Building models by games pt. 2 Forcing with games

Ondřej Ježil

March 17, 2021

Ondřej Ježil

э March 17, 2021 1/25

∃ →

▲ 伊 ▶ ▲ 王

• Canonical model theorem

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Canonical model theorem
- Notions of consistency

< /□ > < ∃

- Canonical model theorem
- Notions of consistency
- $\forall p \in N$: have a model.

- Canonical model theorem
- Notions of consistency
- $\forall p \in N$: have a model.
- We introduced games.

Definition

Let L be a countable language. Let $W = \{c_i; i \in \omega\}$ be a set of new constants (witnesses) and $L(W) := L \cup W$.

A notion of consistency N is called a **notion of forcing** iff it satisfies the following conditions:

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Definition

Let L be a countable language. Let $W = \{c_i; i \in \omega\}$ be a set of new constants (witnesses) and $L(W) := L \cup W$.

A notion of consistency N is called a **notion of forcing** iff it satisfies the following conditions:

• If $p \in N$, t is a closed L(W) term and $c \in W$ which occurs nowhere in p or t, then $p \cup \{t = c\} \in N$.

Definition

Let L be a countable language. Let $W = \{c_i; i \in \omega\}$ be a set of new constants (witnesses) and $L(W) := L \cup W$.

A notion of consistency N is called a **notion of forcing** iff it satisfies the following conditions:

- If $p \in N$, t is a closed L(W) term and $c \in W$ which occurs nowhere in p or t, then $p \cup \{t = c\} \in N$.
- **2** At most finitely many witnesses occur in any one $p \in N$.

- 4 回 ト 4 ヨ ト 4 ヨ ト

Definition

Let L be a countable language. Let $W = \{c_i; i \in \omega\}$ be a set of new constants (witnesses) and $L(W) := L \cup W$.

A notion of consistency N is called a **notion of forcing** iff it satisfies the following conditions:

• If $p \in N$, t is a closed L(W) term and $c \in W$ which occurs nowhere in p or t, then $p \cup \{t = c\} \in N$.

2 At most finitely many witnesses occur in any one $p \in N$.

• Notice that property (13) of notions of consistency here is not needed at all. Unions of (short enough) chains here are trivially in *N*, since "short enough" here means finite chains with finite differences of successors.

- 4 回 ト 4 ヨ ト 4 ヨ ト

• The sets $p \in N$ are called *N*-conditions.

< /□ > < ∃

- The sets $p \in N$ are called *N*-conditions.
- We call a chain of N-conditions $(p_i)_{i \in \omega}$ an N-construction sequence.

- The sets $p \in N$ are called *N*-conditions.
- We call a chain of N-conditions $(p_i)_{i \in \omega}$ an N-construction sequence.
- $\bigcup \overline{p} := \bigcup_{i < \omega} p_i$

- The sets $p \in N$ are called *N*-conditions.
- We call a chain of N-conditions $(p_i)_{i \in \omega}$ an N-construction sequence.
- $\bigcup \overline{p} := \bigcup_{i < \omega} p_i$
- Take the subset $S \subseteq \bigcup \overline{p}$ of atomic sentences and denote U the least =-closed supertheory or S.

- The sets $p \in N$ are called *N*-conditions.
- We call a chain of N-conditions $(p_i)_{i \in \omega}$ an N-construction sequence.
- $\bigcup \overline{p} := \bigcup_{i < \omega} p_i$
- Take the subset $S \subseteq \bigcup \overline{p}$ of atomic sentences and denote U the least =-closed supertheory or S.
- We write A⁺(p̄) for the canonical model of U. We write A(p̄) the L-reduct of A⁺(p̄).

- The sets $p \in N$ are called *N*-conditions.
- We call a chain of N-conditions $(p_i)_{i \in \omega}$ an N-construction sequence.
- $\bigcup \overline{p} := \bigcup_{i < \omega} p_i$
- Take the subset $S \subseteq \bigcup \overline{p}$ of atomic sentences and denote U the least =-closed supertheory or S.
- We write A⁺(p̄) for the canonical model of U. We write A(p̄) the L-reduct of A⁺(p̄).
- $A^+(\overline{p})$ is called the **structured compiled by** \overline{p} .

 Let P be a "property" (for now just a metamathematical property) which ∪p̄ can have or fail to have.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Let *P* be a "property" (for now just a metamathematical property) which $\bigcup \overline{p}$ can have or fail to have.
- For X ⊆ ω and a property P we define a game G_N(P; X) of countable length, where X is the set of indicies of moves of the ∃-player.

- Let *P* be a "property" (for now just a metamathematical property) which $\bigcup \overline{p}$ can have or fail to have.
- For X ⊆ ω and a property P we define a game G_N(P; X) of countable length, where X is the set of indicies of moves of the ∃-player.
- The players take turns to pick an *i*-th element of an N-construction sequence (p_i)_{i<ω}.

- Let *P* be a "property" (for now just a metamathematical property) which $\bigcup \overline{p}$ can have or fail to have.
- For X ⊆ ω and a property P we define a game G_N(P; X) of countable length, where X is the set of indicies of moves of the ∃-player.
- The players take turns to pick an *i*-th element of an N-construction sequence (p_i)_{i<ω}.
- A game G_N(P; X) is called standard iff X is both infinite and coinfinite subset of ω \ {0}. In other words the players alternate whose turn it is countably many times and p₀ is picked by the ∀-player.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

• Let P be a "property" (for now just a metamathematical property) which $\bigcup \overline{p}$ can have or fail to have.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Let *P* be a "property" (for now just a metamathematical property) which $\bigcup \overline{p}$ can have or fail to have.
- For X ⊆ ω and a property P we define a game G_N(P; X) of countable length, where X is the set of indicies of moves of the ∃-player.

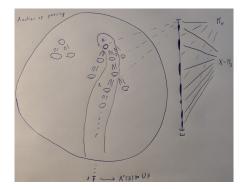
- Let *P* be a "property" (for now just a metamathematical property) which $\bigcup \overline{p}$ can have or fail to have.
- For X ⊆ ω and a property P we define a game G_N(P; X) of countable length, where X is the set of indicies of moves of the ∃-player.
- The players take turns to pick an *i*-th element of an N-construction sequence (p_i)_{i<ω}.

- Let *P* be a "property" (for now just a metamathematical property) which $\bigcup \overline{p}$ can have or fail to have.
- For X ⊆ ω and a property P we define a game G_N(P; X) of countable length, where X is the set of indicies of moves of the ∃-player.
- The players take turns to pick an *i*-th element of an *N*-construction sequence (*p_i*)_{*i*<ω}.
- The \exists -player **wins** iff $\bigcup \overline{p}$ has the property *P*.

- Let *P* be a "property" (for now just a metamathematical property) which $\bigcup \overline{p}$ can have or fail to have.
- For X ⊆ ω and a property P we define a game G_N(P; X) of countable length, where X is the set of indicies of moves of the ∃-player.
- The players take turns to pick an *i*-th element of an N-construction sequence (p_i)_{i<ω}.
- The \exists -player **wins** iff $\bigcup \overline{p}$ has the property *P*.
- A game G_N(P; X) is called standard iff X is both infinite and coinfinite subset of ω \ {0}. In other words the players alternate whose turn it is countably many times and p₀ is picked by the ∀-player.

< 回 > < 三 > < 三 > <

A picture of $G_N(P; X)$



< □ > < □ > < □ > < □ > < □ >

$G_N(P; odds)$

• Let odds be the set of positive odd numbers. $G_N(P; \text{odds})$ is an example of a standard game.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

$G_N(P; odds)$

• Let odds be the set of positive odd numbers. $G_N(P; \text{odds})$ is an example of a standard game.

Lemma

Every standard game $G_N(P; X)$ is equivalent to $G_N(P, odds)$ in the following sense: A player has a winning strategy for $G_N(P; X)$ iff the same player has a winning strategy for $G_N(P; odds)$.

(4) (日本)

$G_N(P; odds)$

• Let odds be the set of positive odd numbers. $G_N(P; \text{odds})$ is an example of a standard game.

Lemma

Every standard game $G_N(P; X)$ is equivalent to $G_N(P, odds)$ in the following sense: A player has a winning strategy for $G_N(P; X)$ iff the same player has a winning strategy for $G_N(P; odds)$.

Proof

Let p_i, \ldots, p_{i+k} be consecutive moves of one player. This player loses nothing if they instead set $p_i := p_k$ and let the other player play sooner. On the other had a single move can be prolonged into a constant sequence of moves.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

N-enforceability

• We say that a property *P* is *N*-enforceable iff \exists -player has a winning strategy for some (or all) $G_N(P; X)$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

N-enforceability

• We say that a property *P* is *N*-enforceable iff ∃-player has a winning strategy for some (or all) *G_N(P*; *X*).

Lemma

Let N be a notion of forcing. Then P := "The compiled structure $A^+(\overline{p})$ is a model of $\bigcup \overline{p}$ and each element of $A^+(\overline{p})$ is of the form $c^{A^+(\overline{p})}$ for infinitely many witnesses c." is N-enforceable.

N-enforceability

• We say that a property *P* is *N*-enforceable iff \exists -player has a winning strategy for some (or all) $G_N(P; X)$.

Lemma

Let N be a notion of forcing. Then P := "The compiled structure $A^+(\overline{p})$ is a model of $\bigcup \overline{p}$ and each element of $A^+(\overline{p})$ is of the form $c^{A^+(\overline{p})}$ for infinitely many witnesses c." is N-enforceable.

Proof

Recall the proof of the theorem " $p \in N$ has a model". We again organize the moves of \exists -player indexed by X into countable families of tasks as in this theorem and add the following countably many tasks: "(For a closed L(W)-term t and $n < \omega$) put $t = c_i$ into $\bigcup \overline{p}$ for some witness c_i with $i \ge n$." These tasks can be carried out thanks to the additional properties of

notions of forcing.

The forcing relation \Vdash

• We would like to know for a property P if it can be guaranteed to be valid in the compiled structure before the game $G_N(P; X)$ is finished.

The forcing relation \Vdash

- We would like to know for a property P if it can be guaranteed to be valid in the compiled structure before the game $G_N(P; X)$ is finished.
- We say that an *N*-condition q forces P (or $q \Vdash_N P$) iff any position (p_0, \ldots, p_k) where $q \subseteq p_k$ is already winning for the \exists -player.

The forcing relation \Vdash

- We would like to know for a property P if it can be guaranteed to be valid in the compiled structure before the game $G_N(P; X)$ is finished.
- We say that an *N*-condition q forces P (or $q \Vdash_N P$) iff any position (p_0, \ldots, p_k) where $q \subseteq p_k$ is already winning for the \exists -player.
- Now follows an equivalent condition for q to force P.

The forcing relation \Vdash cont.

Lemma

Let N be a notion of forcing, q an N-condition and P a property, then the following are equivalent:

< (17) > < (17) > <

э

The forcing relation \Vdash cont.

Lemma

Let N be a notion of forcing, q an N-condition and P a property, then the following are equivalent:

• $q \Vdash P$

э

A (10) A (10) A (10)

Lemma

Let N be a notion of forcing, q an N-condition and P a property, then the following are equivalent:

- $q \Vdash P$
- In $G_N(P; odds)$, if the \forall -player chooses $p_0 \supseteq q$, then he puts the \exists -player in the winning position.

Lemma

Let N be a notion of forcing, q an N-condition and P a property, then the following are equivalent:

- *q* ⊩ *P*
- In $G_N(P; odds)$, if the \forall -player chooses $p_0 \supseteq q$, then he puts the \exists -player in the winning position.

Proof

 $(1) \Rightarrow (2)$ trivially. $(2) \Rightarrow (1)$: Let (p_0, \ldots, p_k) be a position and $q \subseteq p_k$. Assume that p_{k+1} is to be chosen by the \exists -player, otherwise let her wait until it is her turn. She can pretend that the choices of (p_0, \ldots, p_{k-1}) were simply a warming-up, and that the game actually begins at p_k .

イロト イポト イヨト イヨト 二日

Lemma

Let N be a notion of forcing, q an N-condition and P a property, then the following are equivalent:

→ **→** ∃

э

Lemma

Let N be a notion of forcing, q an N-condition and P a property, then the following are equivalent:

• $q \Vdash P$

< /⊒ ► < Ξ ► <

э

Lemma

Let N be a notion of forcing, q an N-condition and P a property, then the following are equivalent:

- q ⊩ P
- In $G_N(P; odds)$, if the \forall -player chooses $p_0 \supseteq q$, then he puts the \exists -player in the winning position.

Lemma

Let N be a notion of forcing, q an N-condition and P a property, then the following are equivalent:

- q ⊩ P
- In $G_N(P; odds)$, if the \forall -player chooses $p_0 \supseteq q$, then he puts the \exists -player in the winning position.

Proof (cont.)

The \exists -player imagines that she plays a new game $G_N(P; Y)$, where $Y = \{n - k; n \in X, n \ge k\}$ and the \forall -player had chosen $p_0 \supseteq q$ and therefore put the \exists -player into winning position. She can proceed using this strategy and win $G_n(P; X)$.

イロト イポト イヨト イヨト

Lemma

Let N be a notion of forcing, let q be an N-condition and let P be a property.

э

▲ 同 ▶ → 三 ▶

Lemma

Let N be a notion of forcing, let q be an N-condition and let P be a property.

• $q \Vdash P$ iff P is (N/q)-enforceable, where (N/q) is the notion of forcing of all supersets of q in N.

Lemma

- $q \Vdash P$ iff P is (N/q)-enforceable, where (N/q) is the notion of forcing of all supersets of q in N.
- **2** *P* is *N*-enforceable iff $\forall p \in N : p \Vdash P$.

Lemma

- $q \Vdash P$ iff P is (N/q)-enforceable, where (N/q) is the notion of forcing of all supersets of q in N.
- **2** *P* is *N*-enforceable iff $\forall p \in N : p \Vdash P$.
- **③** If $q \Vdash P$ and $p \supseteq q$, then $p \Vdash P$.

Lemma

- $q \Vdash P$ iff P is (N/q)-enforceable, where (N/q) is the notion of forcing of all supersets of q in N.
- **2** *P* is *N*-enforceable iff $\forall p \in N : p \Vdash P$.
- **If** $q \Vdash P$ and $p \supseteq q$, then $p \Vdash P$.
- If for every $p \supseteq q$ exists an $r \supseteq p$ such that $r \Vdash P$, then $q \Vdash P$.

Lemma

- $q \Vdash P$ iff P is (N/q)-enforceable, where (N/q) is the notion of forcing of all supersets of q in N.
- **2** *P* is *N*-enforceable iff $\forall p \in N : p \Vdash P$.
- **③** If $q \Vdash P$ and $p \supseteq q$, then $p \Vdash P$.
- If for every $p \supseteq q$ exists an $r \supseteq p$ such that $r \Vdash P$, then $q \Vdash P$.
- (Conjugation lemma) Let P be a conjunction of the properties (P_i)_{i<ω}. Then q ⊩ P iff ∀i < ω : q ⊩ P_i.

Lemma

Let N be a notion of forcing, let q be an N-condition and let P be a property.

- $q \Vdash P$ iff P is (N/q)-enforceable, where (N/q) is the notion of forcing of all supersets of q in N.
- **2** *P* is *N*-enforceable iff $\forall p \in N : p \Vdash P$.
- **③** If $q \Vdash P$ and $p \supseteq q$, then $p \Vdash P$.
- If for every $p \supseteq q$ exists an $r \supseteq p$ such that $r \Vdash P$, then $q \Vdash P$.
- (Conjugation lemma) Let P be a conjunction of the properties (P_i)_{i<ω}. Then q ⊩ P iff ∀i < ω : q ⊩ P_i.

Proof

(1)-(3) follow trivially from the definitions.

(4) (日本)

Lemma

Let N be a notion of forcing, let q be an N-condition and let P be a property.

→ < ∃ →</p>

Lemma

Let N be a notion of forcing, let q be an N-condition and let P be a property.

() If for every $p \supseteq q$ exists an $r \supseteq p$ such that $r \Vdash P$, then $q \Vdash P$.

Lemma

Let N be a notion of forcing, let q be an N-condition and let P be a property.

() If for every $p \supseteq q$ exists an $r \supseteq p$ such that $r \Vdash P$, then $q \Vdash P$.

Proof

(4) In a play of $G_N(P; odds)$ suppose that the \forall -player picks $p_0 \supseteq q$, then the \exists player can choose $p_1 := r$ such that $r \Vdash P$ this puts her into winning position. Therefore (p_0) was already a winning position for her.

Lemma

Let N be a notion of forcing, let q be an N-condition and let P be a property.

() If for every $p \supseteq q$ exists an $r \supseteq p$ such that $r \Vdash P$, then $q \Vdash P$.

Proof

(4) In a play of $G_N(P; odds)$ suppose that the \forall -player picks $p_0 \supseteq q$, then the \exists player can choose $p_1 := r$ such that $r \Vdash P$ this puts her into winning position. Therefore (p_0) was already a winning position for her.

Lemma

Let N be a notion of forcing, let q be an N-condition and let P be a property.

() If for every $p \supseteq q$ exists an $r \supseteq p$ such that $r \Vdash P$, then $q \Vdash P$.

Proof

(4) In a play of $G_N(P; odds)$ suppose that the \forall -player picks $p_0 \supseteq q$, then the \exists player can choose $p_1 := r$ such that $r \Vdash P$ this puts her into winning position. Therefore (p_0) was already a winning position for her. This corresponds with the previous lemma about equivalent condition for the forcing relation.

<回と < 回と < 回と

Lemma

Let N be a notion of forcing, let q be an N-condition and let P be a property.

< /⊒ ► < Ξ ► <

э

Lemma

Let N be a notion of forcing, let q be an N-condition and let P be a property.

③ (Conjugation lemma) Let *P* be a conjunction of the properties $(P_i)_{i < \omega}$. Then *q* ⊨ *P* iff $\forall i < \omega : q ⊨ P_i$.

.

Lemma

Let N be a notion of forcing, let q be an N-condition and let P be a property.

 (Conjugation lemma) Let P be a conjunction of the properties (P_i)_{i<ω}. Then q ⊩ P iff ∀i < ω : q ⊩ P_i.

Proof

(5) Left to right is trivial.

< 1 k

Lemma

Let N be a notion of forcing, let q be an N-condition and let P be a property.

 (Conjugation lemma) Let P be a conjunction of the properties (P_i)_{i<ω}. Then q ⊩ P iff ∀i < ω : q ⊩ P_i.

Proof

(5) Left to right is trivial.

< 1 k

Lemma

Let N be a notion of forcing, let q be an N-condition and let P be a property.

 (Conjugation lemma) Let P be a conjunction of the properties (P_i)_{i<ω}. Then q ⊩ P iff ∀i < ω : q ⊩ P_i.

Proof

(5) Left to right is trivial.

Right to left: Partition ω into $(X_i)_{i < \omega}$ a countable family of countable sets. Let the \forall -player choose $p_0 \supseteq q$. Then the \exists -player has a winning strategy σ_i for each the games $G_N(P_i; X_i)$. She can play the game $G_N(P; odds)$ by picking p_i using σ_i whenever $j \in X_i$.

▲ 同 ▶ → 三 ▶

Lemma

Let N be a notion of forcing, let q be an N-condition and let P be a property.

 (Conjugation lemma) Let P be a conjunction of the properties (P_i)_{i<ω}. Then q ⊩ P iff ∀i < ω : q ⊩ P_i.

Proof

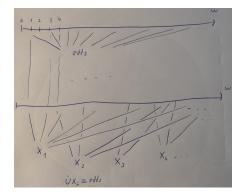
(5) Left to right is trivial.

Right to left: Partition ω into $(X_i)_{i < \omega}$ a countable family of countable sets. Let the \forall -player choose $p_0 \supseteq q$. Then the \exists -player has a winning strategy σ_i for each the games $G_N(P_i; X_i)$. She can play the game $G_N(P; odds)$ by picking p_i using σ_i whenever $j \in X_i$.

Let \overline{p} be the resulting play, then for each $i < \omega$, \overline{p} is also a play of $G_N(P_i; X_i)$ winning for the \exists -player. Which means that each property P_i holds.

▲ 同 ▶ → 三 ▶

A picture fo the proof



March 17, 2021 16 / 25

2

< □ > < □ > < □ > < □ > < □ >

Formulas as properties

• Let ϕ be an L(W)-sentence. Then we say ϕ is *N*-enforceable iff the property $P := "A^+(\overline{p}) \models \phi"$ is *N*-enforcable. Simmilarly $q \Vdash \phi$ iff $q \Vdash P$.

3

・ 何 ト ・ ヨ ト ・ ヨ ト

Formulas as properties

- Let ϕ be an L(W)-sentence. Then we say ϕ is *N*-enforceable iff the property $P := "A^+(\overline{p}) \models \phi"$ is *N*-enforcable. Simmilarly $q \Vdash \phi$ iff $q \Vdash P$.
- ϕ does not have to be a first-order sentence!

Formulas as properties

- Let φ be an L(W)-sentence. Then we say φ is N-enforceable iff the property P := "A⁺(p̄) ⊨ φ" is N-enforcable. Simmilarly q ⊨ φ iff q ⊨ P.
- ϕ does not have to be a first-order sentence!
- If ϕ is an $L(W)_{\omega_1,\omega}$ sentence (Sentence in the language of infinitary logic with countable disjunctions and conjunctions but finitely many quantifiers.), then we can characterize those conditions which force ϕ .

Theorem

Let N be a notion of forcing and $q \in N$.

< □ > < 同 > < 回 > < 回 > < 回 >

э

Theorem

Let N be a notion of forcing and $q \in N$.

1 *q* forces every tautology.

3

< □ > < 同 > < 回 > < 回 > < 回 >

Theorem

Let N be a notion of forcing and $q \in N$.

- **1** *q* forces every tautology.
- **2** If $q \Vdash \phi$ and $\phi \vdash \psi$, then $q \Vdash \psi$.

3

(4) (日本)

Theorem

Let N be a notion of forcing and $q \in N$.

- **1** *q* forces every tautology.
- **2** If $q \Vdash \phi$ and $\phi \vdash \psi$, then $q \Vdash \psi$.
- Let φ be an atomic L(W)-sentence. Then q ⊩ φ iff for every N-condition p ⊇ q, there is an condition r ⊇ p with φ ∈ r.

< (17) > < (17) > <

Theorem

Let N be a notion of forcing and $q \in N$.

- **1** *q* forces every tautology.
- **2** If $q \Vdash \phi$ and $\phi \vdash \psi$, then $q \Vdash \psi$.
- Let φ be an atomic L(W)-sentence. Then q ⊢ φ iff for every N-condition p ⊇ q, there is an condition r ⊇ p with φ ∈ r.

• Let
$$\phi := \bigwedge_{i < \omega} \phi_i$$
, then $q \Vdash \phi$ iff for every $i < \omega : q \Vdash \phi_i$.

・ 何 ト ・ ヨ ト ・ ヨ ト

Theorem

Let N be a notion of forcing and $q \in N$.

- **1** *q* forces every tautology.
- **2** If $q \Vdash \phi$ and $\phi \vdash \psi$, then $q \Vdash \psi$.
- Let φ be an atomic L(W)-sentence. Then q ⊩ φ iff for every N-condition p ⊇ q, there is an condition r ⊇ p with φ ∈ r.
- Let $\phi := \bigwedge_{i < \omega} \phi_i$, then $q \Vdash \phi$ iff for every $i < \omega : q \Vdash \phi_i$.
- Let $\psi(x_1, \ldots, x_n)$ be a formula. Then $q \Vdash \forall \overline{x} : \psi(\overline{x})$ iff for every *n*-tuple \overline{c} of witnesses $q \Vdash \psi(\overline{c})$.

3

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Theorem

Let N be a notion of forcing and $q \in N$.

- q forces every tautology.
- **2** If $q \Vdash \phi$ and $\phi \vdash \psi$, then $q \Vdash \psi$.
- Let φ be an atomic L(W)-sentence. Then q ⊩ φ iff for every N-condition p ⊇ q, there is an condition r ⊇ p with φ ∈ r.
- Let $\phi := \bigwedge_{i < \omega} \phi_i$, then $q \Vdash \phi$ iff for every $i < \omega : q \Vdash \phi_i$.
- Let $\psi(x_1, \ldots, x_n)$ be a formula. Then $q \Vdash \forall \overline{x} : \psi(\overline{x})$ iff for every *n*-tuple \overline{c} of witnesses $q \Vdash \psi(\overline{c})$.
- O Let φ be an L(W)_{ω1,ω}-sentence. Then q ⊢ ¬φ iff there is no N-condition p ⊇ q which forces φ.

< 日 > < 同 > < 回 > < 回 > < 回 > <

Forcing of sentences cont.

Theorem

Let N be a notion of forcing and $q \in N$.

∃ →

э

Theorem

Let N be a notion of forcing and $q \in N$.

q forces every tautology.

э

-

< //>

Theorem

Let N be a notion of forcing and $q \in N$.

- q forces every tautology.
- **2** If $q \Vdash \phi$ and $\phi \vdash \psi$, then $q \Vdash \psi$.

3

-

< //>

Theorem

Let N be a notion of forcing and $q \in N$.

- q forces every tautology.
- **2** If $q \Vdash \phi$ and $\phi \vdash \psi$, then $q \Vdash \psi$.
- Let $\phi := \bigwedge_{i < \omega} \phi_i$, then $q \Vdash \phi$ iff for every $i < \omega : q \Vdash \phi_i$.

3

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Theorem

Let N be a notion of forcing and $q \in N$.

• q forces every tautology.

2 If $q \Vdash \phi$ and $\phi \vdash \psi$, then $q \Vdash \psi$.

• Let $\phi := \bigwedge_{i < \omega} \phi_i$, then $q \Vdash \phi$ iff for every $i < \omega : q \Vdash \phi_i$.

Proof

The statements (1) and (2) follow trivially from the definitions. The statement (4) is just a special case of the conjugation lemma from earlier.

< 同 ト < 三 ト < 三 ト

Theorem

Let N be a notion of forcing and $q \in N$.

3.5 3

Theorem

Let N be a notion of forcing and $q \in N$.

2 If
$$q \Vdash \phi$$
 and $\phi \vdash \psi$, then $q \Vdash \psi$.

3

Theorem

Let N be a notion of forcing and $q \in N$.

- **2** If $q \Vdash \phi$ and $\phi \vdash \psi$, then $q \Vdash \psi$.
- Let $\phi := \bigwedge_{i < \omega} \phi_i$, then $q \Vdash \phi$ iff for every $i < \omega : q \Vdash \phi_i$.

3

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Theorem

Let N be a notion of forcing and $q \in N$.

2 If
$$q \Vdash \phi$$
 and $\phi \vdash \psi$, then $q \Vdash \psi$.

• Let $\phi := \bigwedge_{i < \omega} \phi_i$, then $q \Vdash \phi$ iff for every $i < \omega : q \Vdash \phi_i$.

• Let $\psi(x_1, \ldots, x_n)$ be a formula. Then $q \Vdash \forall \overline{x} : \psi(\overline{x})$ iff for every *n*-tuple \overline{c} of witnesses $q \Vdash \psi(\overline{c})$.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Theorem

Let N be a notion of forcing and $q \in N$.

2 If
$$q \Vdash \phi$$
 and $\phi \vdash \psi$, then $q \Vdash \psi$.

• Let $\phi := \bigwedge_{i < \omega} \phi_i$, then $q \Vdash \phi$ iff for every $i < \omega : q \Vdash \phi_i$.

• Let $\psi(x_1, \ldots, x_n)$ be a formula. Then $q \Vdash \forall \overline{x} : \psi(\overline{x})$ iff for every *n*-tuple \overline{c} of witnesses $q \Vdash \psi(\overline{c})$.

Proof

(5): Left to right is a special case of (2) and therefore is trivial. Right to left: Let $\psi(\overline{c})$ be N-enforceable for every \overline{c} .

Theorem

Let N be a notion of forcing and $q \in N$.

2 If
$$q \Vdash \phi$$
 and $\phi \vdash \psi$, then $q \Vdash \psi$.

• Let $\phi := \bigwedge_{i < \omega} \phi_i$, then $q \Vdash \phi$ iff for every $i < \omega : q \Vdash \phi_i$.

• Let $\psi(x_1, \ldots, x_n)$ be a formula. Then $q \Vdash \forall \overline{x} : \psi(\overline{x})$ iff for every *n*-tuple \overline{c} of witnesses $q \Vdash \psi(\overline{c})$.

Proof

(5): Left to right is a special case of (2) and therefore is trivial. Right to left: Let $\psi(\overline{c})$ be N-enforceable for every \overline{c} .

Theorem

Let N be a notion of forcing and $q \in N$.

2 If
$$q \Vdash \phi$$
 and $\phi \vdash \psi$, then $q \Vdash \psi$.

• Let $\phi := \bigwedge_{i < \omega} \phi_i$, then $q \Vdash \phi$ iff for every $i < \omega : q \Vdash \phi_i$.

• Let $\psi(x_1, \ldots, x_n)$ be a formula. Then $q \Vdash \forall \overline{x} : \psi(\overline{x})$ iff for every *n*-tuple \overline{c} of witnesses $q \Vdash \psi(\overline{c})$.

Proof

(5): Left to right is a special case of (2) and therefore is trivial. Right to left: Let $\psi(\overline{c})$ be N-enforceable for every \overline{c} . Then by (4) we can deduce that $\bigwedge_{\overline{c}} \psi(\overline{c})$ is N-enforceable. From last time we know, that we can force that "every element of $A^+(\overline{p})$ is named by a witness".

イロト 不得下 イヨト イヨト 二日

Theorem

Let N be a notion of forcing and $q \in N$.

2 If
$$q \Vdash \phi$$
 and $\phi \vdash \psi$, then $q \Vdash \psi$.

• Let
$$\phi := \bigwedge_{i < \omega} \phi_i$$
, then $q \Vdash \phi$ iff for every $i < \omega : q \Vdash \phi_i$.

• Let $\psi(x_1, \ldots, x_n)$ be a formula. Then $q \Vdash \forall \overline{x} : \psi(\overline{x})$ iff for every *n*-tuple \overline{c} of witnesses $q \Vdash \psi(\overline{c})$.

Proof

(5): Left to right is a special case of (2) and therefore is trivial. Right to left: Let $\psi(\bar{c})$ be N-enforceable for every \bar{c} . Then by (4) we can deduce that $\bigwedge_{\bar{c}} \psi(\bar{c})$ is N-enforceable. From last time we know, that we can force that "every element of $A^+(\bar{p})$ is named by a witness". By the conjugation lemma we have that $\forall \bar{x} : \psi(\bar{x})$ is N-enforacble.

イロト 不得 トイヨト イヨト 二日

Theorem

Let N be a notion of forcing and $q \in N$.

3

Theorem

Let N be a notion of forcing and $q \in N$.

③ Let ϕ be an atomic L(W)-sentence. Then $q \Vdash \phi$ iff for every *N*-condition $p \supseteq q$, there is an condition $r \supseteq p$ with $\phi \in r$.

Theorem

Let N be a notion of forcing and $q \in N$.

- Let φ be an atomic L(W)-sentence. Then q ⊩ φ iff for every N-condition p ⊇ q, there is an condition r ⊇ p with φ ∈ r.
- Let φ be an L(W)_{ω1,ω}-sentence. Then q ⊢ ¬φ iff there is no N-condition p ⊇ q which forces φ.

• • = • • = •

Theorem

Let N be a notion of forcing and $q \in N$.

- Let φ be an atomic L(W)-sentence. Then q ⊩ φ iff for every N-condition p ⊇ q, there is an condition r ⊇ p with φ ∈ r.
- Let φ be an L(W)_{ω1,ω}-sentence. Then q ⊢ ¬φ iff there is no N-condition p ⊇ q which forces φ.

Lemma (*)

If ϕ is an atomic sentence and p is an N-condition, then $p \Vdash \neg \phi$ iff no condition $\supseteq p$ contains ϕ .

- 4 回 ト 4 三 ト 4 三 ト

Lemma (*)

If ϕ is an atomic sentence and p is an N-condition, then $p \Vdash \neg \phi$ iff no condition $\supseteq p$ contains ϕ .

A (1) > A (2) > A

3

Lemma (*)

If ϕ is an atomic sentence and p is an N-condition, then $p \Vdash \neg \phi$ iff no condition $\supseteq p$ contains ϕ .

Proof

" \Rightarrow ": We will prove the converse. If the \forall -player chooses $r \supseteq p$ containing ϕ as $p_0 := r$ in the game $G_N(\neg \phi, odds)$, then he puts the \exists -player in the losing position.

- 4 回 ト 4 ヨ ト 4 ヨ ト

Lemma (*)

If ϕ is an atomic sentence and p is an N-condition, then $p \Vdash \neg \phi$ iff no condition $\supseteq p$ contains ϕ .

Proof

" \Rightarrow ": We will prove the converse. If the \forall -player chooses $r \supseteq p$ containing ϕ as $p_0 := r$ in the game $G_N(\neg \phi, odds)$, then he puts the \exists -player in the losing position.

- 4 回 ト 4 ヨ ト 4 ヨ ト

Lemma (*)

If ϕ is an atomic sentence and p is an N-condition, then $p \Vdash \neg \phi$ iff no condition $\supseteq p$ contains ϕ .

Proof

" \Rightarrow ": We will prove the converse. If the \forall -player chooses $r \supseteq p$ containing ϕ as $p_0 := r$ in the game $G_N(\neg \phi, odds)$, then he puts the \exists -player in the losing position.

" \Leftarrow ": Suppose that no condition \supseteq p contains ϕ . Then let the \exists -player play $G_N(\neg \phi; odds)$ so that $\bigcup \overline{p}$ is \equiv -closed.

イロト イポト イヨト イヨト 二日

Lemma (*)

If ϕ is an atomic sentence and p is an N-condition, then $p \Vdash \neg \phi$ iff no condition $\supseteq p$ contains ϕ .

Proof

" \Rightarrow ": We will prove the converse. If the \forall -player chooses $r \supseteq p$ containing ϕ as $p_0 := r$ in the game $G_N(\neg \phi, odds)$, then he puts the \exists -player in the losing position.

"⇐": Suppose that no condition \supseteq p contains ϕ . Then let the \exists -player play $G_N(\neg \phi; odds)$ so that $\bigcup \overline{p}$ is =-closed. Then we have $A^+(\overline{p}) \models \phi$ iff $\phi \in \bigcup \overline{p}$. If the \forall -player began with $p_0 \supseteq$,

then by ours assumption the \exists -player wins.

イロト イポト イヨト イヨト 二日

Lemma (*)

If ϕ is an atomic sentence and p is an N-condition, then $p \Vdash \neg \phi$ iff no condition $\supseteq p$ contains ϕ .

3

Lemma (*)

If ϕ is an atomic sentence and p is an N-condition, then $p \Vdash \neg \phi$ iff no condition $\supseteq p$ contains ϕ .

Theorem

Let N be a notion of forcing and $q \in N$.

3

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Lemma (*)

If ϕ is an atomic sentence and p is an N-condition, then $p \Vdash \neg \phi$ iff no condition $\supseteq p$ contains ϕ .

Theorem

Let N be a notion of forcing and $q \in N$.

Solution Let φ be an atomic L(W)-sentence. Then q ⊨ φ iff for every N-condition p ⊇ q, there is an condition r ⊇ p with φ ∈ r.

・ 何 ト ・ ヨ ト ・ ヨ ト

Lemma (*)

If ϕ is an atomic sentence and p is an N-condition, then $p \Vdash \neg \phi$ iff no condition $\supseteq p$ contains ϕ .

Theorem

Let N be a notion of forcing and $q \in N$.

Solution Let φ be an atomic L(W)-sentence. Then q ⊨ φ iff for every N-condition p ⊇ q, there is an condition r ⊇ p with φ ∈ r.

Proof

"⇐": We already know this.

Lemma (*)

If ϕ is an atomic sentence and p is an N-condition, then $p \Vdash \neg \phi$ iff no condition $\supseteq p$ contains ϕ .

Theorem

Let N be a notion of forcing and $q \in N$.

Solution Let φ be an atomic L(W)-sentence. Then q ⊨ φ iff for every N-condition p ⊇ q, there is an condition r ⊇ p with φ ∈ r.

Proof

"⇐": We already know this.

Lemma (*)

If ϕ is an atomic sentence and p is an N-condition, then $p \Vdash \neg \phi$ iff no condition $\supseteq p$ contains ϕ .

Theorem

Let N be a notion of forcing and $q \in N$.

Solution Let φ be an atomic L(W)-sentence. Then q ⊨ φ iff for every N-condition p ⊇ q, there is an condition r ⊇ p with φ ∈ r.

Proof

"⇐": We already know this. "⇒: If there was no $r \subseteq p$ containing ϕ then by the (*)-lemma p forces $\neg \phi$.

Lemma (*)

If ϕ is an atomic sentence and p is an N-condition, then $p \Vdash \neg \phi$ iff no condition $\supseteq p$ contains ϕ .

Theorem

Let N be a notion of forcing and $q \in N$.

Solution Let φ be an atomic L(W)-sentence. Then q ⊨ φ iff for every N-condition p ⊇ q, there is an condition r ⊇ p with φ ∈ r.

Proof

"⇐": We already know this.

"⇒: If there was no $r \subseteq p$ containing ϕ then by the (*)-lemma p forces ¬ ϕ . Let the \forall -player choose $p_0 := p$ and then let him copy the strategy of the \exists -player to win $G_N(\neg \phi; odds)$.

Lemma (*)

If ϕ is an atomic sentence and p is an N-condition, then $p \Vdash \neg \phi$ iff no condition $\supseteq p$ contains ϕ .

Theorem

Let N be a notion of forcing and $q \in N$.

Solution Let φ be an atomic L(W)-sentence. Then q ⊨ φ iff for every N-condition p ⊇ q, there is an condition r ⊇ p with φ ∈ r.

Proof

"⇐": We already know this.

"⇒: If there was no $r \subseteq p$ containing ϕ then by the (*)-lemma p forces ¬ ϕ . Let the \forall -player choose $p_0 := p$ and then let him copy the strategy of the \exists -player to win $G_N(\neg \phi; odds)$. Then the \exists -player loses the game and so q does not force ϕ .

Theorem

Let N be a notion of forcing and $q \in N$.

Lemma(*): If ϕ is an atomic sentence and p is an N-condition, then $p \Vdash \neg \phi$ iff no condition $\supseteq p$ contains ϕ .

		ežil

3

Theorem

Let N be a notion of forcing and $q \in N$.

 ${}^{\textcircled{0}}$ Let ϕ be an atomic L(W)-sentence. Then q $\Vdash \phi$ iff for every N-condition p \supseteq q, there is an condition r \supseteq p with $\phi \in$ r.

Lemma(*): If ϕ is an atomic sentence and p is an N-condition, then $p \Vdash \neg \phi$ iff no condition $\supset p$ contains ϕ .

Theorem

Let N be a notion of forcing and $q \in N$.

3 Let φ be an atomic L(W)-sentence. Then q ⊨ φ iff for every N-condition p ⊇ q, there is an condition r ⊇ p with φ ∈ r.
3 Let ψ(x₁,...,x_n) be a formula. Then q ⊩ ∀x̄: ψ(x̄) iff for every n-tuple c̄ of witnesses q ⊩ ψ(c̄).

Lemma(*): If ϕ is an atomic sentence and p is an N-condition, then $p \Vdash \neg \phi$ iff no condition $\supseteq p$ contains ϕ .

		ežil

(日) (四) (日) (日) (日)

Theorem

Let N be a notion of forcing and $q \in N$.

- ${}^{\textcircled{3}}$ Let ϕ be an atomic L(W)-sentence. Then $q \Vdash \phi$ iff for every N-condition $p \supseteq q$, there is an condition $r \supseteq p$ with $\phi \in r$.
- **5** Let $\psi(x_1, \ldots, x_n)$ be a formula. Then $q \Vdash \forall \overline{x} : \psi(\overline{x})$ iff for every n-tuple \overline{c} of witnesses $q \Vdash \psi(\overline{c})$.
- **6** Let ϕ be an $L(W)_{\omega_1,\omega}$ -sentence. Then $q \Vdash \neg \phi$ iff there is no N-condition $p \supseteq q$ which forces ϕ .

Lemma(*): If ϕ is an atomic sentence and p is an N-condition, then $p \Vdash \neg \phi$ iff no condition $\supseteq p$ contains ϕ .

・ 何 ト ・ ヨ ト ・ ヨ ト

Theorem

Let N be a notion of forcing and $q \in N$.

- \bigcirc Let ϕ be an atomic L(W)-sentence. Then g $\Vdash \phi$ iff for every N-condition p ⊇ q, there is an condition r ⊇ p with $\phi \in r$.
- **5** Let $\psi(x_1, \ldots, x_n)$ be a formula. Then $q \Vdash \forall \overline{x} : \psi(\overline{x})$ iff for every n-tuple \overline{c} of witnesses $q \Vdash \psi(\overline{c})$.
- **6** Let ϕ be an $L(W)_{\omega_1,\omega}$ -sentence. Then $q \Vdash \neg \phi$ iff there is no N-condition $p \supseteq q$ which forces ϕ .

Lemma(*): If ϕ is an atomic sentence and p is an N-condition, then $p \Vdash \neg \phi$ iff no condition $\supseteq p$ contains ϕ .

Proof (of (6))

Claim: Either some $p \supseteq q$ forces ϕ or some $p \supseteq q$ forces $\neg \phi$.

Theorem

Let N be a notion of forcing and $q \in N$.

- \bigcirc Let ϕ be an atomic L(W)-sentence. Then g $\Vdash \phi$ iff for every N-condition p ⊇ q, there is an condition r ⊇ p with $\phi \in r$.
- **5** Let $\psi(x_1, \ldots, x_n)$ be a formula. Then $q \Vdash \forall \overline{x} : \psi(\overline{x})$ iff for every n-tuple \overline{c} of witnesses $q \Vdash \psi(\overline{c})$.
- **6** Let ϕ be an $L(W)_{\omega_1,\omega}$ -sentence. Then $q \Vdash \neg \phi$ iff there is no N-condition $p \supseteq q$ which forces ϕ .

Lemma(*): If ϕ is an atomic sentence and p is an N-condition, then $p \Vdash \neg \phi$ iff no condition $\supseteq p$ contains ϕ .

Proof (of (6))

Claim: Either some $p \supseteq q$ forces ϕ or some $p \supseteq q$ forces $\neg \phi$.

Theorem

Let N be a notion of forcing and $q \in N$.

- \bigcirc Let ϕ be an atomic L(W)-sentence. Then $q \Vdash \phi$ iff for every N-condition $p \supseteq q$, there is an condition $r \supseteq p$ with $\phi \in r$.
- **5** Let $\psi(x_1, \ldots, x_n)$ be a formula. Then $q \Vdash \forall \overline{x} : \psi(\overline{x})$ iff for every n-tuple \overline{c} of witnesses $q \Vdash \psi(\overline{c})$.
- **6** Let ϕ be an $L(W)_{\omega_1,\omega}$ -sentence. Then $q \Vdash \neg \phi$ iff there is no N-condition $p \supseteq q$ which forces ϕ .

Lemma(*): If ϕ is an atomic sentence and p is an N-condition, then $p \Vdash \neg \phi$ iff no condition $\supseteq p$ contains ϕ .

Proof (of (6))

Claim: Either some $p \supseteq q$ forces ϕ or some $p \supseteq q$ forces $\neg \phi$. **Prf. of the claim:** By induction on the complexity of ϕ .

Theorem

Let N be a notion of forcing and $q \in N$.

- Set ϕ be an atomic L(W)-sentence. Then $q \Vdash \phi$ iff for every N-condition $p \supseteq q$, there is an condition $r \supseteq p$ with $\phi \in r$.
- **5** Let $\psi(x_1, \ldots, x_n)$ be a formula. Then $q \Vdash \forall \overline{x} : \psi(\overline{x})$ iff for every n-tuple \overline{c} of witnesses $q \Vdash \psi(\overline{c})$.
- **6** Let ϕ be an $L(W)_{\omega_1,\omega}$ -sentence. Then $q \Vdash \neg \phi$ iff there is no N-condition $p \supseteq q$ which forces ϕ .

Lemma(*): If ϕ is an atomic sentence and p is an N-condition, then $p \Vdash \neg \phi$ iff no condition $\supseteq p$ contains ϕ .

Proof (of (6))

Claim: Either some $p \supseteq q$ forces ϕ or some $p \supseteq q$ forces $\neg \phi$. **Prf. of the claim:** By induction on the complexity of ϕ . (i) If ϕ is atomic suppose no $p \supseteq q$ forces $\neg \phi$. Then by the (*)-lemma there is an $r \supseteq p$ which contains ϕ . By (3) p already force ϕ .

3

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem

Let N be a notion of forcing and $q \in N$.

- Set ϕ be an atomic L(W)-sentence. Then $q \Vdash \phi$ iff for every N-condition $p \supseteq q$, there is an condition $r \supseteq p$ with $\phi \in r$.
- **5** Let $\psi(x_1, \ldots, x_n)$ be a formula. Then $q \Vdash \forall \overline{x} : \psi(\overline{x})$ iff for every n-tuple \overline{c} of witnesses $q \Vdash \psi(\overline{c})$.
- **6** Let ϕ be an $L(W)_{\omega_1,\omega}$ -sentence. Then $q \Vdash \neg \phi$ iff there is no N-condition $p \supseteq q$ which forces ϕ .

Lemma(*): If ϕ is an atomic sentence and p is an N-condition, then $p \Vdash \neg \phi$ iff no condition $\supseteq p$ contains ϕ .

Proof (of (6))

Claim: Either some $p \supseteq q$ forces ϕ or some $p \supseteq q$ forces $\neg \phi$. **Prf. of the claim:** By induction on the complexity of ϕ . (i) If ϕ is atomic suppose no $p \supseteq q$ forces $\neg \phi$. Then by the (*)-lemma there is an $r \supseteq p$ which contains ϕ . By (3) p already force ϕ .

(ii) If the claim holds for some sentence ϕ , then it already holds for $\neg \phi$.

3

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem

Let N be a notion of forcing and $q \in N$.

- Set ϕ be an atomic L(W)-sentence. Then $q \Vdash \phi$ iff for every N-condition $p \supseteq q$, there is an condition $r \supseteq p$ with $\phi \in r$.
- **5** Let $\psi(x_1, \ldots, x_n)$ be a formula. Then $q \Vdash \forall \overline{x} : \psi(\overline{x})$ iff for every n-tuple \overline{c} of witnesses $q \Vdash \psi(\overline{c})$.
- **6** Let ϕ be an $L(W)_{\omega_1,\omega}$ -sentence. Then $q \Vdash \neg \phi$ iff there is no N-condition $p \supseteq q$ which forces ϕ .

Lemma(*): If ϕ is an atomic sentence and p is an N-condition, then $p \Vdash \neg \phi$ iff no condition $\supseteq p$ contains ϕ .

Proof (of (6))

Claim: Either some $p \supseteq q$ forces ϕ or some $p \supseteq q$ forces $\neg \phi$. **Prf. of the claim:** By induction on the complexity of ϕ . (i) If ϕ is atomic suppose no $p \supseteq q$ forces $\neg \phi$. Then by the (*)-lemma there is an $r \supseteq p$ which contains ϕ . By (3) p already force ϕ . (ii) If the claim holds for some sentence ϕ , then it already holds for $\neg \phi$. (iii) Let $\phi := \bigwedge_{i < \omega} \phi_i$, and suppose that no $p \supseteq q$ forces $\neg \phi$. This means that for every $i < \omega$ no $p \supseteq q$ forces $\neg \phi_i$. By induction hypothesis if $p \supseteq q$ then there is $r_i \supseteq p$ such that $r_i \Vdash \phi_i$. This means that q forces all ϕ_i -s and by (4) it forces ϕ .

(日) (四) (王) (王) (王)

Theorem

Let N be a notion of forcing and $q \in N$.

- Set ϕ be an atomic L(W)-sentence. Then $q \Vdash \phi$ iff for every N-condition $p \supseteq q$, there is an condition $r \supseteq p$ with $\phi \in r$.
- **5** Let $\psi(x_1, \ldots, x_n)$ be a formula. Then $q \Vdash \forall \overline{x} : \psi(\overline{x})$ iff for every n-tuple \overline{c} of witnesses $q \Vdash \psi(\overline{c})$.
- **6** Let ϕ be an $L(W)_{\omega_1,\omega}$ -sentence. Then $q \Vdash \neg \phi$ iff there is no N-condition $p \supseteq q$ which forces ϕ .

Lemma(*): If ϕ is an atomic sentence and p is an N-condition, then $p \Vdash \neg \phi$ iff no condition $\supseteq p$ contains ϕ .

Proof (of (6))

Claim: Either some $p \supseteq q$ forces ϕ or some $p \supseteq q$ forces $\neg \phi$. **Prf. of the claim:** By induction on the complexity of ϕ . (i) If ϕ is atomic suppose no $p \supseteq q$ forces $\neg \phi$. Then by the (*)-lemma there is an $r \supseteq p$ which contains ϕ . By (3) p already force ϕ . (ii) If the claim holds for some sentence ϕ , then it already holds for $\neg \phi$. (iii) Let $\phi := \bigwedge_{i < \omega} \phi_i$, and suppose that no $p \supseteq q$ forces $\neg \phi$. This means that for every $i < \omega$ no $p \supseteq q$ forces $\neg \phi_i$. By induction hypothesis if $p \supseteq q$ then there is $r_i \supseteq p$ such that $r_i \Vdash \phi_i$. This means that q forces all ϕ_i -s and by (4) it forces ϕ . (iv) If $\phi := \forall \overline{x} : \psi$ then then (5) reduces this to (iii). \Box

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Theorem

Let N be a notion of forcing and $q \in N$.

э

< //>

Theorem

Let N be a notion of forcing and $q \in N$.

Let φ be an L(W)_{ω1,ω}-sentence. Then q ⊢ ¬φ iff there is no N-condition p ⊇ q which forces φ.

Theorem

Let N be a notion of forcing and $q \in N$.

() Let ϕ be an $L(W)_{\omega_1,\omega}$ -sentence. Then $q \Vdash \neg \phi$ iff there is no *N*-condition $p \supseteq q$ which forces ϕ .

Proof

Claim: Either some $p \supseteq q$ forces ϕ or some $p \supseteq q$ forces $\neg \phi$.

- 4 回 ト 4 ヨ ト 4 ヨ ト

Theorem

Let N be a notion of forcing and $q \in N$.

() Let ϕ be an $L(W)_{\omega_1,\omega}$ -sentence. Then $q \Vdash \neg \phi$ iff there is no *N*-condition $p \supseteq q$ which forces ϕ .

Proof

Claim: Either some $p \supseteq q$ forces ϕ or some $p \supseteq q$ forces $\neg \phi$.

- 4 回 ト 4 ヨ ト 4 ヨ ト

Theorem

Let N be a notion of forcing and $q \in N$.

Let φ be an L(W)_{ω1,ω}-sentence. Then q ⊢ ¬φ iff there is no N-condition p ⊇ q which forces φ.

Proof

Claim: Either some $p \supseteq q$ forces ϕ or some $p \supseteq q$ forces $\neg \phi$. (6) " \Rightarrow ": If there is some $p \supseteq q$ such that $p \Vdash \phi$, then by picking $p_0 := p$ can the \forall -player get himself into winning position for $G_N(\neg \phi; \text{odds})$, which means that q does not force $\neg \phi$.

イロト イポト イヨト イヨト 二日

Theorem

Let N be a notion of forcing and $q \in N$.

Let φ be an L(W)_{ω1,ω}-sentence. Then q ⊢ ¬φ iff there is no N-condition p ⊇ q which forces φ.

Proof

Claim: Either some $p \supseteq q$ forces ϕ or some $p \supseteq q$ forces $\neg \phi$. (6)" \Rightarrow ": If there is some $p \supseteq q$ such that $p \Vdash \phi$, then by picking $p_0 := p$ can the \forall -player get himself into winning position for $G_N(\neg \phi; \text{odds})$, which means that q does not force $\neg \phi$. (6)" \Leftarrow ": If no condition $p \supseteq q$ forces ϕ , then no condition $r \supseteq p$ forces ϕ , then by the **Claim** some $r \supseteq p$ forces $\neg \phi$.

イロト イポト イヨト イヨト 二日