Shallow Circuits with High-Powered Inputs

Pascal Koiran LIP, Ecole Normale Supérieure de Lyon

Fall School of Logic and Complexity Prague, September 2011

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Two central problems of complexity theory

- 1. Arithmetic complexity of the permanent (Valiant's algebraic version of P versus NP).
- 2. Derandomization of Polynomial Identity Testing.
- Problems turn out to be related.
- Progress on one may lead to progress on other problem (approach to problem 1 advocated by Agrawal, 2005).

Valiant's model: $VP_{K} = VNP_{K}$?

Complexity of a polynomial f measured by number L(f) of arithmetic operations (+,-,×) needed to evaluate f:

L(f) = size of smallest arithmetic circuit computing f.

- (f_n) ∈ VP if number of variables, deg(f_n) and L(f_n) are polynomially bounded. For instance, (X^{2ⁿ})∉VP.
- (f_n) ∈ VNP if f_n(x̄) = ∑_ȳ g_n(x̄, ȳ)
 for some (g_n) ∈ VP
 (sum ranges over all boolean values of ȳ).
 If char(K) ≠ 2 the permanent is a VNP-complete family:

$$\operatorname{PER}_n(X) = \sum_{\sigma \in S_n} \prod_{i=1}^n X_{i\sigma(i)}$$

Valiant's model: $VP_{K} = VNP_{K}$?

Complexity of a polynomial f measured by number L(f) of arithmetic operations (+,-,×) needed to evaluate f:

L(f) = size of smallest arithmetic circuit computing f.

(f_n) ∈ VP if number of variables, deg(f_n) and L(f_n) are polynomially bounded. For instance, (X^{2ⁿ})∉VP.

►
$$(f_n) \in \text{VNP if } f_n(\overline{x}) = \sum_{\overline{y}} g_n(\overline{x}, \overline{y})$$

for some $(g_n) \in VP$

(sum ranges over all boolean values of \overline{y}).

If $char(K) \neq 2$ the permanent is a VNP-complete family:

$$\operatorname{PER}_n(X) = \sum_{\sigma \in S_n} \prod_{i=1}^n X_{i\sigma(i)}$$

(日) (周) (三) (三) (三) (○) (○)

Polynomial Identity Testing

Given polynomial f, decide whether $f \equiv 0$. If given by an arithmetic circuit: ACIT problem. **Schwartz-Zippel Lemma:** Let $f \in K[X_1, ..., X_n]$ of degree d. If $f \not\equiv 0$ and $X_1, ..., X_n$ drawn independently at random from $S \subseteq K$:

$$\Pr[f(X_1,\ldots,X_n)=0] \le d/|S|.$$

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

"Natural" intuition about ACIT: no efficient deterministic algorithm exists (because we haven't found any).

Polynomial Identity Testing

Given polynomial f, decide whether $f \equiv 0$. If given by an arithmetic circuit: ACIT problem. **Schwartz-Zippel Lemma:** Let $f \in K[X_1, ..., X_n]$ of degree d. If $f \not\equiv 0$ and $X_1, ..., X_n$ drawn independently at random from $S \subseteq K$: $\Pr[f(X_1, ..., X_n) = 0] \le d/|S|$.

"Natural" intuition about ACIT: no efficient deterministic algorithm exists (because we haven't found any).

Hardness versus randomness tradeoffs

Two roughly equivalent problems:

- derandomizing algorithms
- proving lower bounds.

For each problem we need explicit constructions.

From Kabanets-Impagliazzo (2004) :

If ACIT can be derandomized: we have a lower bound for the permanent, or NEXP⊄P/poly.

 If we have a lower bound for the permanent: ACIT can be derandomized in subexponential time for circuits of logarithmic depth.

A possible approach to arithmetic circuit lower bounds ? (Agrawal, 2005)

Hardness versus randomness tradeoffs

Two roughly equivalent problems:

- derandomizing algorithms
- proving lower bounds.

For each problem we need **explicit constructions**. From Kabanets-Impagliazzo (2004) :

- ► If ACIT can be derandomized: we have a lower bound for the permanent, or NEXP⊄P/poly.
- If we have a lower bound for the permanent: ACIT can be derandomized in subexponential time for circuits of logarithmic depth.

A possible approach to arithmetic circuit lower bounds ? (Agrawal, 2005)

Outline of the talk

- 1. Lower bounds from derandomization.
- 2. The real τ -conjecture.
- 3. An unconditional lower bound for the permanent.

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

4. Proof sketch for a result of Bürgisser's.

The black-box model

Only way to access f:

$$x \mapsto black box \to f(x).$$

Some problems studied in this model: factorization, GCD, interpolation...

Two equivalent problems:

- derandomization of PIT in the black blox model.
- Construction of a *hitting set*.

A hitting set *H* for a family \mathcal{F} of polynomials must contain for every $f \not\equiv 0$ in \mathcal{F} a point *x* such that $f(x) \neq 0$. **Remark:**

Hitting sets \Rightarrow derandomization in (low-degree) circuit model.

Existence of small hitting sets

Recall from Schwartz-Zippel lemma:

$$\Pr[f(X_1,\ldots,X_n)=0] \le 1/2$$

if $|S| \ge 2d$. Let H = m random elements of S^n . For $f \not\equiv 0$, $\Pr[f \equiv 0 \text{ on } H] \le 1/2^m$. Let \mathcal{F} be a family of polynomials. By union bound, H is *not* a hitting set with probability $\le |\mathcal{F}|/2^m$: take $m > \log |\mathcal{F}|$. **Remarks:** same proof as $\operatorname{RP} \subseteq \operatorname{P/poly}$ (Adleman, 1978); good bounds also for some infinite families \mathcal{F} (Heintz-Schnorr, 1980).

Lower bounds from (univariate) hitting sets

Let
$$H = \{a_1, \ldots, a_k\}$$
 be a hitting set for \mathcal{F} , and

$$f(X) = \prod_{i=1}^{k} (X - a_i).$$

Then $f \notin \mathcal{F}$. If *H* is explicit then *f* is explicit too! **Remarks:**

- 1. This is a kind of indirect diagonalization.
- 2. Argument appears already in Heintz and Schnorr (1980).
- 3. Low-degree multivariate version in Agrawal (2005).
- 4. Our results are based on the univariate version.

Sums of products of sparse (univariate) polynomials

SPS polynomials are of the form $f(X) = \sum_{i=1}^{k} \prod_{j=1}^{m} f_{ij}(X)$ where the f_{ij} are *t*-sparse.

Hardness versus randomness (informal statement): Efficient deterministic constructions of hitting sets for SPS polynomials imply that perm is hard for arithmetic circuits. **Remark:** Polynomial size hitting sets exist by standard (probabilistic) arguments.

Benefits of univariate method:

- 1. Would lead to lower bounds for the permanent, instead of polynomials with PSPACE coefficients (i.e., in VPSPACE).
- 2. Leads to new versions of Shub and Smale's $\tau\text{-conjecture.}$

Sums of products of sparse (univariate) polynomials

SPS polynomials are of the form $f(X) = \sum_{i=1}^{k} \prod_{j=1}^{m} f_{ij}(X)$ where the f_{ij} are *t*-sparse.

Hardness versus randomness (informal statement): Efficient deterministic constructions of hitting sets for SPS polynomials imply that perm is hard for arithmetic circuits. Remark: Polynomial size hitting sets exist by standard

(probabilistic) arguments.

Benefits of univariate method:

- 1. Would lead to lower bounds for the permanent, instead of polynomials with PSPACE coefficients (i.e., in VPSPACE).
- 2. Leads to new versions of Shub and Smale's τ -conjecture.

Algebraic number generators

This is a sequence $(f_i)_{i\geq 1}$ of nonzero polynomials of $\mathbb{Z}[X]$: $f_i(X) = \sum_{\alpha} a(\alpha, i) X^{\alpha}$ where

- 1. deg $(f_i) \leq i^c$ and $|a(\alpha, i)| \leq 2^{i^c}$ for some constant c;
- 2. The $a(\alpha, i)$ can be computed *efficiently*, i.e.,

 $L(f) = \{(\alpha, i, j); \text{ the } j\text{-th bit of } a(\alpha, i) \text{ is equal to } 1\}$

is in P... or in P/poly ... or even in CH/poly.

Example: $L(f) \in P$ for $f_i(X) = X - i$, $X^i - 1$ or $X^i - 2^i X + i^2 + 1$. **Remarks:** A generator generates the roots of the f_i ; We will consider hitting sets made of the roots of an initial segment of the f_i .

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ → 圖 - 釣�?

Hardness versus randomness, formal statement

Consider a SPS polynomial

$$f(X) = \sum_{i=1}^{k} \prod_{j=1}^{m} f_{ij}(X)$$

where the f_{ij} are *t*-sparse; size(f) = number of monomials in this expression ($\leq kmt$).

Theorem: Let (f_i) be an algebraic number generator, and H_m the set of all roots of the polynomials f_i for all $i \le m$. Assume that there exists a polynomial p such that $H_{p(s)}$ is a hitting set for *SPS* polynomials of size $\le s$. Then Permanent does not have (constant free) arithmetic circuits of polynomial size.

Remark: More refined statement in ICS 2011 paper.

Hitting sets for sparse polynomials: roots of unity

Theorem [Bläser - Hardt - Lipton - Vishnoi'09]:

For the set polynomials $f \in \mathbb{C}[X]$ with at most t monomials, of degree at most d:

let *H* be the set of all *p*-th roots of unity for all $p \in \mathcal{P}$,

where \mathcal{P} is a set of at least $t \log d$ prime numbers.

Proof: If f = 0 on H then $f \equiv 0 \mod (X^p - 1)$ for all $p \in \mathcal{P}$. Fix monomial $a_i X^{\alpha_i}$ in f.

Then $p|(\alpha_i - \alpha_i)$ for some other monomial $a_i X^{\alpha_i}$.

(i) For fixed i, < t choices for j.

(ii) For fixed *i*, *j*, at most log *d* choices for *p*.

Observation:

For the set of polynomials $f \in \mathbb{R}[X]$ with at most t monomials, any set $H \subseteq \mathbb{R}^*_+$ with |H| = t is a hitting set. Follows from:

Theorem [Descartes' rule without signs]: f has at most t - 1 positive real roots. **Proof:** Induction on t. No positive root for t = 1. For t > 1: let $a_{\alpha}X^{\alpha}$ = lowest degree monomial. We can assume $\alpha = 0$ (divide by X^{α} if not). Then:

- (i) f' has t-1 monomials $\Rightarrow \le t-2$ positive real roots.
- (ii) There is a positive root of f' between 2 consecutive positive roots of f (Rolle's theorem).

Observation:

For the set of polynomials $f \in \mathbb{R}[X]$ with at most t monomials, any set $H \subseteq \mathbb{R}^*_+$ with |H| = t is a hitting set. Follows from:

Theorem [Descartes' rule without signs]:

f has at most t - 1 positive real roots.

Proof: Induction on *t*. No positive root for t = 1. For t > 1: let $a_{\alpha}X^{\alpha} =$ lowest degree monomial. We can assume $\alpha = 0$ (divide by X^{α} if not). Then:

- (i) f' has t-1 monomials $\Rightarrow \le t-2$ positive real roots.
- (ii) There is a positive root of f' between 2 consecutive positive roots of f (Rolle's theorem).

Observation:

For the set of polynomials $f \in \mathbb{R}[X]$ with at most t monomials, any set $H \subseteq \mathbb{R}^*_+$ with |H| = t is a hitting set. Follows from:

Theorem [Descartes' rule without signs]:

f has at most t - 1 positive real roots. **Proof:** Induction on *t*. No positive root for t = 1. For t > 1: let $a_{\alpha}X^{\alpha}$ = lowest degree monomial. We can assume $\alpha = 0$ (divide by X^{α} if not). Then:

- (i) f' has t-1 monomials $\Rightarrow \le t-2$ positive real roots.
- (ii) There is a positive root of f' between 2 consecutive positive roots of f (Rolle's theorem).

Observation:

For the set of polynomials $f \in \mathbb{R}[X]$ with at most t monomials, any set $H \subseteq \mathbb{R}^*_+$ with |H| = t is a hitting set. Follows from:

Theorem [Descartes' rule without signs]:

f has at most t - 1 positive real roots. **Proof:** Induction on *t*. No positive root for t = 1. For t > 1: let $a_{\alpha}X^{\alpha}$ = lowest degree monomial. We can assume $\alpha = 0$ (divide by X^{α} if not). Then:

- (i) f' has t 1 monomials $\Rightarrow \le t 2$ positive real roots.
- (ii) There is a positive root of f' between 2 consecutive positive roots of f (Rolle's theorem).

Model: multiplications are free.

Theorem [Borodin-Cook'76]:

If $f \in \mathbb{R}[X]$ is computable in k additions,

f has at most $\phi(k)$ real zeros.

ϕ is an explicit (astronomical) function.

Theorem [Grigoriev'82, Risler'85]: One can take $\phi(k) = 2^{(4k)^2}$. Proof based on Khovanskii's theory of fewnomials. **Remark [Borodin-Cook'76, Shub-Smale]:** For some *f* the number of real zeros is $2^{\Omega(L(f))}$ (i.e. $\geq 2^{\Omega(k)}$). **Tau-conjecture [Shub-Smale'95]:** For constant-free circuits, the number of integer roots

is polynomially bounded.

Model: multiplications are free.

Theorem [Borodin-Cook'76]:

If $f \in \mathbb{R}[X]$ is computable in k additions,

f has at most $\phi(k)$ real zeros.

 ϕ is an explicit (astronomical) function.

Theorem [Grigoriev'82, Risler'85]: One can take $\phi(k) = 2^{(4k)^2}$. Proof based on Khovanskii's theory of fewnomials.

Remark [Borodin-Cook'76, Shub-Smale]:

For some *f* the number of real zeros is $2^{\Omega(L(f))}$ (i.e. $\geq 2^{\Omega(k)}$). **Tau-conjecture [Shub-Smale'95]:**

For constant-free circuits, the number of integer roots is polynomially bounded.

Model: multiplications are free.

Theorem [Borodin-Cook'76]:

If $f \in \mathbb{R}[X]$ is computable in k additions,

f has at most $\phi(k)$ real zeros.

 ϕ is an explicit (astronomical) function.

Theorem [Grigoriev'82, Risler'85]: One can take $\phi(k) = 2^{(4k)^2}$. Proof based on Khovanskii's theory of fewnomials.

Remark [Borodin-Cook'76, Shub-Smale]:

For some f the number of real zeros is $2^{\Omega(\tilde{L}(f))}$ (i.e. $\geq 2^{\Omega(k)}$).

Tau-conjecture [Shub-Smale'95]:

For constant-free circuits, the number of integer roots

is polynomially bounded.

Model: multiplications are free.

Theorem [Borodin-Cook'76]:

If $f \in \mathbb{R}[X]$ is computable in k additions,

f has at most $\phi(k)$ real zeros.

 ϕ is an explicit (astronomical) function.

Theorem [Grigoriev'82, Risler'85]: One can take $\phi(k) = 2^{(4k)^2}$. Proof based on Khovanskii's theory of fewnomials.

Remark [Borodin-Cook'76, Shub-Smale]:

For some f the number of real zeros is $2^{\Omega(\bar{L}(f))}$ (i.e. $\geq 2^{\Omega(k)}$). **Tau-conjecture [Shub-Smale'95]:**

For constant-free circuits, the number of integer roots is polynomially bounded.

Chebyshev polynomials

• Let T_n be the Chebyshev polynomial of order n:

 $\cos(n\theta)=T_n(\cos\theta).$

For instance $T_1(x) = x$, $T_2(x) = 2x^2 - 1$.

- T_n is a degree *n* polynomial with *n* real zeros on [-1, 1].
- $T_{2^n}(x) = T_2(T_2(\cdots T_2(T_2(x))\cdots))$: *n*-th iterate of T_2 . As a result $\tau(T_{2^n}) = O(n)$.

Figure: Plots of T_2 and T_4

Real τ -conjecture

Conjecture: Consider $f(X) = \sum_{i=1}^{k} \prod_{j=1}^{m} f_{ij}(X)$, where the f_{ij} are *t*-sparse. If *f* is nonzero, its number of **real roots** is polynomial in *kmt*. **Theorem:** If the conjecture is true then the permanent is hard. **Remarks:**

- Case k = 1 of the conjecture is obvious, k = 2 is open.
- ▶ By expanding the products, f has at most $2kt^m 1$ zeros.

It is enough to bound the number of integer roots. Could techniques from real analysis be helpful ?

Real τ -conjecture

Conjecture: Consider $f(X) = \sum_{i=1}^{k} \prod_{j=1}^{m} f_{ij}(X)$, where the f_{ij} are *t*-sparse. If *f* is nonzero, its number of **real roots** is polynomial in *kmt*. **Theorem:** If the conjecture is true then the permanent is hard. **Remarks:**

- Case k = 1 of the conjecture is obvious, k = 2 is open.
- By expanding the products, f has at most $2kt^m 1$ zeros.

It is enough to bound the number of integer roots. Could techniques from real analysis be helpful ?

First ingredient: reduction to depth 4

Depth reduction theorem (Agrawal and Vinay, 2008):

Any multilinear polynomial in *n* variables with an arithmetic circuit of size $2^{o(n)}$ also has a depth four ($\Sigma\Pi\Sigma\Pi$) circuit of size $2^{o(n)}$.

Our polynomials are far from multilinear, but:

(Shallow circuit with high-powered inputs)

▲日▼▲□▼▲□▼▲□▼ □ ののの

Second ingredient: Pochhammer-Wilkinson polynomials

$$PW_n(X) = \prod_{i=1}^n (X-i)$$

Theorem [Bürgisser'07-09]:

If the permanent is easy then PW_n has circuits of size $(\log n)^{O(1)}$.

How the proof does *not* go

Assume by contradiction that the permanent is easy. **Goal:**

Show that SPS polynomials of size $2^{o(n)}$ can compute $\prod_{i=1}^{2^n} (X - i)$ \Rightarrow contradiction with real τ -conjecture.

1. From assumption: $\prod_{i=1}^{2^n} (X - i)$ has circuits of polynomial in *n* (Bürgisser).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

2. Reduction to depth 4 \Rightarrow SPS polynomials of size $2^{o(n)}$.

What's wrong with this argument:

How the proof does *not* go

Assume by contradiction that the permanent is easy. **Goal:**

Show that SPS polynomials of size $2^{o(n)}$ can compute $\prod_{i=1}^{2^n} (X - i)$ \Rightarrow contradiction with real τ -conjecture.

1. From assumption: $\prod_{i=1}^{2^n} (X - i)$ has circuits of polynomial in n (Bürgisser).

2. Reduction to depth $4 \Rightarrow$ SPS polynomials of size $2^{o(n)}$.

What's wrong with this argument: No high-degree analogue of reduction to depth 4 (think of Chebyshev's polynomials).

How the proof goes (more or less)

Assume that the permanent is easy.

Goal:

Show that SPS polynomials of size $2^{o(n)}$ can compute $\prod_{i=1}^{2^n} (X - i)$ \Rightarrow contradiction with real τ -conjecture.

1. From assumption: $\prod_{i=1}^{2^n} (X - i)$ has circuits of polynomial in n (Bürgisser).

2. Reduction to depth 4 \Rightarrow SPS polynomials of size $2^{o(n)}$.

For step 2: need to use again the assumption that perm is easy.

What if the number of distinct f_{ij} is very small (even constant)? Consider $f(X) = \sum_{i=1}^{k} \prod_{j=1}^{m} f_j^{\alpha_{ij}}(X)$, where the f_j are *t*-sparse. **Theorem 1 (number of real roots):** If *f* is nonzero, it has at most $t^{O(m.2^k)}$ real roots. **Proof method:** Do an induction on *k* and use Rolle's theorem. We have a sum of *k* terms: $f(X) = \sum_{i=1}^{k} T_i(X)$. Taking the derivative of f/T_1 removes a term. \Box

Theorem 2 (identity testing): For fixed k and m, $f \equiv 0$ can be tested deterministically in polynomial-time. **Remark:** The algorithm is non-black-box: It executes the induction in Theorem 1.

What if the number of distinct f_{ij} is very small (even constant)? Consider $f(X) = \sum_{i=1}^{k} \prod_{j=1}^{m} f_j^{\alpha_{ij}}(X)$, where the f_j are *t*-sparse. **Theorem 1 (number of real roots):** If *f* is nonzero, it has at most $t^{O(m.2^k)}$ real roots. **Proof method:** Do an induction on *k* and use Rolle's theorem. We have a sum of *k* terms: $f(X) = \sum_{i=1}^{k} T_i(X)$. Taking the derivative of f/T_1 removes a term. \Box

Theorem 2 (identity testing): For fixed k and m, $f \equiv 0$ can be tested deterministically in polynomial-time. **Remark:** The algorithm is non-black-box: It executes the induction in Theorem 1.

What if the number of distinct f_{ij} is very small (even constant)? Consider $f(X) = \sum_{i=1}^{k} \prod_{j=1}^{m} f_j^{\alpha_{ij}}(X)$, where the f_j are *t*-sparse. **Theorem 1 (number of real roots):** If *f* is nonzero, it has at most $t^{O(m.2^k)}$ real roots. **Proof method:** Do an induction on *k* and use Rolle's theorem. We have a sum of *k* terms: $f(X) = \sum_{i=1}^{k} T_i(X)$. Taking the derivative of f/T_1 removes a term. \Box

Theorem 2 (identity testing): For fixed k and m, $f \equiv 0$ can be tested deterministically in polynomial-time. **Remark:** The algorithm is non-black-box: It executes the induction in Theorem 1.

What if the number of distinct f_{ij} is very small (even constant)? Consider $f(X) = \sum_{i=1}^{k} \prod_{j=1}^{m} f_j^{\alpha_{ij}}(X)$, where the f_j are *t*-sparse. **Theorem 1 (number of real roots):** If *f* is nonzero, it has at most $t^{O(m.2^k)}$ real roots. **Proof method:** Do an induction on *k* and use Rolle's theorem. We have a sum of *k* terms: $f(X) = \sum_{i=1}^{k} T_i(X)$. Taking the derivative of f/T_1 removes a term. \Box

Theorem 2 (identity testing): For fixed k and m, $f \equiv 0$ can be tested deterministically in polynomial-time. **Remark:** The algorithm is non-black-box: It executes the induction in Theorem 1.

A lower bound for restricted depth 4 circuits, or: the limited power of powering.

Consider representations of the permanent of the form:

$$\operatorname{PER}(X) = \sum_{i=1}^{k} \prod_{j=1}^{m} f_{j}^{\alpha_{ij}}(X)$$
(1)

where

- X is a n × n matrix of indeterminates.
- k and m are bounded, and the α_{ij} are of polynomial bit size.
- The f_j are polynomials in n² variables, with at most t monomials.

Theorem 3 (lower bound):

No such representation if t is polynomially bounded in n. **Remark:** The point is that the α_{ij} may be nonconstant. Otherwise, the number of monomials in (1) is polynomial in t.

Lower Bound Proof

Assume otherwise:

$$\operatorname{PER}(X) = \sum_{i=1}^{k} \prod_{j=1}^{m} f_{j}^{\alpha_{ij}}(X).$$
(2)

- Since PER is easy, P_n = ∏^{2ⁿ}_{i=1}(x − i) is easy too.
 In fact [Bürgisser], P_n(x) = PER(X) where X is of size n^{O(1)}, with entries that are constants or powers of x.
- ► By (2) and Theorem 1, P_n should have only n^{O(1)} real roots. But P_n has 2ⁿ integer roots!

Remark:

The current proof requires the Generalized Riemann Hypothesis (to handle arbitrary complex coefficients in the f_j).

Lower Bound Proof

Assume otherwise:

$$\operatorname{PER}(X) = \sum_{i=1}^{k} \prod_{j=1}^{m} f_{j}^{\alpha_{ij}}(X).$$
(2)

Since PER is easy, P_n = ∏^{2ⁿ}_{i=1}(x − i) is easy too.
 In fact [Bürgisser], P_n(x) = PER(X) where X is of size n^{O(1)}, with entries that are constants or powers of x.

By (2) and Theorem 1, P_n should have only n^{O(1)} real roots. But P_n has 2ⁿ integer roots!

Remark:

The current proof requires the Generalized Riemann Hypothesis (to handle arbitrary complex coefficients in the f_j).

Lower Bound Proof

Assume otherwise:

$$\operatorname{PER}(X) = \sum_{i=1}^{k} \prod_{j=1}^{m} f_{j}^{\alpha_{ij}}(X).$$
(2)

- Since PER is easy, P_n = ∏^{2ⁿ}_{i=1}(x − i) is easy too. In fact [Bürgisser], P_n(x) = PER(X) where X is of size n^{O(1)}, with entries that are constants or powers of x.
- By (2) and Theorem 1, P_n should have only n^{O(1)} real roots. But P_n has 2ⁿ integer roots!

Remark:

The current proof requires the Generalized Riemann Hypothesis (to handle arbitrary complex coefficients in the f_j).

Bürgisser's result: a proof sketch (1/4)

Goal: If permanent is easy,
then
$$g_n(X) = \prod_{i=1}^{2^n-1} (X+i)$$
 has polynomial size circuits.
Remark: Using assumption, to show that a polynomial family
is easy to compute we only have to put it in VNP.
Valiant's criterion: Let

$$f_n(x_1,\ldots,x_{p(n)}) = \sum_{i=0}^{2^{p(n)}-1} a_n(i) x_1^{i_1} \cdots x_{p(n)}^{i_{p(n)}}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

If $a: (1^n, i) \mapsto a_n(i) \in \{0, 1\}$ is in P/poly then $(f_n) \in \text{VNP}$.

Bürgisser's result: a proof sketch (1/4)

Goal: If permanent is easy,
then
$$g_n(X) = \prod_{i=1}^{2^n-1} (X+i)$$
 has polynomial size circuits.
Remark: Using assumption, to show that a polynomial family
is easy to compute we only have to put it in VNP.
Valiant's criterion: Let

$$f_n(x_1,\ldots,x_{p(n)}) = \sum_{i=0}^{2^{p(n)}-1} a_n(i) x_1^{i_1} \cdots x_{p(n)}^{i_{p(n)}}.$$

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

If $a: (1^n, i) \mapsto a_n(i) \in \{0, 1\}$ is in P/poly then $(f_n) \in \mathsf{VNP}$.

The counting hierarchy: $C_0p = P$; $C_1P = PP$ where $A \in PP$ iff there exists a polynomial p and $B \in P$ such that for |x| = n:

$$x \in A \Leftrightarrow |\{y \in \{0,1\}^{p(n)}; \langle x,y \rangle \in B\}| > 2^{p(n)-1}$$

 $\mathsf{C}_2\mathsf{p}=\mathsf{P}\mathsf{P}^{\mathsf{P}\mathsf{P}}\text{, }\mathsf{C}_3\mathsf{P}=\mathsf{P}\mathsf{P}^{\mathsf{C}_2\mathsf{P}}\text{,}\ldots$

If the permanent is easy to compute then $CH \subseteq P/poly$ (asumes GRH if circuits can use arbitrary constants).

The counting hierarchy: $C_0p = P$; $C_1P = PP$ where $A \in PP$ iff there exists a polynomial p and $B \in P$ such that for |x| = n:

$$x \in A \Leftrightarrow |\{y \in \{0,1\}^{p(n)}; \langle x,y \rangle \in B\}| > 2^{p(n)-1}$$

 $C_2 p = PP^{PP}$, $C_3 P = PP^{C_2 P}$,...

If the permanent is easy to compute then $CH \subseteq P/poly$ (asumes GRH if circuits can use arbitrary constants).

Proof sketch (3/4)

Expand product:
$$g_n(X) = \prod_{\substack{i=1\\2^{c.n}-1}}^{2^n-1} (X+i) = \sum_{\alpha=0}^{2^n-1} a_n(\alpha) X^{\alpha}.$$

Binary expansion: $a_n(\alpha) = \sum_{\substack{i=0\\i=0}}^{2^{c.n}-1} a_n(i,\alpha) 2^i.$

Hence:

$$g_n = \sum_{\alpha=0}^{2^n-1} \sum_{i=0}^{2^{c.n}-1} a_n(i,\alpha) 2^i X^{\alpha}$$

= $h_n(X^{2^0}, X^{2^1}, \dots, X^{2^{n-1}}, 2^{2^0}, 2^{2^1}, \dots, 2^{2^{c.n-1}})$

where $h_n(X_1, \ldots, X_n, Z_1, \ldots, Z_{c \cdot n})$ is the multilinear polynomial

$$\sum_{\alpha}\sum_{i}a_{n}(i,\alpha)X_{1}^{\alpha_{1}}\cdots X_{\cdot n}^{\alpha_{c\cdot n}}Z_{1}^{i_{1}}\cdots Z_{c\cdot n}^{i_{c\cdot n}}.$$

We would like to apply Valiant's criterion...

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ の < @

Proof sketch (3/4)

Expand product:
$$g_n(X) = \prod_{\substack{i=1\\2^{c.n}-1}}^{2^n-1} (X+i) = \sum_{\alpha=0}^{2^n-1} a_n(\alpha) X^{\alpha}.$$

Binary expansion: $a_n(\alpha) = \sum_{\substack{i=0\\i=0}}^{2^{c.n}-1} a_n(i,\alpha) 2^i.$

Hence:

$$g_n = \sum_{\alpha=0}^{2^n-1} \sum_{i=0}^{2^{c.n}-1} a_n(i,\alpha) 2^i X^{\alpha}$$

= $h_n(X^{2^0}, X^{2^1}, \dots, X^{2^{n-1}}, 2^{2^0}, 2^{2^1}, \dots, 2^{2^{c.n-1}})$

where $h_n(X_1, \ldots, X_n, Z_1, \ldots, Z_{c \cdot n})$ is the multilinear polynomial

$$\sum_{\alpha}\sum_{i}a_{n}(i,\alpha)X_{1}^{\alpha_{1}}\cdots X_{\cdot n}^{\alpha_{c\cdot n}}Z_{1}^{i_{1}}\cdots Z_{c\cdot n}^{i_{c\cdot n}}.$$

We would like to apply Valiant's criterion...

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > Ξ の < @

Proof sketch (3/4)

Expand product:
$$g_n(X) = \prod_{\substack{i=1\\2^{c\cdot n}-1}}^{2^n-1} (X+i) = \sum_{\alpha=0}^{2^n-1} a_n(\alpha) X^{\alpha}.$$

Binary expansion: $a_n(\alpha) = \sum_{\substack{i=0\\i=0}}^{2^{c\cdot n}-1} a_n(i,\alpha) 2^i.$

Hence:

$$g_n = \sum_{\alpha=0}^{2^n-1} \sum_{i=0}^{2^{c.n}-1} a_n(i,\alpha) 2^i X^{\alpha}$$

= $h_n(X^{2^0}, X^{2^1}, \dots, X^{2^{n-1}}, 2^{2^0}, 2^{2^1}, \dots, 2^{2^{c.n-1}})$

where $h_n(X_1, \ldots, X_n, Z_1, \ldots, Z_{c \cdot n})$ is the multilinear polynomial

$$\sum_{\alpha}\sum_{i}a_{n}(i,\alpha)X_{1}^{\alpha_{1}}\cdots X_{\cdot n}^{\alpha_{c\cdot n}}Z_{1}^{i_{1}}\cdots Z_{c\cdot n}^{i_{c\cdot n}}.$$

We would like to apply Valiant's criterion...

Proof sketch (4/4)

Recall: $h_n = \sum_{\alpha} \sum_i a_n(i, \alpha) X_1^{\alpha_1} \cdots X_n^{\alpha_n} Z_1^{i_1} \cdots Z_{c \cdot n}^{i_{c \cdot n}}$. **Theorem:** The $a_n(i, \alpha)$ can be computed in CH (Bürgisser). **Proof:** based on constant-depth threshold circuits for iterated multiplication. \Box From assumption: $CH \subseteq P/poly$. Hence $(h_n) \in \text{VNP}$ (Valiant's criterion), but VP = VNP. Substitution of powers 2^{2^i} and X^{2^j} in $h_n \Rightarrow$ polynomial size circuits for $\prod (X + i)$. **Corollary:**

Reduction to depth 4 for $h_n \Rightarrow$ SPS polynomial of size $2^{o(n)}$ for g_n .

Proof sketch (4/4)

Recall: $h_n = \sum_{\alpha} \sum_i a_n(i, \alpha) X_1^{\alpha_1} \cdots X_n^{\alpha_n} Z_1^{i_1} \cdots Z_{c \cdot n}^{i_{c \cdot n}}$. **Theorem:** The $a_n(i, \alpha)$ can be computed in CH (Bürgisser). **Proof:** based on constant-depth threshold circuits for iterated multiplication. \Box From assumption: $CH \subseteq P/poly$. Hence $(h_n) \in VNP$ (Valiant's criterion), but VP = VNP. Substitution of powers 2^{2^i} and X^{2^j} in $h_n \Rightarrow$ $2^{n} - 1$ polynomial size circuits for $\prod (X + i)$. i=1**Corollary:**

Reduction to depth 4 for $h_n \Rightarrow$ SPS polynomial of size $2^{o(n)}$ for g_n .

Proof sketch (4/4)

Recall: $h_n = \sum_{\alpha} \sum_i a_n(i, \alpha) X_1^{\alpha_1} \cdots X_n^{\alpha_n} Z_1^{i_1} \cdots Z_{c \cdot n}^{i_{c \cdot n}}$. **Theorem:** The $a_n(i, \alpha)$ can be computed in CH (Bürgisser). **Proof:** based on constant-depth threshold circuits for iterated multiplication. \Box From assumption: $CH \subseteq P/poly$. Hence $(h_n) \in VNP$ (Valiant's criterion), but VP = VNP. Substitution of powers 2^{2^i} and X^{2^j} in $h_n \Rightarrow$ $2^{n} - 1$ polynomial size circuits for $\prod (X + i)$. i=1**Corollary:**

Reduction to depth 4 for $h_n \Rightarrow$ SPS polynomial of size $2^{o(n)}$ for g_n .

(日) (周) (三) (三) (三) (○) (○)

• Real τ -conjecture: prove or disprove.

Some special cases:

- k = 2: how many real solutions to $f_1 \cdots f_m = g_1 \cdots g_m$?
- An even simpler question (courtesy of Arkadev Chattopadhyay): how many real solutions to fg = 1 ? Descartes' bound is O(t²) but true bound could be O(t).
- What about random polynomials ?
 Encouraging experimental results by Stefan Mengel.
- Instead of real roots, bound the number of p-adic roots ?

- Real τ -conjecture: prove or disprove.
- Some special cases:
 - k = 2: how many real solutions to $f_1 \cdots f_m = g_1 \cdots g_m$?
 - An even simpler question (courtesy of Arkadev Chattopadhyay): how many real solutions to fg = 1 ? Descartes' bound is O(t²) but true bound could be O(t).
- What about random polynomials ?
 Encouraging experimental results by Stefan Mengel.
- Instead of real roots, bound the number of p-adic roots ?

• Real τ -conjecture: prove or disprove.

- Some special cases:
 - ▶ k = 2: how many real solutions to $f_1 \cdots f_m = g_1 \cdots g_m$?
 - An even simpler question (courtesy of Arkadev Chattopadhyay): how many real solutions to fg = 1 ? Descartes' bound is O(t²) but true bound could be O(t).
- What about random polynomials ?
 Encouraging experimental results by Stefan Mengel.
- Instead of real roots, bound the number of p-adic roots ?

• Real τ -conjecture: prove or disprove.

- Some special cases:
 - ▶ k = 2: how many real solutions to $f_1 \cdots f_m = g_1 \cdots g_m$?
 - An even simpler question (courtesy of Arkadev Chattopadhyay): how many real solutions to fg = 1 ? Descartes' bound is O(t²) but true bound could be O(t).
- What about random polynomials ?
 Encouraging experimental results by Stefan Mengel.
- Instead of real roots, bound the number of p-adic roots ?

• Real τ -conjecture: prove or disprove.

- Some special cases:
 - ▶ k = 2: how many real solutions to $f_1 \cdots f_m = g_1 \cdots g_m$?
 - An even simpler question (courtesy of Arkadev Chattopadhyay): how many real solutions to fg = 1 ? Descartes' bound is O(t²) but true bound could be O(t).
- What about random polynomials ?
 Encouraging experimental results by Stefan Mengel.
- Instead of real roots, bound the number of p-adic roots ?

Constant-free version of Valiant's model

- ▶ Work with constant-free circuits (1 is the only constant).
- (f_n) ∈ VP⁰ if size and *formal degree* of circuits are polynomially bounded (Malod, 2003).
 Formal degree is an upper bound on deg(f_n):
 - 1. 1 for an input gate (variable or constant).
 - 2. Max of formal degrees of two inputs for +, gate.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- 3. Sum of formal degrees for \times gate.
- ▶ New goal: $PER(X) \notin VP^0$.