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Two central problems of complexity theory

1. Arithmetic complexity of the permanent
(Valiant’s algebraic version of P versus NP).

2. Derandomization of Polynomial Identity Testing.

◮ Problems turn out to be related.

◮ Progress on one may lead to progress on other problem
(approach to problem 1 advocated by Agrawal, 2005).



Valiant’s model: VPK = VNPK ?

◮ Complexity of a polynomial f measured by number L(f )
of arithmetic operations (+,-,×) needed to evaluate f :

L(f) = size of smallest arithmetic circuit computing f .

◮ (fn) ∈ VP if number of variables, deg(fn) and L(fn)
are polynomially bounded. For instance, (X 2n)6∈VP.

◮ (fn) ∈ VNP if fn(x) =
∑

y

gn(x , y )

for some (gn) ∈ VP
(sum ranges over all boolean values of y).
If char(K ) 6= 2 the permanent is a VNP-complete family:

PERn(X ) =
∑

σ∈Sn

n∏

i=1

Xiσ(i).
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Polynomial Identity Testing

Given polynomial f , decide whether f ≡ 0.
If given by an arithmetic circuit: ACIT problem.
Schwartz-Zippel Lemma:
Let f ∈ K [X1, . . . ,Xn] of degree d .
If f 6≡0 and X1, . . . ,Xn drawn independently at random
from S ⊆ K :

Pr[f (X1, . . . ,Xn) = 0] ≤ d/|S |.

“Natural” intuition about ACIT:
no efficient deterministic algorithm exists
(because we haven’t found any).



Polynomial Identity Testing

Given polynomial f , decide whether f ≡ 0.
If given by an arithmetic circuit: ACIT problem.
Schwartz-Zippel Lemma:
Let f ∈ K [X1, . . . ,Xn] of degree d .
If f 6≡0 and X1, . . . ,Xn drawn independently at random
from S ⊆ K :

Pr[f (X1, . . . ,Xn) = 0] ≤ d/|S |.

“Natural” intuition about ACIT:
no efficient deterministic algorithm exists
(because we haven’t found any).



Hardness versus randomness tradeoffs

Two roughly equivalent problems:

◮ derandomizing algorithms

◮ proving lower bounds.

For each problem we need explicit constructions.
From Kabanets-Impagliazzo (2004) :

◮ If ACIT can be derandomized:
we have a lower bound for the permanent, or NEXP 6⊂P/poly.

◮ If we have a lower bound for the permanent:
ACIT can be derandomized in subexponential time
for circuits of logarithmic depth.

A possible approach to arithmetic circuit lower bounds ?
(Agrawal, 2005)
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Outline of the talk

1. Lower bounds from derandomization.

2. The real τ -conjecture.

3. An unconditional lower bound for the permanent.

4. Proof sketch for a result of Bürgisser’s.



The black-box model

Only way to access f :

x 7→ black box → f (x).

Some problems studied in this model:
factorization, GCD, interpolation. . .
Two equivalent problems:

◮ derandomization of PIT in the black blox model.

◮ Construction of a hitting set.

A hitting set H for a family F of polynomials must contain
for every f 6≡0 in F a point x such that f (x) 6= 0.
Remark:
Hitting sets ⇒ derandomization in (low-degree) circuit model.



Existence of small hitting sets

Recall from Schwartz-Zippel lemma:

Pr[f (X1, . . . ,Xn) = 0] ≤ 1/2

if |S | ≥ 2d .
Let H = m random elements of Sn.
For f 6≡0, Pr[f ≡ 0 on H] ≤ 1/2m.
Let F be a family of polynomials.
By union bound, H is not a hitting set with probability ≤ |F|/2m:
take m > log |F|.
Remarks: same proof as RP ⊆ P/poly (Adleman, 1978);
good bounds also for some infinite families F
(Heintz-Schnorr, 1980).



Lower bounds from (univariate) hitting sets

Let H = {a1, . . . , ak} be a hitting set for F , and

f (X ) =
k∏

i=1

(X − ai).

Then f 6∈F .
If H is explicit then f is explicit too!
Remarks:

1. This is a kind of indirect diagonalization.

2. Argument appears already in Heintz and Schnorr (1980).

3. Low-degree multivariate version in Agrawal (2005).

4. Our results are based on the univariate version.



Sums of products of sparse (univariate) polynomials

SPS polynomials are of the form f (X ) =
∑k

i=1

∏m
j=1 fij(X )

where the fij are t-sparse.
Hardness versus randomness (informal statement):
Efficient deterministic constructions of hitting sets for SPS
polynomials imply that perm is hard for arithmetic circuits.
Remark: Polynomial size hitting sets exist by standard
(probabilistic) arguments.
Benefits of univariate method:

1. Would lead to lower bounds for the permanent,
instead of polynomials with PSPACE coefficients
(i.e., in VPSPACE).

2. Leads to new versions of Shub and Smale’s τ -conjecture.
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Algebraic number generators

This is a sequence (fi )i≥1 of nonzero polynomials of Z[X ]:
fi (X ) =

∑
α
a(α, i)Xα where

1. deg(fi ) ≤ ic and |a(α, i)| ≤ 2i
c
for some constant c ;

2. The a(α, i) can be computed efficiently, i.e.,

L(f ) = {(α, i , j); the j-th bit of a(α, i) is equal to 1}

is in P. . . or in P/poly . . . or even in CH/poly.

Example: L(f ) ∈ P for fi(X ) = X − i , X i − 1 or X i − 2iX + i2+1.
Remarks: A generator generates the roots of the fi ;
We will consider hitting sets made of the roots of an initial segment
of the fi .



Hardness versus randomness, formal statement

Consider a SPS polynomial

f (X ) =
k∑

i=1

m∏

j=1

fij(X )

where the fij are t-sparse;
size(f ) = number of monomials in this expression (≤ kmt).

Theorem: Let (fi) be an algebraic number generator,
and Hm the set of all roots of the polynomials fi for all i ≤ m.
Assume that there exists a polynomial p such that Hp(s)

is a hitting set for SPS polynomials of size ≤ s.
Then Permanent does not have (constant free) arithmetic circuits
of polynomial size.

Remark: More refined statement in ICS 2011 paper.



Hitting sets for sparse polynomials:

roots of unity

Theorem [Bläser - Hardt - Lipton - Vishnoi’09]:
For the set polynomials f ∈ C[X ] with at most t monomials,
of degree at most d :
let H be the set of all p-th roots of unity for all p ∈ P,
where P is a set of at least t log d prime numbers.
Proof: If f = 0 on H then f ≡ 0 mod (X p − 1) for all p ∈ P.
Fix monomial aiX

αi in f .
Then p|(αj − αi ) for some other monomial ajX

αj .

(i) For fixed i , < t choices for j .

(ii) For fixed i , j , at most log d choices for p.



Hitting sets for sparse polynomials:

Descartes’s rule

Observation:
For the set of polynomials f ∈ R[X ] with at most t monomials,
any set H ⊆ R

∗
+ with |H| = t is a hitting set. Follows from:

Theorem [Descartes’ rule without signs]:
f has at most t − 1 positive real roots.
Proof: Induction on t. No positive root for t = 1.
For t > 1: let aαX

α = lowest degree monomial.
We can assume α = 0 (divide by Xα if not). Then:

(i) f ′ has t − 1 monomials ⇒ ≤ t − 2 positive real roots.

(ii) There is a positive root of f ′ between 2 consecutive positive
roots of f (Rolle’s theorem).

To generalize the observation to bigger classes of real polynomials:
we need to bound the number of real roots.
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On the number of additions

to compute specific polynomials

Model: multiplications are free.
Theorem [Borodin-Cook’76]:
If f ∈ R[X ] is computable in k additions,
f has at most φ(k) real zeros.
φ is an explicit (astronomical) function.
Theorem [Grigoriev’82, Risler’85]: One can take φ(k) = 2(4k)

2
.

Proof based on Khovanskii’s theory of fewnomials.
Remark [Borodin-Cook’76, Shub-Smale]:
For some f the number of real zeros is 2Ω(L(f )) (i.e. ≥ 2Ω(k)).
Tau-conjecture [Shub-Smale’95]:
For constant-free circuits, the number of integer roots
is polynomially bounded.
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Chebyshev polynomials

◮ Let Tn be the Chebyshev polynomial of order n:

cos(nθ) = Tn(cos θ).

For instance T1(x) = x , T2(x) = 2x2 − 1.

◮ Tn is a degree n polynomial with n real zeros on [−1, 1].

◮ T2n(x) = T2(T2(· · ·T2(T2(x)) · · · )): n-th iterate of T2.
As a result τ(T2n) = O(n).
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Figure: Plots of T2 and T4



Real τ -conjecture

Conjecture: Consider f (X ) =
∑k

i=1

∏m
j=1 fij(X ),

where the fij are t-sparse.
If f is nonzero, its number of real roots is polynomial in kmt.
Theorem: If the conjecture is true then the permanent is hard.
Remarks:

◮ Case k = 1 of the conjecture is obvious, k = 2 is open.

◮ By expanding the products, f has at most 2ktm − 1 zeros.

◮ It is enough to bound the number of integer roots.
Could techniques from real analysis be helpful ?
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First ingredient: reduction to depth 4

Depth reduction theorem (Agrawal and Vinay, 2008):
Any multilinear polynomial in n variables with an arithmetic circuit
of size 2o(n) also has a depth four (ΣΠΣΠ) circuit of size 2o(n).

Our polynomials are far from multilinear, but:

Depth-4 circuit with inputs of the form X 2i , or constants

(Shallow circuit with high-powered inputs)

m

Sum of Products of Sparse Polynomials



Second ingredient: Pochhammer-Wilkinson polynomials

PWn(X ) =
n∏

i=1

(X − i)

Theorem [Bürgisser’07-09]:
If the permanent is easy then PWn has circuits of size (log n)O(1).



How the proof does not go

Assume by contradiction that the permanent is easy.
Goal:
Show that SPS polynomials of size 2o(n) can compute

∏2n

i=1(X − i)
⇒ contradiction with real τ -conjecture.

1. From assumption:
∏2n

i=1(X − i) has circuits of polynomial in n
(Bürgisser).

2. Reduction to depth 4 ⇒ SPS polynomials of size 2o(n).

What’s wrong with this argument:
No high-degree analogue of reduction to depth 4
(think of Chebyshev’s polynomials).
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How the proof goes (more or less)

Assume that the permanent is easy.
Goal:
Show that SPS polynomials of size 2o(n) can compute

∏2n

i=1(X − i)
⇒ contradiction with real τ -conjecture.

1. From assumption:
∏2n

i=1(X − i) has circuits of polynomial in n
(Bürgisser).

2. Reduction to depth 4 ⇒ SPS polynomials of size 2o(n).

For step 2: need to use again the assumption that perm is easy.



A tractable special case

(joint work with B. Grenet, N. Portier and Y. Strozecki)

What if the number of distinct fij is very small (even constant)?

Consider f (X ) =
∑k

i=1

∏m
j=1 f

αij

j (X ),
where the fj are t-sparse.
Theorem 1 (number of real roots):

If f is nonzero, it has at most tO(m.2k) real roots.
Proof method: Do an induction on k and use Rolle’s theorem.
We have a sum of k terms: f (X ) =

∑k
i=1 Ti(X ).

Taking the derivative of f /T1 removes a term. �

Theorem 2 (identity testing): For fixed k and m,
f ≡ 0 can be tested deterministically in polynomial-time.
Remark: The algorithm is non-black-box:
It executes the induction in Theorem 1.
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A lower bound for restricted depth 4 circuits, or:

the limited power of powering.

Consider representations of the permanent of the form:

PER(X ) =
k∑

i=1

m∏

j=1

f
αij

j (X ) (1)

where

◮ X is a n × n matrix of indeterminates.

◮ k and m are bounded, and the αij are of polynomial bit size.

◮ The fj are polynomials in n2 variables,
with at most t monomials.

Theorem 3 (lower bound):
No such representation if t is polynomially bounded in n.
Remark: The point is that the αij may be nonconstant.
Otherwise, the number of monomials in (1) is polynomial in t.



Lower Bound Proof

◮ Assume otherwise:

PER(X ) =

k∑

i=1

m∏

j=1

f
αij

j (X ). (2)

◮ Since PER is easy, Pn =
∏2n

i=1(x − i) is easy too.
In fact [Bürgisser], Pn(x) = PER(X ) where X is of size nO(1),
with entries that are constants or powers of x .

◮ By (2) and Theorem 1, Pn should have only nO(1) real roots.
But Pn has 2n integer roots!

Remark:
The current proof requires the Generalized Riemann Hypothesis
(to handle arbitrary complex coefficients in the fj).



Lower Bound Proof

◮ Assume otherwise:

PER(X ) =

k∑

i=1

m∏

j=1

f
αij

j (X ). (2)

◮ Since PER is easy, Pn =
∏2n

i=1(x − i) is easy too.
In fact [Bürgisser], Pn(x) = PER(X ) where X is of size nO(1),
with entries that are constants or powers of x .

◮ By (2) and Theorem 1, Pn should have only nO(1) real roots.
But Pn has 2n integer roots!

Remark:
The current proof requires the Generalized Riemann Hypothesis
(to handle arbitrary complex coefficients in the fj).



Lower Bound Proof

◮ Assume otherwise:

PER(X ) =

k∑

i=1

m∏

j=1

f
αij

j (X ). (2)

◮ Since PER is easy, Pn =
∏2n

i=1(x − i) is easy too.
In fact [Bürgisser], Pn(x) = PER(X ) where X is of size nO(1),
with entries that are constants or powers of x .

◮ By (2) and Theorem 1, Pn should have only nO(1) real roots.
But Pn has 2n integer roots!

Remark:
The current proof requires the Generalized Riemann Hypothesis
(to handle arbitrary complex coefficients in the fj).



Bürgisser’s result: a proof sketch (1/4)

Goal: If permanent is easy,

then gn(X ) =

2n−1∏

i=1

(X + i) has polynomial size circuits.

Remark: Using assumption, to show that a polynomial family
is easy to compute we only have to put it in VNP.
Valiant’s criterion: Let

fn(x1, . . . , xp(n)) =

2p(n)−1∑

i=0

an(i)x
i1
1 · · · x

ip(n)

p(n).

If a : (1n, i) 7→ an(i) ∈ {0, 1} is in P/poly then (fn) ∈ VNP.
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Proof sketch (2/4)

The counting hierarchy: C0p = P; C1P = PP where A ∈ PP
iff there exists a polynomial p and B ∈ P such that for |x | = n:

x ∈ A ⇔ |{y ∈ {0, 1}p(n); 〈x , y〉 ∈ B}| > 2p(n)−1.

C2p = PPPP, C3P = PPC2P,. . .
If the permanent is easy to compute then CH ⊆ P/poly
(asumes GRH if circuits can use arbitrary constants).
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Proof sketch (3/4)

Expand product: gn(X ) =

2n−1∏

i=1

(X + i) =

2n−1∑

α=0

an(α)X
α.

Binary expansion: an(α) =
2c.n−1∑

i=0

an(i , α)2
i .

Hence:

gn =

2n−1∑

α=0

2c.n−1∑

i=0

an(i , α)2
iXα
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Proof sketch (4/4)

Recall: hn =
∑

α

∑
i an(i , α)X

α1
1 · · ·Xαn

n Z i1
1 · · ·Z ic·n

c·n .
Theorem: The an(i , α) can be computed in CH (Bürgisser).
Proof: based on constant-depth threshold circuits
for iterated multiplication.�
From assumption: CH ⊆ P/poly.
Hence (hn) ∈ VNP (Valiant’s criterion), but VP = VNP.

Substitution of powers 22
i
and X 2j in hn ⇒

polynomial size circuits for

2n−1∏

i=1

(X + i).�

Corollary:
Reduction to depth 4 for hn ⇒ SPS polynomial of size 2o(n) for gn.
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To Be Done...

◮ Real τ -conjecture: prove or disprove.

◮ Some special cases:
◮ k = 2: how many real solutions to f1 · · · fm = g1 · · · gm?
◮ An even simpler question

(courtesy of Arkadev Chattopadhyay):
how many real solutions to fg = 1 ?
Descartes’ bound is O(t2) but true bound could be O(t).

◮ What about random polynomials ?
Encouraging experimental results by Stefan Mengel.

◮ Instead of real roots, bound the number of p-adic roots ?
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Constant-free version of Valiant’s model

◮ Work with constant-free circuits (1 is the only constant).

◮ (fn) ∈ VP0 if size and formal degree of circuits
are polynomially bounded (Malod, 2003).
Formal degree is an upper bound on deg(fn):

1. 1 for an input gate (variable or constant).
2. Max of formal degrees of two inputs for +,− gate.
3. Sum of formal degrees for × gate.

◮ New goal: PER(X )6∈VP0.


