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Organization

We will be going through chapter 2 of Building models by games,
(Hodges 1985).

The connection to games will not be apparent at first, but the
concept will eventually appear in a natural way.

1 A way to build models
2 Formal treatment of games.
3 Forcing with games.

Ondřej Ježil Building models by games March 10, 2021 2 / 23



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Organization

We will be going through chapter 2 of Building models by games,
(Hodges 1985).
The connection to games will not be apparent at first, but the
concept will eventually appear in a natural way.

1 A way to build models
2 Formal treatment of games.
3 Forcing with games.

Ondřej Ježil Building models by games March 10, 2021 2 / 23



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Organization

We will be going through chapter 2 of Building models by games,
(Hodges 1985).
The connection to games will not be apparent at first, but the
concept will eventually appear in a natural way.

1 A way to build models
2 Formal treatment of games.
3 Forcing with games.

Ondřej Ježil Building models by games March 10, 2021 2 / 23



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Organization

We will be going through chapter 2 of Building models by games,
(Hodges 1985).
The connection to games will not be apparent at first, but the
concept will eventually appear in a natural way.

1 A way to build models

2 Formal treatment of games.
3 Forcing with games.

Ondřej Ježil Building models by games March 10, 2021 2 / 23



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Organization

We will be going through chapter 2 of Building models by games,
(Hodges 1985).
The connection to games will not be apparent at first, but the
concept will eventually appear in a natural way.

1 A way to build models
2 Formal treatment of games.

3 Forcing with games.

Ondřej Ježil Building models by games March 10, 2021 2 / 23



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Organization

We will be going through chapter 2 of Building models by games,
(Hodges 1985).
The connection to games will not be apparent at first, but the
concept will eventually appear in a natural way.

1 A way to build models
2 Formal treatment of games.
3 Forcing with games.

Ondřej Ježil Building models by games March 10, 2021 2 / 23



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

A way of building models

Ondřej Ježil Building models by games March 10, 2021 3 / 23



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

The canonical model

Definition (=-closed theory)
A first-order L-theory T is =-closed if the following holds:

For every closed L-term t we have t = t ∈ T.
For every atomic formula ϕ(x) and all closed L-terms s, t:
(s = t ∈ T, ϕ(t) ∈ T) ⇒ ϕ(s) ∈ T

Theorem (Canonical model theorem)
Let L contain at least one constant and let T be an =-closed L-theory
which contains only atomic sentences, then there exists a structure A such
that:

∀a ∈ A ∃t a closed L-term : a = tA

∀ϕ an atomic L-sentence : A |= ϕ ⇐⇒ ϕ ∈ T
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Canonical model cont.

Theorem (Canonical model theorem)
Let L contain at least one constant and let T be an =-closed L-theory
which contains only atomic sentences, then there exists a structure A such
that:

∀a ∈ A ∃t a closed L-term : a = tA

∀ϕ an atomic L-sentence : A |= ϕ ⇐⇒ ϕ ∈ T

Proof (sketch)

Existence: Choose {t; t a closed L-term}/ ∼ as the underlying set of
A where t ∼ s : ⇐⇒ (s = t) ∈ L, define the interpretation of
functional and relational symbols as:

▶ fA([t1]∼, . . . , [tn]∼) := [f(t1, . . . , tn)]∼
▶ RA([t1]∼, . . . , [tn]∼)

def⇐⇒ R(t1, . . . , tn) ∈ T

This is a sound definition because of the =-closedness of T.
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Canonical model cont.
Theorem (Canonical model theorem)
Let L contain at least one constant and let T be an =-closed L-theory
which contains only atomic sentences, then there exists a structure A such
that:

∀a ∈ A ∃t a closed L-term : a = tA

∀ϕ an atomic L-sentence : A |= ϕ ⇐⇒ ϕ ∈ T

Proof (sketch cont.)

Uniqueness: Notice, that for every B |= T, there is a unique
homomorphism f : A → B sending t∼ 7→ tB, this follows just from the
two requirements we have one A.
So if A′ were satisfy the statement of the theorem we would have
g : A → A′ and h : A′ → A, so h ◦ g : A → A but only such
homomorphism is the identity.
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∀ϕ an atomic L-sentence : A |= ϕ ⇐⇒ ϕ ∈ T

Proof (sketch cont.)
Uniqueness: Notice, that for every B |= T, there is a unique
homomorphism f : A → B sending t∼ 7→ tB, this follows just from the
two requirements we have one A.
So if A′ were satisfy the statement of the theorem we would have
g : A → A′ and h : A′ → A, so h ◦ g : A → A but only such
homomorphism is the identity.
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Notions of consistency

We would like to formalize sufficient condition for a theory to have a
model.

We can do so without proof calculus using the following notion.
You can think of it like this: What are the conditions for some theory
such that the theory “could be true in some structure”?
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Notions of consistency cont.

Definition (Notion of consistency)
Let L be a first-order language of cardinality λ. We shall call a set of sets
of L-sentences N a notion of consistency if the following conditions hold
for every set p ∈ N:

1 for every closed L-term t: p ∈ N ⇒ p ∪ {t = t} ∈ N
2 for every atomic L-formula ϕ(x) and s, t closed L-terms:

(ϕ(t) ∈ p and (t ↔
= s) ∈ p) ⇒ p ∪ {ϕ(s)} ∈ N

3 for every p ∈ N and every L-sentence ϕ: both ϕ and
¬ϕ cannot be in p

4 for every p ∈ N and every L-sentence ϕ: both ϕ and
¬ϕ cannot be in p

Now for ϕ and ψ L-sentences:

5 ϕ ∧ ψ ∈ p ⇒ p ∪ {ϕ, psi} ∈ N
6 ¬(ϕ ∧ ψ) ∈ p ⇒ {p ∪ {¬ϕ}, p ∪ {¬ψ}} ∩ N ̸= ∅
7 ϕ ∨ ψ ∈ p ⇒ {p ∪ {ϕ}, p ∪ {ψ}} ∩ N ̸= ∅
8 ¬(ϕ ∨ ψ) ∈ p ⇒ p ∪ {¬ψ,¬ϕ} ∈ N

For all variables x and L-formulas ϕ(x):

9 ∀x : ϕ(x) ∈ p ⇒ p ∪ {ϕ(t)} ∈ N for every closed
L-term t

10 ¬∀x : ϕ(x) ∈ p ⇒ p ∪ {¬ϕ(t)} ∈ N for some closed
L-term t

11 ∃x : ϕ(x) ∈ p ⇒ p ∪ {ϕ(t)} ∈ N for some closed
L-term t

12 ¬∃x : ϕ(x) ∈ p ⇒ p ∪ {¬ϕ(t)} ∈ N for every closed
L-term t

Finally:

13 if α < λ, (pi)i<λ is an increasing chain in N,
|
∪

i<α pi \ p0| < λ, then (
∪

i<α pi) ∈ N.
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for every set p ∈ N:

1 for every closed L-term t: p ∈ N ⇒ p ∪ {t = t} ∈ N
2 for every atomic L-formula ϕ(x) and s, t closed L-terms:

(ϕ(t) ∈ p and (t ↔
= s) ∈ p) ⇒ p ∪ {ϕ(s)} ∈ N

3 for every p ∈ N and every L-sentence ϕ: both ϕ and
¬ϕ cannot be in p

4 for every p ∈ N and every L-sentence ϕ: both ϕ and
¬ϕ cannot be in p

Now for ϕ and ψ L-sentences:
5 ϕ ∧ ψ ∈ p ⇒ p ∪ {ϕ, psi} ∈ N
6 ¬(ϕ ∧ ψ) ∈ p ⇒ {p ∪ {¬ϕ}, p ∪ {¬ψ}} ∩ N ̸= ∅
7 ϕ ∨ ψ ∈ p ⇒ {p ∪ {ϕ}, p ∪ {ψ}} ∩ N ̸= ∅

8 ¬(ϕ ∨ ψ) ∈ p ⇒ p ∪ {¬ψ,¬ϕ} ∈ N

For all variables x and L-formulas ϕ(x):

9 ∀x : ϕ(x) ∈ p ⇒ p ∪ {ϕ(t)} ∈ N for every closed
L-term t

10 ¬∀x : ϕ(x) ∈ p ⇒ p ∪ {¬ϕ(t)} ∈ N for some closed
L-term t

11 ∃x : ϕ(x) ∈ p ⇒ p ∪ {ϕ(t)} ∈ N for some closed
L-term t

12 ¬∃x : ϕ(x) ∈ p ⇒ p ∪ {¬ϕ(t)} ∈ N for every closed
L-term t

Finally:

13 if α < λ, (pi)i<λ is an increasing chain in N,
|
∪

i<α pi \ p0| < λ, then (
∪

i<α pi) ∈ N.
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A picture!
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Remarks

Intuitively having a notion of consistency mean that we can unpack
sentences in a theory into atomic sentences.

Notice that for some consistent theories we don’t necessarily have a
way to construct a notion of consistency, since the language L may
not have enough terms, we can however always enrich the language.
(As in the proof of the completeness theorem.)
Elements p ∈ N are called conditions.
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A notion of consistency implies satisfiability

Theorem
If N is a notion of consistency and p ∈ N, then p has a model.

Proof
Let p0 := p. We will construct a λ-long ascending chain of conditions (pi)i<λ

using the properties of N. At each step we will only add finitely many new
sentences so by (13) we have that

∪
p :=

∪
i<λ pi ∈ N.

How to construct the chain? We will use tasks that correspond to the instances
of properties (1),(2),(4)-(12) of N. For example task corresponding to (7) and
formulas ϕ, ψ is:

If ϕ ∨ ψ ∈
∪

p, put at least one of ϕ, ψ into
∪

p.

Organize the tasks into a sequence (τi)i<λ such that for each property we have λ
many instances and the task as a whole is completed by the time λ.
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A picture for the task organization
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A notion of consistency implies satisfiability cont.

Theorem
If N is a notion of consistency and p ∈ N, then p has a model.

Proof (cont. )
We have constructed

∪
p.

Let U ⊆
∪

p be the subset of all atomic sentences. By the tasks corresponding to
(1) and (2) we have that U is =-closed and so by the Canonical model theorem
we have A |= U.
Claim: For every L-sentence ϕ we have:

ϕ ∈
∪

p ⇒ A |= ϕ.

prf. of Claim: By induction on the complexity of ϕ, unpack it into literals,
positive literals will became a part of U. Only atomic sentences in U are valid in
A by the Canonical model theorem.
Since p ⊆

∪
p, then A |= p.
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Compactness theorem
Theorem (Compactness)
Let L be a language of cardinality λ. Let T be finitely satisfiable L-theory.
Then T is satisfiable.

Proof
Let W := {ci; i < λ} be a set of new constants. And let N be a set of sets
of L(W)-sentences such that

p ∈ N
m

(i) Fewer than λ constants from W occur in sentences of p and
(ii) p is finitely satisfiable.

Notice that T ∈ N since it contains no constant from W and is finitely
satisfiable. It is easy to verify that N is a notion of consistency for L(W)
which by previous theorem implies that T is satisfiable!

Ondřej Ježil Building models by games March 10, 2021 14 / 23



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Compactness theorem
Theorem (Compactness)
Let L be a language of cardinality λ. Let T be finitely satisfiable L-theory.
Then T is satisfiable.

Proof
Let W := {ci; i < λ} be a set of new constants. And let N be a set of sets
of L(W)-sentences such that

p ∈ N
m

(i) Fewer than λ constants from W occur in sentences of p and
(ii) p is finitely satisfiable.

Notice that T ∈ N since it contains no constant from W and is finitely
satisfiable. It is easy to verify that N is a notion of consistency for L(W)
which by previous theorem implies that T is satisfiable!

Ondřej Ježil Building models by games March 10, 2021 14 / 23



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Compactness theorem
Theorem (Compactness)
Let L be a language of cardinality λ. Let T be finitely satisfiable L-theory.
Then T is satisfiable.

Proof
Let W := {ci; i < λ} be a set of new constants. And let N be a set of sets
of L(W)-sentences such that

p ∈ N
m

(i) Fewer than λ constants from W occur in sentences of p and
(ii) p is finitely satisfiable.

Notice that T ∈ N since it contains no constant from W and is finitely
satisfiable. It is easy to verify that N is a notion of consistency for L(W)
which by previous theorem implies that T is satisfiable!

Ondřej Ježil Building models by games March 10, 2021 14 / 23



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Compactness theorem
Theorem (Compactness)
Let L be a language of cardinality λ. Let T be finitely satisfiable L-theory.
Then T is satisfiable.

Proof
Let W := {ci; i < λ} be a set of new constants. And let N be a set of sets
of L(W)-sentences such that

p ∈ N
m

(i) Fewer than λ constants from W occur in sentences of p and
(ii) p is finitely satisfiable.

Notice that T ∈ N since it contains no constant from W and is finitely
satisfiable.

It is easy to verify that N is a notion of consistency for L(W)
which by previous theorem implies that T is satisfiable!

Ondřej Ježil Building models by games March 10, 2021 14 / 23



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Compactness theorem
Theorem (Compactness)
Let L be a language of cardinality λ. Let T be finitely satisfiable L-theory.
Then T is satisfiable.

Proof
Let W := {ci; i < λ} be a set of new constants. And let N be a set of sets
of L(W)-sentences such that

p ∈ N
m

(i) Fewer than λ constants from W occur in sentences of p and
(ii) p is finitely satisfiable.

Notice that T ∈ N since it contains no constant from W and is finitely
satisfiable. It is easy to verify that N is a notion of consistency for L(W)
which by previous theorem implies that T is satisfiable!

Ondřej Ježil Building models by games March 10, 2021 14 / 23



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Notions of consistency and games

Recall the theorem about satisfiability of conditions of notion of
consistency.

There were λ tasks to be performed in construction of (pi)i<λ and
each of the tasks could be completed, provided that λ many sets pi+1
were assigned to it.
Now image that each task τ belongs to some model theorist τ∗.
Every model theorist τ∗ can think of himself as playing a game
against all other model theorists:

he wins the game is the task τ has
been completed by the time the chain (pi)i<λ is finished.
Then each model theorist has a winning strategy of his own
game, provided that he can pick λ of the sets pi+1.
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Games
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Formal games

A few words about what exactly we mean by games.

Always two players: ∀ (Abelard), ∃ (Eloise)
Each game G has an ordinal length γ.
γ is partitioned into two sets M∃ and M∀ (sets of moves for each
player).
The players play the game by choosing one by one a sequence of
objects (xi)i<γ

Player ∀ decides xi if i ∈ M∀.
Player ∃ decides xi if i ∈ M∃.
When the game is finished the result is a sequence (xi)i<γ called play.
The set of all plays in partitioned into wins for ∀ and wins for ∃.
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objects (xi)i<γ

Player ∀ decides xi if i ∈ M∀.
Player ∃ decides xi if i ∈ M∃.
When the game is finished the result is a sequence (xi)i<γ called play.
The set of all plays in partitioned into wins for ∀ and wins for ∃.
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A picture of a game
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Strategies
Suppose that the players play the game up to but not including the
β-th move. Then (xi)i<β is called a position of length β.

(Think
path from the root of the tree of length β.)

A strategy is a set of instruction on how to navigate the game tree.
E.g. a strategy for ∃ player is a family of functions that is defined for
positions of length i ∈ M∃.
A strategy σ for a player in a game G is called winning if the player
wins every time they use σ.
A game G is determined if at least one player has a winning strategy.
Let y be a position in a game G. A strategy from y onwards it is a
set of instruction of how to play the game after the position y has
been reached. Such partial strategy is winning if the player using it
always wins. (For the player to use the strategy, y must have been
reached.)
A position y is called winning for a player if that player has a winning
strategy from y onwards.
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Exercise and game of finite length

Theorem
Let y is a position in a game G before the play has been finished. Then:

If y is winning for a player, then the player can guarantee to be still in
a winning position after the next move.
If y is not winning for a player, then the other player can guarantee
that the former player is still not in the winning position after the
next move.

This implies that games of finite length are determined!
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Forcing with games (a teaser)
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Forcing with games

So far, for a condition in a notion of consistency, we can built its
model.

We will define what is a notion of forcing, which will be a special
kind of notions of consistency.
We will want to construct models of a whole ascending chain of
condition in the notion forcing.
By noticing, that notions of forcing look like trees, we can play games
on them.
Studying these games, we will be able to understand properties of
models which we will get from notions of forcing.
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A picture of the situation.
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