Problem 6 (stated below) is the last one in the *positive* (and easier) part of our PHP investigation. The qualification positive means that Problems 1-6 asked us to demonstrate that some statement is provable. The *negative* (and harder in my view) problems then ask to show that something is not provable. Hopefully we get to them sometimes in future.

After Problem 5 we know that versions WPHP^{2x}_x and WPHP^{x²}_x are equivalent over $I\Delta_0 + \Omega_1$ and, even better, that the *exponential* version WPHP^x_x are equivalent provable (in $I\Delta_0$ alone). Our task, formalized in Problem 6, will be to show that both WPHP^{2x}_x and WPHP^{x²}_x are actually also provable in $I\Delta_0 + \Omega_1$. Our strategy will be to reduce them to something like the exponential version. It is actually possible to reduce them in $I\Delta_0 + \Omega_1$ to WPHP^x_{x-1} but that is technically rather cumbersome and, for me at least, not much intuitive. I think it is better to follow the line of thinking how we solved Problem 5.

Namely, assume $g_1: x^2 \to x$ violates $WPHP_x^{x^2}$, and assume as before w.l.o.g. that $x = 2^k$, so $x (= \{0, \ldots, x-1\})$ can be identified with binary words of length k. And as before, we also think of x^2 as of $x \times x$, and analogously of x^4 as $x \times x \times x \times x$, etc.

Having $(a, b, c, d) \in x^4$, define $g_2(a, b, c, d) = g_1(g_1(a, b), g_1(c, d))$. Map g_2 is an injective map from x^4 into x. Now the idea is, as in the solution to Problem 5, to iterate this idea along the binary tree of depth k, creating injective maps

$$g_t: x^{2^{\iota}} \to x$$
, for $t = 1, 2, \dots, k$.

The last one g_k is a map from x^x into x and that would be brought into contradiction as in the original exponential version by Cantor's diagonal argument.

BUT there is a fundamental problem: Parikh's theorem implies that we cannot prove that the number x^x exists at all! We shall try to salvage as much as possible from the earlier argument and the next problem ought to direct you how to do it.

Problem 6: Assume $g: x^2 \to x$ violates WPHP. Assume $x = 2^k$. Show that there is a function $x \times \{0,1\}^k \to x$ sending $(u,i) \in x \times \{0,1\}^k$ to $(u)_i \in x$ such that for any definable set $H \subseteq x$ there is u < x s.t. for all $i \in \{0,1\}^k$:

$$i \in H$$
 iff $(u)_i = 1$.

Use this to prove in $I\Delta_0 + \Omega_1$ principles $WPHP_x^{2x}$ and $WPHP_x^{x^2}$.

Hint: For the first part think of $(u)_i$ as reconstructing the label of the leaf reachable by path *i* when root is labeled by *u*, and then adopt to this situation Cantor's diagonal argument.