Now we want to turn the table around and ask if IND proves PHP or any of the variants of WPHP. We considered three PHP-type principles so far:

$$
P H P_{x}^{x+1}, W P H P_{x}^{2 x} \text { and } W P H P_{x}^{x^{2}}
$$

ordered from logically strongest to weakest (over $P A^{-}$implying that $x^{2}>2 x>$ $x+1$ for $x \geq 1$). I am writing it with x in place of n in order not to confuse n with a length of any number: in these principles it only plays a role of a parameter.

We shall define actually yet weaker form:

$$
W P H P_{|x|-1}^{x}(f) \Leftrightarrow f \text { is not a 1-to-1 map from } x \text { into }|x|-1 .
$$

In other words, the gap between the sizes of the domain and the range is now exponential.

Our next problem is:
Problem 4: Show that $I \Delta_{0}$ proves $W P H P_{|x|}^{x}(f)$ for all Δ_{0}-definable maps.
For simplicity consider x of the form $x=2^{k}$. Hence elements $y<x=2^{k}$ (i.e. the domain of f) are - in the sense of the 2 nd notes about Problems 2 and 3 - subsets of $\{k-1, \ldots, 0\}$ while the set of $z<|x|-1=k$ (containing the range of f) is $\{0, \ldots, k-1\}$; to get exactly this set is the reason why I wrote the cosmetic $|x|-1$ in the principle as $|x|=\log _{2} x+1$.

