons of any node), all together 5 nodes
(root labeled by u and the four nodes with labels v1, w1, v2, w2).

Function (u)i will be defined analogously for a general path i = (i1, . . . , it) ∈
{0, 1}≤k: we need to know the labels on the path i (t + 1 nodes when counting
the root as well), and the labels of the nodes paired with them (another t nodes)
certifying that all labels are in rng(g). To summarize, the value (u)i is defined
by a sentence of the form:

• There exists a sequence s of length 2t+1 of numbers < x, i.e. s ≤ x2t+1 ≤
x2k+1 ≤ x3|x| ≤ (x#x)3, that lists labels on path i, starting with label u of
the root, as well as labels of the nodes paired with the nodes on i, and the
labels are assigned correctly as determined by map g.

This solves the first part of Problem 6: to define (u)i. Note that the function is
definable by a bounded formula (with functions symbol #).

For the second task let as assume we have ∆0-definable H ⊆ x(= {0, 1}k)
and we want to find u < x s.t. for all i ∈ {0, 1}k:

i ∈ H iff (u)i = 1 . (1)

We shall find suitable u coding H in the sense of (1) by induction, by considering
bigger and bigger pieces of H that are in the full binary tree above a certain
inned node j ∈ {0, 1}≤k. Let Hj denotes such a part of H: it concerns only
those i ∈ {0, 1}k that extend j.

If j ∈ {0, 1}k then Hj is just one leaf (the j) and its code is simply its label,
i.e. 1 if j ∈ Hj and 0 otherwise. If j ∈ {0, 1}k−1, Hj are two neighboring leaves
labeled by v, w ∈ {0, 1} (depending on their membership in Hj) with a common
parent j , and the parent is labeled by g(v, w). In general, when going from
codes v for Hj0 and w for Hj1 take for the code of Hj the number g(v, w).

The existence of a suitable u coding whole H is proved formally by induction
as follows. For ` = 0, . . . , k we prove:

• For any j ∈ {0, 1}k−` there is uj < x s.t. for any i ∈ {0, 1}k extending j:

(uj)(i−j) = 1 iff i ∈ Hj

where i − j is the path of length ` by which we need to extend j in order
to get i, and Hj are the elements i of H that extend j.

2

Note that this can be written by a bounded formula because H is assumed to
be ∆0-definable.

Finally it remains to use this coding to prove in I∆0 + Ω1 that all ∆0-
definable maps g satisfy WPHPx2

2 . As once before, we adopt Cantor’s diagonal
argument. Define set H ⊆ {0, 1}k by:

i ∈ H iff (i)i = 0 .

The set is defined by a bounded formula hence it must be coded in the sense of
(1) by some u < x. But then we get the contradiction as usual:

u ∈ H ⇔ (u)u = 0 ⇔ u /∈ H .

the first equivalence is by the definition of H, the second is by the choice of u as
the coded of H. (Here we use the dual nature of x: {0, . . . , x− 1} and {0, 1}k.)

3

