Problem set 18.3.2020

Let A(y, z) be a formula (possibly with other parameters) and let PHP(A) be (the universal closure of):

 $\forall y < x + 1 \exists ! z < x A(y, z) \rightarrow \exists y_1 < y_2 < x + 1 \exists z < x (A(y_1, z) \land A(y_2, z)) .$

It expresses the statement that if A defines a graph of a function with domain $\{0, \ldots, x\}$ and range included in $\{0, \ldots, x-1\}$ then it cannot be injective. This is the pigeonhole principle.

Problem 1 Denote by Δ_0 -PHP the theory PA^- plus the scheme PHP(A) accepted for all Δ_0 -formulas. Show that this theory proves all axioms of $I\Delta_0$, i.e. it proves induction for all bounded formulas.

Now consider (logically weaker) weak forms of the PHP scheme:

- $WPHP_n^{2n}$: replace x + 1 in the PHP by 2x, and
- $WPHP_n^{n^2}$: replace x + 1 in the PHP by x^2 .

Problem 2: Show the same as in Problem 1 for these two WPHP principles.

Allow in the language of arithmetic also a new binary relation symbol R(u, v): $\Delta_0(R)$ are bounded formulas in this extended language and $I\Delta_0(R)$ is defined as $I\Delta_0$ but in this language. In particular, it has no specific axioms about R: R occurs only in formulas in the induction scheme.

Problem 3: Show that the arguments solving Problems 1 and 2 work for $\Delta_0(R)$ as well.