Building models by games

Ondřej Ježil

March 10, 2021

Ondřej Ježil

3 March 10, 2021 1/23

э.

• • • • • • • • • •

• We will be going through chapter 2 of Building models by games, (Hodges 1985).

-

Image: A (1)

- We will be going through chapter 2 of Building models by games, (Hodges 1985).
- The connection to games will not be apparent at first, but the concept will eventually appear in a natural way.

- We will be going through chapter 2 of Building models by games, (Hodges 1985).
- The connection to games will not be apparent at first, but the concept will eventually appear in a natural way.

- We will be going through chapter 2 of Building models by games, (Hodges 1985).
- The connection to games will not be apparent at first, but the concept will eventually appear in a natural way.
- **1** A way to build models

- We will be going through chapter 2 of Building models by games, (Hodges 1985).
- The connection to games will not be apparent at first, but the concept will eventually appear in a natural way.
- 1 A way to build models
 - Pormal treatment of games.

- We will be going through chapter 2 of Building models by games, (Hodges 1985).
- The connection to games will not be apparent at first, but the concept will eventually appear in a natural way.
- • A way to build models
 - Pormal treatment of games.
 - Sorcing with games.

A way of building models

< □ > < □ > < □ > < □ > < □ >

Definition (=-closed theory)

A first-order L-theory T is =-closed if the following holds:

Definition (=-closed theory)

A first-order L-theory T is =-closed if the following holds:

• For every closed L-term t we have $t = t \in T$.

► < ∃ ►</p>

Definition (=-closed theory)

A first-order L-theory T is =-closed if the following holds:

- For every closed L-term t we have $t = t \in T$.
- For every atomic formula φ(x) and all closed L-terms s, t: (s = t ∈ T, φ(t) ∈ T) ⇒ φ(s) ∈ T

Definition (=-closed theory)

A first-order L-theory T is =-closed if the following holds:

- For every closed L-term t we have $t = t \in T$.
- For every atomic formula φ(x) and all closed L-terms s, t: (s = t ∈ T, φ(t) ∈ T) ⇒ φ(s) ∈ T

Theorem (Canonical model theorem)

Let L contain at least one constant and let T be an =-closed L-theory which contains only atomic sentences, then there exists a structure A such that:

Image: A Image: A

Definition (=-closed theory)

A first-order L-theory T is =-closed if the following holds:

- For every closed L-term t we have $t = t \in T$.
- For every atomic formula φ(x) and all closed L-terms s, t: (s = t ∈ T, φ(t) ∈ T) ⇒ φ(s) ∈ T

Theorem (Canonical model theorem)

Let L contain at least one constant and let T be an =-closed L-theory which contains only atomic sentences, then there exists a structure A such that:

•
$$\forall a \in A \exists t \ a \ closed \ L$$
-term : $a = t^A$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Definition (=-closed theory)

A first-order L-theory T is =-closed if the following holds:

- For every closed L-term t we have $t = t \in T$.
- For every atomic formula φ(x) and all closed L-terms s, t: (s = t ∈ T, φ(t) ∈ T) ⇒ φ(s) ∈ T

Theorem (Canonical model theorem)

Let L contain at least one constant and let T be an =-closed L-theory which contains only atomic sentences, then there exists a structure A such that:

•
$$\forall a \in A \ \exists t \ a \ closed \ L$$
-term : $a = t^{\mathcal{A}}$

• $\forall \phi$ an atomic L-sentence : $\mathcal{A} \models \phi \iff \phi \in \mathcal{T}$

< □ > < □ > < □ > < □ > < □ > < □ >

Theorem (Canonical model theorem)

Theorem (Canonical model theorem)

Let L contain at least one constant and let T be an =-closed L-theory which contains only atomic sentences, then there exists a structure A such that:

• $\forall a \in A \exists t \ a \ closed \ L$ -term : $a = t^{\mathcal{A}}$

Theorem (Canonical model theorem)

- $\forall a \in A \exists t \ a \ closed \ L$ -term : $a = t^{\mathcal{A}}$
- $\forall \phi$ an atomic L-sentence : $\mathcal{A} \models \phi \iff \phi \in \mathcal{T}$

Theorem (Canonical model theorem)

Let L contain at least one constant and let T be an =-closed L-theory which contains only atomic sentences, then there exists a structure A such that:

- $\forall a \in A \exists t \ a \ closed \ L$ -term : $a = t^{\mathcal{A}}$
- $\forall \phi$ an atomic L-sentence : $\mathcal{A} \models \phi \iff \phi \in \mathcal{T}$

Proof (sketch)

Theorem (Canonical model theorem)

Let L contain at least one constant and let T be an =-closed L-theory which contains only atomic sentences, then there exists a structure A such that:

- $\forall a \in A \exists t \ a \ closed \ L$ -term : $a = t^{\mathcal{A}}$
- $\forall \phi$ an atomic L-sentence : $\mathcal{A} \models \phi \iff \phi \in \mathcal{T}$

Proof (sketch)

Existence: Choose {t; t a closed L-term}/ ~ as the underlying set of A where t ~ s : ⇐⇒ (s = t) ∈ L, define the interpretation of functional and relational symbols as:

Theorem (Canonical model theorem)

Let L contain at least one constant and let T be an =-closed L-theory which contains only atomic sentences, then there exists a structure A such that:

- $\forall a \in A \exists t \ a \ closed \ L$ -term : $a = t^{\mathcal{A}}$
- $\forall \phi$ an atomic L-sentence : $\mathcal{A} \models \phi \iff \phi \in \mathcal{T}$

Proof (sketch)

Existence: Choose {t; t a closed L-term}/ ~ as the underlying set of A where t ~ s : ⇐⇒ (s = t) ∈ L, define the interpretation of functional and relational symbols as:
 f^A([t₁]_~,...,[t_n]_~) := [f(t₁,...,t_n)]_~

Theorem (Canonical model theorem)

Let L contain at least one constant and let T be an =-closed L-theory which contains only atomic sentences, then there exists a structure A such that:

- $\forall a \in A \exists t \ a \ closed \ L$ -term : $a = t^{\mathcal{A}}$
- $\forall \phi$ an atomic L-sentence : $\mathcal{A} \models \phi \iff \phi \in \mathcal{T}$

Proof (sketch)

Existence: Choose {t; t a closed L-term}/ ~ as the underlying set of A where t ~ s: ↔ (s = t) ∈ L, define the interpretation of functional and relational symbols as:
 f^A([t₁]_~,...,[t_n]_~) := [f(t₁,...,t_n)]_~

$$R^{\mathcal{A}}([t_1]_{\sim},\ldots,[t_n]_{\sim}) \iff R(t_1,\ldots,t_n) \in T$$

Theorem (Canonical model theorem)

Let L contain at least one constant and let T be an =-closed L-theory which contains only atomic sentences, then there exists a structure A such that:

- $\forall a \in A \exists t \ a \ closed \ L$ -term : $a = t^{\mathcal{A}}$
- $\forall \phi$ an atomic L-sentence : $\mathcal{A} \models \phi \iff \phi \in \mathcal{T}$

Proof (sketch)

- Existence: Choose {t; t a closed L-term}/ ~ as the underlying set of A where t ~ s: ⇐⇒ (s = t) ∈ L, define the interpretation of functional and relational symbols as:
 f^A([t₁]_~,...,[t_n]_~) := [f(t₁,...,t_n)]_~
 R^A([t₁]_~,...,[t_n]_~) ⇐ R(t₁,...,t_n) ∈ T
- This is a sound definition because of the =-closedness of T.

イロト イボト イヨト イヨト

Theorem (Canonical model theorem)

Theorem (Canonical model theorem)

•
$$\forall a \in A \exists t \ a \ closed \ L$$
-term : $a = t^{\mathcal{A}}$

Theorem (Canonical model theorem)

- $\forall a \in A \exists t \ a \ closed \ L$ -term : $a = t^{\mathcal{A}}$
- $\forall \phi$ an atomic L-sentence : $\mathcal{A} \models \phi \iff \phi \in \mathcal{T}$

Theorem (Canonical model theorem)

Let L contain at least one constant and let T be an =-closed L-theory which contains only atomic sentences, then there exists a structure A such that:

- $\forall a \in A \exists t \ a \ closed \ L$ -term : $a = t^{\mathcal{A}}$
- $\forall \phi$ an atomic L-sentence : $\mathcal{A} \models \phi \iff \phi \in \mathcal{T}$

Proof (sketch cont.)

A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Theorem (Canonical model theorem)

Let L contain at least one constant and let T be an =-closed L-theory which contains only atomic sentences, then there exists a structure A such that:

- $\forall a \in A \exists t \ a \ closed \ L$ -term : $a = t^{\mathcal{A}}$
- $\forall \phi$ an atomic L-sentence : $\mathcal{A} \models \phi \iff \phi \in \mathcal{T}$

Proof (sketch cont.)

 Uniqueness: Notice, that for every B ⊨ T, there is a unique homomorphism f: A → B sending t_~ → t^B, this follows just from the two requirements we have one A.

Theorem (Canonical model theorem)

Let L contain at least one constant and let T be an =-closed L-theory which contains only atomic sentences, then there exists a structure A such that:

- $\forall a \in A \exists t \ a \ closed \ L$ -term : $a = t^{\mathcal{A}}$
- $\forall \phi$ an atomic L-sentence : $\mathcal{A} \models \phi \iff \phi \in \mathcal{T}$

Proof (sketch cont.)

- Uniqueness: Notice, that for every B ⊨ T, there is a unique homomorphism f: A → B sending t_~ → t^B, this follows just from the two requirements we have one A.
- So if A' were satisfy the statement of the theorem we would have g: A → A' and h: A' → A, so h ∘ g: A → A but only such homomorphism is the identity.

Notions of consistency

• We would like to formalize sufficient condition for a theory to have a model.

Notions of consistency

- We would like to formalize sufficient condition for a theory to have a model.
- We can do so without proof calculus using the following notion.

Notions of consistency

- We would like to formalize sufficient condition for a theory to have a model.
- We can do so without proof calculus using the following notion.
- You can think of it like this: What are the conditions for some theory such that the theory "could be true in some structure"?

Definition (Notion of consistency)

Let L be a first-order language of cardinality λ . We shall call a set of sets of L-sentences N a **notion of consistency** if the following conditions hold for every set $p \in N$:

Definition (Notion of consistency)

Let L be a first-order language of cardinality λ . We shall call a set of sets of L-sentences N a **notion of consistency** if the following conditions hold for every set $p \in N$:

Definition (Notion of consistency)

Let L be a first-order language of cardinality λ . We shall call a set of sets of L-sentences N a **notion of consistency** if the following conditions hold for every set $p \in N$:

Definition (Notion of consistency)

Let L be a first-order language of cardinality λ . We shall call a set of sets of L-sentences N a **notion of consistency** if the following conditions hold for every set $p \in N$:

1 for every closed L-term t: $p \in N \Rightarrow p \cup \{t = t\} \in N$

Definition (Notion of consistency)

Let L be a first-order language of cardinality λ . We shall call a set of sets of L-sentences N a **notion of consistency** if the following conditions hold for every set $p \in N$:

1 for every closed L-term t: $p \in N \Rightarrow p \cup \{t = t\} \in N$

2 for every atomic L-formula $\phi(x)$ and s, t closed L-terms: $(\phi(t) \in p \text{ and } (t \stackrel{\leftrightarrow}{\Rightarrow} s) \in p) \Rightarrow p \cup \{\phi(s)\} \in N$

• • = • • = •
Definition (Notion of consistency)

Let L be a first-order language of cardinality λ . We shall call a set of sets of L-sentences N a **notion of consistency** if the following conditions hold for every set $p \in N$:

- for every closed L-term t: $p \in N \Rightarrow p \cup \{t = t\} \in N$
- 2 for every atomic L-formula φ(x) and s, t closed L-terms: $(\phi(t) \in p \text{ and } (t \stackrel{\leftrightarrow}{=} s) \in p) \Rightarrow p \cup \{\phi(s)\} \in N$
 - for every $p \in N$ and every L-sentence ϕ : both ϕ and $\neg \phi$ cannot be in p

Definition (Notion of consistency)

Let L be a first-order language of cardinality λ . We shall call a set of sets of L-sentences N a **notion of consistency** if the following conditions hold for every set $p \in N$:

- for every closed L-term t: $p \in N \Rightarrow p \cup \{t = t\} \in N$
- 2 for every atomic L-formula φ(x) and s, t closed L-terms: $(\phi(t) \in p \text{ and } (t \stackrel{\leftrightarrow}{=} s) \in p) \Rightarrow p \cup \{\phi(s)\} \in N$
- for every $p \in N$ and every L-sentence ϕ : both ϕ and $\neg \phi$ cannot be in p
- for every $p \in N$ and every L-sentence ϕ : both ϕ and $\neg \phi$ cannot be in p

Definition (Notion of consistency)

Let L be a first-order language of cardinality λ . We shall call a set of sets of L-sentences N a **notion of consistency** if the following conditions hold for every set $p \in N$:

- for every closed L-term t: $p \in N \Rightarrow p \cup \{t = t\} \in N$
- 2 for every atomic L-formula φ(x) and s, t closed L-terms: $(\phi(t) \in p \text{ and } (t \stackrel{\leftrightarrow}{=} s) \in p) \Rightarrow p \cup \{\phi(s)\} \in N$
- for every $p \in N$ and every L-sentence ϕ : both ϕ and $\neg \phi$ cannot be in p
- for every $p \in N$ and every L-sentence ϕ : both ϕ and $\neg \phi$ cannot be in p

Definition (Notion of consistency)

Let L be a first-order language of cardinality λ . We shall call a set of sets of L-sentences N a **notion of consistency** if the following conditions hold for every set $p \in N$:

- for every closed L-term t: $p \in N \Rightarrow p \cup \{t = t\} \in N$
- (2) for every atomic L-formula φ(x) and s, t closed L-terms: $(\phi(t) \in p \text{ and } (t \stackrel{\leftrightarrow}{=} s) \in p) \Rightarrow p \cup \{\phi(s)\} \in N$
- 3 for every $p \in N$ and every L-sentence ϕ : both ϕ and $\neg \phi$ cannot be in p
 - for every $p \in N$ and every L-sentence ϕ ; both ϕ and $\neg \phi$ cannot be in p

Now for ϕ and ψ L-sentences:

 $(5) \phi \land \psi \in p \Rightarrow p \cup \{\phi, psi\} \in N$

Definition (Notion of consistency)

Let L be a first-order language of cardinality λ . We shall call a set of sets of L-sentences N a **notion of consistency** if the following conditions hold for every set $p \in N$:

- for every closed L-term t: $p \in N \Rightarrow p \cup \{t = t\} \in N$
- (2) for every atomic L-formula φ(x) and s, t closed L-terms: $(\phi(t) \in p \text{ and } (t \stackrel{\leftrightarrow}{=} s) \in p) \Rightarrow p \cup \{\phi(s)\} \in N$
- 3 for every $p \in N$ and every L-sentence ϕ : both ϕ and $\neg \phi$ cannot be in p
 - for every $p \in N$ and every L-sentence ϕ ; both ϕ and $\neg \phi$ cannot be in p

Now for ϕ and ψ L-sentences:

 $(\bigcirc \neg (\phi \land \psi) \in p \Rightarrow \{p \cup \{\neg \phi\}, p \cup \{\neg \psi\}\} \cap N \neq \emptyset$

< 日 > < 同 > < 三 > < 三 >

Definition (Notion of consistency)

Let L be a first-order language of cardinality λ . We shall call a set of sets of L-sentences N a **notion of consistency** if the following conditions hold for every set $p \in N$:

- for every closed L-term t: $p \in N \Rightarrow p \cup \{t = t\} \in N$
- (2) for every atomic L-formula φ(x) and s, t closed L-terms: $(\phi(t) \in p \text{ and } (t \stackrel{\leftrightarrow}{=} s) \in p) \Rightarrow p \cup \{\phi(s)\} \in N$
- 3 for every $p \in N$ and every L-sentence ϕ : both ϕ and $\neg \phi$ cannot be in p

for every $p \in N$ and every L-sentence ϕ ; both ϕ and $\neg \phi$ cannot be in p

Now for ϕ and ψ L-sentences:

< 日 > < 同 > < 三 > < 三 >

Definition (Notion of consistency)

Let L be a first-order language of cardinality λ . We shall call a set of sets of L-sentences N a **notion of consistency** if the following conditions hold for every set $p \in N$:

- for every closed L-term t: $p \in N \Rightarrow p \cup \{t = t\} \in N$
- (2) for every atomic L-formula φ(x) and s, t closed L-terms: $(\phi(t) \in p \text{ and } (t \stackrel{\leftrightarrow}{=} s) \in p) \Rightarrow p \cup \{\phi(s)\} \in N$
- 3 for every $p \in N$ and every L-sentence ϕ : both ϕ and $\neg \phi$ cannot be in p

for every $p \in N$ and every L-sentence ϕ ; both ϕ and $\neg \phi$ cannot be in p

Now for ϕ and ψ L-sentences:

< 日 > < 同 > < 回 > < 回 > < 回 > <

Definition (Notion of consistency)

Let L be a first-order language of cardinality λ . We shall call a set of sets of L-sentences N a **notion of consistency** if the following conditions hold for every set $p \in N$:

- for every closed L-term t: $p \in N \Rightarrow p \cup \{t = t\} \in N$
- (2) for every atomic L-formula φ(x) and s, t closed L-terms: $(\phi(t) \in p \text{ and } (t \stackrel{\leftrightarrow}{=} s) \in p) \Rightarrow p \cup \{\phi(s)\} \in N$
- 3 for every $p \in N$ and every L-sentence ϕ : both ϕ and $\neg \phi$ cannot be in p

for every $p \in N$ and every L-sentence ϕ ; both ϕ and $\neg \phi$ cannot be in p

Now for ϕ and ψ L-sentences:

< 日 > < 同 > < 回 > < 回 > < 回 > <

Definition (Notion of consistency)

Let L be a first-order language of cardinality λ . We shall call a set of sets of L-sentences N a **notion of consistency** if the following conditions hold for every set $p \in N$:

- for every closed L-term t: $p \in N \Rightarrow p \cup \{t = t\} \in N$
- (2) for every atomic L-formula φ(x) and s, t closed L-terms: $(\phi(t) \in p \text{ and } (t \stackrel{\leftrightarrow}{=} s) \in p) \Rightarrow p \cup \{\phi(s)\} \in N$
- 3 for every $p \in N$ and every L-sentence ϕ : both ϕ and $\neg \phi$ cannot be in p

for every $p \in N$ and every L-sentence ϕ ; both ϕ and $\neg \phi$ cannot be in p

Now for ϕ and ψ L-sentences:

< 日 > < 同 > < 回 > < 回 > < 回 > <

Definition (Notion of consistency)

Let L be a first-order language of cardinality λ . We shall call a set of sets of L-sentences N a **notion of consistency** if the following conditions hold for every set $p \in N$:

- for every closed L-term t: $p \in N \Rightarrow p \cup \{t = t\} \in N$
- 2 for every atomic L-formula φ(x) and s, t closed L-terms: $(\phi(t) \in p \text{ and } (t \stackrel{\leftrightarrow}{=} s) \in p) \Rightarrow p \cup \{\phi(s)\} \in N$
- 3 for every $p \in N$ and every L-sentence ϕ : both ϕ and $\neg \phi$ cannot be in p
 - for every $p \in N$ and every L-sentence ϕ ; both ϕ and $\neg \phi$ cannot be in p

Now for ϕ and ψ L-sentences:

$$\begin{aligned} & \mathbf{5} \quad \phi \land \psi \in p \Rightarrow p \cup \{\phi, psi\} \in N \\ & \mathbf{5} \quad \neg(\phi \land \psi) \in p \Rightarrow \{p \cup \{\neg\phi\}, p \cup \{\neg\psi\}\} \cap N \neq \emptyset \\ & \mathbf{0} \quad \phi \lor \psi \in p \Rightarrow \{p \cup \{\phi\}, p \cup \{\psi\}\} \cap N \neq \emptyset \\ & \mathbf{5} \quad \neg(\phi \lor \psi) \in p \Rightarrow p \cup \{\neg\psi, \neg\phi\} \in N \end{aligned}$$

For all variables x and L-formulas $\phi(x)$:

 $\forall x : \phi(x) \in p \Rightarrow p \cup \{\phi(t)\} \in N \text{ for every closed}$ L-term t

Definition (Notion of consistency)

Let L be a first-order language of cardinality λ . We shall call a set of sets of L-sentences N a **notion of consistency** if the following conditions hold for every set $p \in N$:

- for every closed L-term t: $p \in N \Rightarrow p \cup \{t = t\} \in N$
- (2) for every atomic L-formula φ(x) and s, t closed L-terms: $(\phi(t) \in p \text{ and } (t \stackrel{\leftrightarrow}{=} s) \in p) \Rightarrow p \cup \{\phi(s)\} \in N$
- 3 for every $p \in N$ and every L-sentence ϕ : both ϕ and $\neg \phi$ cannot be in p

for every $p \in N$ and every L-sentence ϕ ; both ϕ and $\neg \phi$ cannot be in p

Now for ϕ and ψ L-sentences:

$$\begin{aligned} & \mathbf{5} \quad \phi \land \psi \in p \Rightarrow p \cup \{\phi, psi\} \in N \\ & \mathbf{5} \quad \neg(\phi \land \psi) \in p \Rightarrow \{p \cup \{\neg\phi\}, p \cup \{\neg\psi\}\} \cap N \neq \emptyset \\ & \mathbf{0} \quad \phi \lor \psi \in p \Rightarrow \{p \cup \{\phi\}, p \cup \{\psi\}\} \cap N \neq \emptyset \\ & \mathbf{5} \quad \neg(\phi \lor \psi) \in p \Rightarrow p \cup \{\neg\psi, \neg\phi\} \in N \end{aligned}$$

For all variables x and L-formulas $\phi(x)$:

 $\forall x : \phi(x) \in p \Rightarrow p \cup \{\phi(t)\} \in N \text{ for every closed}$ L-term t

 $(0) \neg \forall x : \phi(x) \in p \Rightarrow p \cup \{\neg \phi(t)\} \in N \text{ for some closed}$ L-term t

Definition (Notion of consistency)

Let L be a first-order language of cardinality λ . We shall call a set of sets of L-sentences N a **notion of consistency** if the following conditions hold for every set $p \in N$:

- for every closed L-term t: $p \in N \Rightarrow p \cup \{t = t\} \in N$
- (2) for every atomic L-formula φ(x) and s, t closed L-terms: $(\phi(t) \in p \text{ and } (t \stackrel{\leftrightarrow}{=} s) \in p) \Rightarrow p \cup \{\phi(s)\} \in N$
- 3 for every $p \in N$ and every L-sentence ϕ : both ϕ and $\neg \phi$ cannot be in p
- for every $p \in N$ and every L-sentence ϕ ; both ϕ and $\neg \phi$ cannot be in p

Now for ϕ and ψ L-sentences:

$$\begin{array}{l} \bullet \land \psi \in p \Rightarrow p \cup \{\phi, psi\} \in N \\ \bullet & \neg (\phi \land \psi) \in p \Rightarrow \{p \cup \{\neg\phi\}, p \cup \{\neg\psi\}\} \cap N \neq \emptyset \\ \hline \phi \lor \psi \in p \Rightarrow \{p \cup \{\phi\}, p \cup \{\psi\}\} \cap N \neq \emptyset \\ \bullet & \neg (\phi \lor \psi) \in p \Rightarrow p \cup \{\neg\psi, \neg\phi\} \in N \\ \end{array}$$

For all variables x and L-formulas $\phi(x)$:

- $\forall x : \phi(x) \in p \Rightarrow p \cup \{\phi(t)\} \in N \text{ for every closed}$ L-term t
- $(0) \neg \forall x : \phi(x) \in p \Rightarrow p \cup \{\neg \phi(t)\} \in N \text{ for some closed}$ I-term t

イロト イポト イヨト イヨト

 $1 \exists x : \phi(x) \in p \Rightarrow p \cup \{\phi(t)\} \in N \text{ for some closed }$ L-term t

Definition (Notion of consistency)

Let L be a first-order language of cardinality λ . We shall call a set of sets of L-sentences N a **notion of consistency** if the following conditions hold for every set $p \in N$:

- for every closed L-term t: $p \in N \Rightarrow p \cup \{t = t\} \in N$
- (2) for every atomic L-formula φ(x) and s, t closed L-terms: $(\phi(t) \in p \text{ and } (t \stackrel{\leftrightarrow}{=} s) \in p) \Rightarrow p \cup \{\phi(s)\} \in N$
- 3 for every $p \in N$ and every L-sentence ϕ : both ϕ and $\neg \phi$ cannot be in p
- - for every $p \in N$ and every L-sentence ϕ ; both ϕ and $\neg \phi$ cannot be in p

Now for ϕ and ψ L-sentences:

$$\begin{array}{l}
\begin{array}{l}
\begin{array}{l}
\begin{array}{l}
\begin{array}{l}
\begin{array}{l}
\end{array} \phi \land \psi \in p \Rightarrow p \cup \{\phi, psi\} \in N\\ \end{array} \\
\begin{array}{l}
\end{array} \\
\begin{array}{l}
\end{array} (\phi \land \psi) \in p \Rightarrow \{p \cup \{\neg\phi\}, p \cup \{\neg\psi\}\} \cap N \neq \emptyset\\ \end{array} \\
\begin{array}{l}
\end{array} \\
\begin{array}{l}
\end{array} \phi \lor \psi \in p \Rightarrow \{p \cup \{\phi\}, p \cup \{\psi\}\} \cap N \neq \emptyset\\ \end{array} \\
\begin{array}{l}
\end{array} \\
\begin{array}{l}
\end{array} \\
\begin{array}{l}
\end{array} \\
\end{array} = \begin{array}{l}
\end{array} \\
\begin{array}{l}
\end{array} \\
\begin{array}{l}
\end{array} \\
\begin{array}{l}
\end{array} \\
\end{array} \\
\begin{array}{l}
\end{array} \\
\begin{array}{l}
\end{array} \\
\begin{array}{l}
\end{array} \\
\end{array} \\
\end{array} \\
\end{array} \\
\end{array} \\
\begin{array}{l}
\end{array} \\
\end{array} \\$$
} \\
\end{array} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

For all variables x and L-formulas $\phi(x)$:

- $\forall x : \phi(x) \in p \Rightarrow p \cup \{\phi(t)\} \in N \text{ for every closed}$ L-term t
- $(0) \neg \forall x : \phi(x) \in p \Rightarrow p \cup \{\neg \phi(t)\} \in N \text{ for some closed}$ I-term t
- $1 \exists x : \phi(x) \in p \Rightarrow p \cup \{\phi(t)\} \in N \text{ for some closed }$ L-term t
- $\neg \exists x : \phi(x) \in p \Rightarrow p \cup \{\neg \phi(t)\} \in N \text{ for every closed}$ L-term t

イロト イポト イヨト イヨト

Definition (Notion of consistency)

Let L be a first-order language of cardinality λ . We shall call a set of sets of L-sentences N a **notion of consistency** if the following conditions hold for every set $p \in N$:

- for every closed L-term t: $p \in N \Rightarrow p \cup \{t = t\} \in N$
- (2) for every atomic L-formula φ(x) and s, t closed L-terms: $(\phi(t) \in p \text{ and } (t \stackrel{\leftrightarrow}{=} s) \in p) \Rightarrow p \cup \{\phi(s)\} \in N$
- 3 for every $p \in N$ and every L-sentence ϕ : both ϕ and $\neg \phi$ cannot be in p
- - for every $p \in N$ and every L-sentence ϕ ; both ϕ and $\neg \phi$ cannot be in p

Now for ϕ and ψ L-sentences:

$$\begin{array}{l}
\begin{array}{l}
\begin{array}{l}
\begin{array}{l}
\begin{array}{l}
\begin{array}{l}
\end{array} \phi \land \psi \in p \Rightarrow p \cup \{\phi, psi\} \in N\\ \end{array} \\
\begin{array}{l}
\end{array} \\
\begin{array}{l}
\end{array} (\phi \land \psi) \in p \Rightarrow \{p \cup \{\neg\phi\}, p \cup \{\neg\psi\}\} \cap N \neq \emptyset\\ \end{array} \\
\begin{array}{l}
\end{array} \\
\begin{array}{l}
\end{array} \phi \lor \psi \in p \Rightarrow \{p \cup \{\phi\}, p \cup \{\psi\}\} \cap N \neq \emptyset\\ \end{array} \\
\begin{array}{l}
\end{array} \\
\begin{array}{l}
\end{array} \\
\begin{array}{l}
\end{array} \\
\end{array} = \begin{array}{l}
\end{array} \\
\begin{array}{l}
\end{array} \\
\begin{array}{l}
\end{array} \\
\begin{array}{l}
\end{array} \\
\end{array} \\
\begin{array}{l}
\end{array} \\
\begin{array}{l}
\end{array} \\
\begin{array}{l}
\end{array} \\
\end{array} \\
\end{array} \\
\end{array} \\
\end{array} \\
\begin{array}{l}
\end{array} \\
\end{array} \\$$
} \\
\end{array} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

For all variables x and L-formulas $\phi(x)$:

- $\forall x : \phi(x) \in p \Rightarrow p \cup \{\phi(t)\} \in N \text{ for every closed}$ L-term t
- $(0) \neg \forall x : \phi(x) \in p \Rightarrow p \cup \{\neg \phi(t)\} \in N \text{ for some closed}$ I-term t
- $1 \exists x : \phi(x) \in p \Rightarrow p \cup \{\phi(t)\} \in N \text{ for some closed }$ L-term t
- $\neg \exists x : \phi(x) \in p \Rightarrow p \cup \{\neg \phi(t)\} \in N \text{ for every closed}$ L-term t

イロト イポト イヨト イヨト

Definition (Notion of consistency)

Let L be a first-order language of cardinality λ . We shall call a set of sets of L-sentences N a **notion of consistency** if the following conditions hold for every set $p \in N$:

- for every closed L-term t: $p \in N \Rightarrow p \cup \{t = t\} \in N$
- (2) for every atomic L-formula φ(x) and s, t closed L-terms: $(\phi(t) \in p \text{ and } (t \stackrel{\leftrightarrow}{=} s) \in p) \Rightarrow p \cup \{\phi(s)\} \in N$
- 3 for every $p \in N$ and every L-sentence ϕ : both ϕ and $\neg \phi$ cannot be in p
 - for every $p \in N$ and every L-sentence ϕ ; both ϕ and $\neg \phi$ cannot be in p

Now for ϕ and ψ L-sentences:

For all variables x and L-formulas $\phi(x)$:

- $\forall x : \phi(x) \in p \Rightarrow p \cup \{\phi(t)\} \in N \text{ for every closed}$ L-term t
- $(0) \neg \forall x : \phi(x) \in p \Rightarrow p \cup \{\neg \phi(t)\} \in N \text{ for some closed}$ I-term t
- $1 \exists x : \phi(x) \in p \Rightarrow p \cup \{\phi(t)\} \in N \text{ for some closed }$ L-term t
- $\neg \exists x : \phi(x) \in p \Rightarrow p \cup \{\neg \phi(t)\} \in N \text{ for every closed}$ L-term t

イロト イポト イヨト イヨト

Finally:

A picture!

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶

• Intuitively having a notion of consistency mean that we can unpack sentences in a theory into atomic sentences.

э

Remarks

- Intuitively having a notion of consistency mean that we can unpack sentences in a theory into atomic sentences.
- Notice that for some consistent theories we don't necessarily have a way to construct a notion of consistency, since the language L may not have enough terms, we can however always enrich the language. (As in the proof of the completeness theorem.)

Remarks

- Intuitively having a notion of consistency mean that we can unpack sentences in a theory into atomic sentences.
- Notice that for some consistent theories we don't necessarily have a way to construct a notion of consistency, since the language L may not have enough terms, we can however always enrich the language. (As in the proof of the completeness theorem.)
- Elements $p \in N$ are called **conditions**.

Theorem

If N is a notion of consistency and $p \in N$, then p has a model.

э

(4) (日本)

Theorem

If N is a notion of consistency and $p \in N$, then p has a model.

Proof

Let $p_0 := p$. We will construct a λ -long ascending chain of conditions $(p_i)_{i < \lambda}$ using the properties of N. At each step we will only add finitely many new sentences so by (13) we have that $\bigcup \overline{p} := \bigcup_{i < \lambda} p_i \in N$.

Theorem

If N is a notion of consistency and $p \in N$, then p has a model.

Proof

Let $p_0 := p$. We will construct a λ -long ascending chain of conditions $(p_i)_{i < \lambda}$ using the properties of N. At each step we will only add finitely many new sentences so by (13) we have that $\bigcup \overline{p} := \bigcup_{i < \lambda} p_i \in N$.

Theorem

If N is a notion of consistency and $p \in N$, then p has a model.

Proof

Let $p_0 := p$. We will construct a λ -long ascending chain of conditions $(p_i)_{i < \lambda}$ using the properties of N. At each step we will only add finitely many new sentences so by (13) we have that $\bigcup \overline{p} := \bigcup_{i < \lambda} p_i \in N$. How to construct the chain? We will use tasks that correspond to the instances of properties (1),(2),(4)-(12) of N. For example task corresponding to (7) and formulas ϕ, ψ is:

If
$$\phi \lor \psi \in \bigcup \overline{p}$$
, put at least one of ϕ , ψ into $\bigcup \overline{p}$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

Theorem

If N is a notion of consistency and $p \in N$, then p has a model.

Proof

Let $p_0 := p$. We will construct a λ -long ascending chain of conditions $(p_i)_{i < \lambda}$ using the properties of N. At each step we will only add finitely many new sentences so by (13) we have that $\bigcup \overline{p} := \bigcup_{i < \lambda} p_i \in N$. How to construct the chain? We will use tasks that correspond to the instances of properties (1),(2),(4)-(12) of N. For example task corresponding to (7) and formulas ϕ, ψ is:

If
$$\phi \lor \psi \in \bigcup \overline{p}$$
, put at least one of ϕ , ψ into $\bigcup \overline{p}$.

Organize the tasks into a sequence $(\tau_i)_{i < \lambda}$ such that for each property we have λ many instances and the task as a whole is completed by the time λ .

<ロト <回ト < 回ト < 回ト = 三日

A picture for the task organization

æ

Theorem

If N is a notion of consistency and $p \in N$, then p has a model.

э

Theorem

If N is a notion of consistency and $p \in N$, then p has a model.

Proof (cont.)

We have constructed $\bigcup \overline{p}$.

Theorem

If N is a notion of consistency and $p \in N$, then p has a model.

Proof (cont.)

We have constructed $\bigcup \overline{p}$.

Theorem

If N is a notion of consistency and $p \in N$, then p has a model.

Proof (cont.)

We have constructed $\bigcup \overline{p}$. Let $U \subseteq \bigcup \overline{p}$ be the subset of all atomic sentences. By the tasks corresponding to (1) and (2) we have that U is =-closed and so by the Canonical model theorem we have $\mathcal{A} \models U$.

э

Theorem

If N is a notion of consistency and $p \in N$, then p has a model.

Proof (cont.)

We have constructed $\bigcup \overline{p}$. Let $U \subseteq \bigcup \overline{p}$ be the subset of all atomic sentences. By the tasks corresponding to (1) and (2) we have that U is =-closed and so by the Canonical model theorem we have $\mathcal{A} \models U$.

Claim: For every L-sentence ϕ we have:

 $\phi \in \bigcup \overline{p} \Rightarrow \mathcal{A} \models \phi.$

Theorem

If N is a notion of consistency and $p \in N$, then p has a model.

Proof (cont.)

We have constructed $\bigcup \overline{p}$. Let $U \subseteq \bigcup \overline{p}$ be the subset of all atomic sentences. By the tasks corresponding to (1) and (2) we have that U is =-closed and so by the Canonical model theorem we have $A \models U$.

Claim: For every L-sentence ϕ we have:

$$\phi \in \bigcup \overline{p} \Rightarrow \mathcal{A} \models \phi.$$

prf. of Claim: By induction on the complexity of ϕ , unpack it into literals, positive literals will became a part of U. Only atomic sentences in U are valid in A by the Canonical model theorem.

3

イロト イポト イヨト イヨト

Theorem

If N is a notion of consistency and $p \in N$, then p has a model.

Proof (cont.)

We have constructed $\bigcup \overline{p}$. Let $U \subseteq \bigcup \overline{p}$ be the subset of all atomic sentences. By the tasks corresponding to (1) and (2) we have that U is =-closed and so by the Canonical model theorem we have $A \models U$.

Claim: For every L-sentence ϕ we have:

$$\phi \in \bigcup \overline{p} \Rightarrow \mathcal{A} \models \phi.$$

prf. of Claim: By induction on the complexity of ϕ , unpack it into literals, positive literals will became a part of U. Only atomic sentences in U are valid in \mathcal{A} by the Canonical model theorem. Since $p \subseteq \bigcup \overline{p}$, then $\mathcal{A} \models p$.

3

イロト イポト イヨト イヨト

Theorem (Compactness)

Let L be a language of cardinality λ . Let T be finitely satisfiable L-theory. Then T is satisfiable.

э

→ < ∃ →</p>

Theorem (Compactness)

Let L be a language of cardinality λ . Let T be finitely satisfiable L-theory. Then T is satisfiable.

Proof

Let $W := \{c_i; i < \lambda\}$ be a set of new constants. And let N be a set of sets of L(W)-sentences such that

 $p \in N$ (i) Fewer than λ constants from W occur in sentences of p and (ii) p is finitely satisfiable.

Theorem (Compactness)

Let L be a language of cardinality λ . Let T be finitely satisfiable L-theory. Then T is satisfiable.

Proof

Let $W := \{c_i; i < \lambda\}$ be a set of new constants. And let N be a set of sets of L(W)-sentences such that

 $p \in N$ (i) Fewer than λ constants from W occur in sentences of p and (ii) p is finitely satisfiable.

Theorem (Compactness)

Let L be a language of cardinality λ . Let T be finitely satisfiable L-theory. Then T is satisfiable.

Proof

Let $W := \{c_i; i < \lambda\}$ be a set of new constants. And let N be a set of sets of L(W)-sentences such that

$$p \in N$$

 (i) Fewer than λ constants from W occur in sentences of p and
 (ii) p is finitely satisfiable.

Notice that $T \in N$ since it contains no constant from W and is finitely satisfiable.
Compactness theorem

Theorem (Compactness)

Let L be a language of cardinality λ . Let T be finitely satisfiable L-theory. Then T is satisfiable.

Proof

Let $W := \{c_i; i < \lambda\}$ be a set of new constants. And let N be a set of sets of L(W)-sentences such that

$$p \in N$$

 (i) Fewer than λ constants from W occur in sentences of p and
 (ii) p is finitely satisfiable.

Notice that $T \in N$ since it contains no constant from W and is finitely satisfiable. It is easy to verify that N is a notion of consistency for L(W) which by previous theorem implies that T is satisfiable!

• Recall the theorem about satisfiability of conditions of notion of consistency.

э

Image: A match a ma

- Recall the theorem about satisfiability of conditions of notion of consistency.
- There were λ tasks to be performed in construction of $(p_i)_{i < \lambda}$ and each of the tasks could be completed, provided that λ many sets p_{i+1} were assigned to it.

- Recall the theorem about satisfiability of conditions of notion of consistency.
- There were λ tasks to be performed in construction of $(p_i)_{i < \lambda}$ and each of the tasks could be completed, provided that λ many sets p_{i+1} were assigned to it.
- Now image that each task τ belongs to some model theorist τ^* .

- Recall the theorem about satisfiability of conditions of notion of consistency.
- There were λ tasks to be performed in construction of $(p_i)_{i < \lambda}$ and each of the tasks could be completed, provided that λ many sets p_{i+1} were assigned to it.
- Now image that each task τ belongs to some model theorist τ^* .
- Every model theorist τ^* can think of himself as playing a game against all other model theorists:

- Recall the theorem about satisfiability of conditions of notion of consistency.
- There were λ tasks to be performed in construction of $(p_i)_{i < \lambda}$ and each of the tasks could be completed, provided that λ many sets p_{i+1} were assigned to it.
- Now image that each task τ belongs to some model theorist τ^* .
- Every model theorist τ^* can think of himself as playing a game against all other model theorists:

- Recall the theorem about satisfiability of conditions of notion of consistency.
- There were λ tasks to be performed in construction of $(p_i)_{i < \lambda}$ and each of the tasks could be completed, provided that λ many sets p_{i+1} were assigned to it.
- Now image that each task τ belongs to some model theorist τ^* .
- Every model theorist τ* can think of himself as playing a game against all other model theorists: he wins the game is the task τ has been completed by the time the chain (p_i)_{i<λ} is finished.
- Then each model theorist has a winning strategy of his own game, provided that he can pick λ of the sets p_{i+1} .

< 日 > < 同 > < 回 > < 回 > < 回 > <

Games

~		· ·	· · ·
	D C	100	O-

▲ロト ▲圖ト ▲国ト ▲国ト

• A few words about what exactly we mean by games.

3

• • • • • • • • • •

- A few words about what exactly we mean by games.
- Always two players: \forall (Abelard), \exists (Eloise)

3

4 E b

Image: A match a ma

- A few words about what exactly we mean by games.
- Always two players: \forall (Abelard), \exists (Eloise)
- Each game G has an ordinal length γ .

< A > < E

э

- A few words about what exactly we mean by games.
- Always two players: \forall (Abelard), \exists (Eloise)
- Each game G has an ordinal length γ .
- γ is partitioned into two sets M_{\exists} and M_{\forall} (sets of moves for each player).

- A few words about what exactly we mean by games.
- Always two players: \forall (Abelard), \exists (Eloise)
- Each game G has an ordinal length γ .
- γ is partitioned into two sets M_{\exists} and M_{\forall} (sets of moves for each player).
- The players play the game by choosing one by one a sequence of objects (x_i)_{i<γ}

- A few words about what exactly we mean by games.
- Always two players: \forall (Abelard), \exists (Eloise)
- Each game G has an ordinal length γ .
- γ is partitioned into two sets M_{\exists} and M_{\forall} (sets of moves for each player).
- The players play the game by choosing one by one a sequence of objects (x_i)_{i<γ}
- Player \forall decides x_i if $i \in M_{\forall}$.

- A few words about what exactly we mean by games.
- Always two players: \forall (Abelard), \exists (Eloise)
- Each game G has an ordinal length γ .
- γ is partitioned into two sets M_{\exists} and M_{\forall} (sets of moves for each player).
- The players play the game by choosing one by one a sequence of objects (x_i)_{i<γ}
- Player \forall decides x_i if $i \in M_{\forall}$.
- Player \exists decides x_i if $i \in M_{\exists}$.

- A few words about what exactly we mean by games.
- Always two players: \forall (Abelard), \exists (Eloise)
- Each game G has an ordinal length γ .
- γ is partitioned into two sets M_{\exists} and M_{\forall} (sets of moves for each player).
- The players play the game by choosing one by one a sequence of objects (x_i)_{i<γ}
- Player \forall decides x_i if $i \in M_{\forall}$.
- Player \exists decides x_i if $i \in M_{\exists}$.
- When the game is finished the result is a sequence $(x_i)_{i < \gamma}$ called play.

- A few words about what exactly we mean by games.
- Always two players: \forall (Abelard), \exists (Eloise)
- Each game G has an ordinal length γ .
- γ is partitioned into two sets M_{\exists} and M_{\forall} (sets of moves for each player).
- The players play the game by choosing one by one a sequence of objects (x_i)_{i<γ}
- Player \forall decides x_i if $i \in M_{\forall}$.
- Player \exists decides x_i if $i \in M_{\exists}$.
- When the game is finished the result is a sequence $(x_i)_{i < \gamma}$ called play.
- The set of all plays in partitioned into wins for \forall and wins for \exists .

3

A picture of a game

3

<ロト <問ト < 国ト < 国ト

• Suppose that the players play the game up to but not including the β -th move. Then $(x_i)_{i < \beta}$ is called a **position** of length β .

3

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• Suppose that the players play the game up to but not including the β -th move. Then $(x_i)_{i < \beta}$ is called a **position** of length β .

3

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Suppose that the players play the game up to but not including the β -th move. Then $(x_i)_{i < \beta}$ is called a **position** of length β . (Think path from the root of the tree of length β .)
- A strategy is a set of instruction on how to navigate the game tree.

3

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Suppose that the players play the game up to but not including the β -th move. Then $(x_i)_{i < \beta}$ is called a **position** of length β . (Think path from the root of the tree of length β .)
- A strategy is a set of instruction on how to navigate the game tree.
- E.g. a strategy for ∃ player is a family of functions that is defined for positions of length *i* ∈ *M*_∃.

3

イロト イポト イヨト イヨト

- Suppose that the players play the game up to but not including the β -th move. Then $(x_i)_{i < \beta}$ is called a **position** of length β . (Think path from the root of the tree of length β .)
- A strategy is a set of instruction on how to navigate the game tree.
- E.g. a strategy for ∃ player is a family of functions that is defined for positions of length *i* ∈ *M*_∃.
- A strategy σ for a player in a game G is called **winning** if the player wins every time they use σ .

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

- Suppose that the players play the game up to but not including the β -th move. Then $(x_i)_{i < \beta}$ is called a **position** of length β . (Think path from the root of the tree of length β .)
- A strategy is a set of instruction on how to navigate the game tree.
- E.g. a strategy for ∃ player is a family of functions that is defined for positions of length *i* ∈ *M*_∃.
- A strategy σ for a player in a game G is called **winning** if the player wins every time they use σ .
- A game G is **determined** if at least one player has a winning strategy.

イロト イポト イヨト イヨト 二日

- Suppose that the players play the game up to but not including the β -th move. Then $(x_i)_{i < \beta}$ is called a **position** of length β . (Think path from the root of the tree of length β .)
- A strategy is a set of instruction on how to navigate the game tree.
- E.g. a strategy for ∃ player is a family of functions that is defined for positions of length *i* ∈ *M*_∃.
- A strategy σ for a player in a game G is called **winning** if the player wins every time they use σ .
- A game G is **determined** if at least one player has a winning strategy.
- Let \overline{y} be a position in a game *G*. A strategy from \overline{y} onwards it is a set of instruction of how to play the game after the position \overline{y} has been reached. Such partial strategy is winning if the player using it always wins.

イロト 不得 トイヨト イヨト 二日

- Suppose that the players play the game up to but not including the β -th move. Then $(x_i)_{i < \beta}$ is called a **position** of length β . (Think path from the root of the tree of length β .)
- A strategy is a set of instruction on how to navigate the game tree.
- E.g. a strategy for ∃ player is a family of functions that is defined for positions of length *i* ∈ *M*_∃.
- A strategy σ for a player in a game G is called **winning** if the player wins every time they use σ .
- A game G is **determined** if at least one player has a winning strategy.
- Let \overline{y} be a position in a game *G*. A strategy from \overline{y} onwards it is a set of instruction of how to play the game after the position \overline{y} has been reached. Such partial strategy is winning if the player using it always wins.

イロト 不得 トイヨト イヨト 二日

- Suppose that the players play the game up to but not including the β -th move. Then $(x_i)_{i < \beta}$ is called a **position** of length β . (Think path from the root of the tree of length β .)
- A strategy is a set of instruction on how to navigate the game tree.
- E.g. a strategy for ∃ player is a family of functions that is defined for positions of length *i* ∈ *M*_∃.
- A strategy σ for a player in a game G is called **winning** if the player wins every time they use σ .
- A game G is **determined** if at least one player has a winning strategy.
- Let \overline{y} be a position in a game *G*. A strategy from \overline{y} onwards it is a set of instruction of how to play the game after the position \overline{y} has been reached. Such partial strategy is winning if the player using it always wins. (For the player to use the strategy, \overline{y} must have been reached.)
- A position y
 is called winning for a player if that player has a winning strategy from y
 onwards.

Ondřej Ježil

Theorem

Let \overline{y} is a position in a game G before the play has been finished. Then:

э

Theorem

Let \overline{y} is a position in a game G before the play has been finished. Then:

• If \overline{y} is winning for a player, then the player can guarantee to be still in a winning position after the next move.

Theorem

Let \overline{y} is a position in a game G before the play has been finished. Then:

- If \overline{y} is winning for a player, then the player can guarantee to be still in a winning position after the next move.
- If \overline{y} is not winning for a player, then the other player can guarantee that the former player is still not in the winning position after the next move.

Theorem

Let \overline{y} is a position in a game G before the play has been finished. Then:

- If \overline{y} is winning for a player, then the player can guarantee to be still in a winning position after the next move.
- If \overline{y} is not winning for a player, then the other player can guarantee that the former player is still not in the winning position after the next move.

Theorem

Let \overline{y} is a position in a game G before the play has been finished. Then:

- If \overline{y} is winning for a player, then the player can guarantee to be still in a winning position after the next move.
- If \overline{y} is not winning for a player, then the other player can guarantee that the former player is still not in the winning position after the next move.

This implies that games of finite length are determined!

Forcing with games (a teaser)

3

イロト イポト イヨト イヨト

Forcing with games

• So far, for a condition in a notion of consistency, we can built its model.

3.5 3

• • • • • • • • • •

Forcing with games

- So far, for a condition in a notion of consistency, we can built its model.
- We will define what is a **notion of forcing**, which will be a special kind of **notions of consistency**.

Forcing with games

- So far, for a condition in a notion of consistency, we can built its model.
- We will define what is a **notion of forcing**, which will be a special kind of **notions of consistency**.
- We will want to construct models of a whole ascending chain of condition in the notion forcing.
Forcing with games

- So far, for a condition in a notion of consistency, we can built its model.
- We will define what is a **notion of forcing**, which will be a special kind of **notions of consistency**.
- We will want to construct models of a whole ascending chain of condition in the notion forcing.
- By noticing, that notions of forcing look like trees, we can play games on them.

Forcing with games

- So far, for a condition in a notion of consistency, we can built its model.
- We will define what is a **notion of forcing**, which will be a special kind of **notions of consistency**.
- We will want to construct models of a whole ascending chain of condition in the notion forcing.
- By noticing, that notions of forcing look like trees, we can play games on them.
- Studying these games, we will be able to understand properties of models which we will get from notions of forcing.

A picture of the situation.

