
These notes are to answer the questions in the Ježil-Narusevych solution of
Problem 4 (file Pr4.pdf).
Q1 (Axiom of Choice): If f : [x + 1] → [x] violates PHP then you can define
g : [x] → [x + 1] by:

g(y) = z ⇔df (y ∈ rng(f) ∧ f(z) = y) ∨ (y /∈ rng(f) ∧ z = 0)

which will be surjective (because dom(f) = [x + 1]).
On the other hand, having surjective g : [x] → [x+1] define f : [x+1] → [x]

by:
f(y) = z ⇔df (g(z) = y ∧ ∀z′ < zg(z′) 6= y) .

In other words, we replace AC by choosing in each g−1(y) the minimal element.
In fact, this is similar to why AC holds in Gödel’s constructible universe:

the choice function uses the order in which sets are introduced.

The name dual (W)PHP (denoted dWPHP) is actually the official name of
the principle (no surjection from a set onto a proper superset) and it plays im-
portant role in bounded arithmetic (for formalizing probabilistic constructions)
and in proof complexity (to define hard tautologies).

There is one subtle issue in the equivalence proof of PHP and dPHP above:
the second definition involves a quantifier. That is, if you restrict PHP and
dPHP to the class of, say, p-time functions then the proof of the equivalence
of the two principles no longer holds and is probably not true. Note that the
inverse function to a p-time function may not be p-time (e.g. factoring) itself.

Q2: I think (*) is not true: e.g. |2| = |3| = 2 (it is the bit length). But
more importantly, even if it were true, your induction argument would need a
statement of the form

∃ map g : [x + 1− t] → . . .

for t = 0, 1, . . . and this statement is not bounded: the code of a map g : [x+1] →
[x] is like that of a sequence of length x + 1 of numbers < x and may have size
∼ xx which you cannot bound by a term.

Sooner or later we shall learn about theories allowing to quantify over func-
tions with bounded domain and range but I∆0 does not allow that.

Q3: This is OK. Let me just mention an alternative way (although essentially
equivalent). First shorten J to J1:

x ∈ J1 ⇔df ∃y < a, y ∈ J ∧ x = |y|

i.e. J1 is something like log(J). J1 is closed under successor because J is closed
under multiplication by 2. Now shorten J1 further to J2 ⊆ J1 closed under
addition. And then do the same construction as for the case 2a vs. a but on
exponents k in the sums of powers of two. I.e. each 2k gets moved to something
like 2k/2 = (2k)1/2. Well, there are surely details to iron out.

1

