Our eventual goal (after solving the following problem and Problem 6) is to show that both versions of the WPHP:

$$WPHP_x^{2x}$$
 and $WPHP_x^{x^2}$ (1)

are also provable in $I\Delta_0$, although we will need to include this time axiom Ω_1 (it is not known whether it is indeed needed). Recall that Ω_1 says that $\forall x \exists y \ y = x^{|x|}$, cf. Section 5.1 in my 1995 book.

In solving this problem you will need to code in $I\Delta_0$ sequences of length $\sim |x|$ of numbers $\langle x \rangle$: each such number has length up to |x| and hence the total bit length of such a sequence is $|x|^2$, and the code y may be of size up to $2^{|x|^2} = x^{|x|}$. Axiom Ω_1 is exactly what you need to prove that such y exists.

Problem 5: Show that the two principles (1) accepted for all Δ_0 maps are in theory $I\Delta_0 + \Omega_1$ equivalent.

Clearly the first principle implies the second so the task is to prove the opposite implication. In other words, if $f : 2x \to x$ violates WPHP^{2x}_x we want to define from f using bounded quantifiers (i.e. $\Delta_0(f)$ -define) a map $g : x^2 \to x$ violating WPHP^{x²}_x. Hint: define injective maps into x with bigger and bigger domains 4x, 8x,

all the way up to $2^{|x|}x = x^2$.