# Characterization of circuit size in terms of PLS problems and communication complexity 

Rocio Xicohténcatl Reza

## Recall: Karchmer-Wigderson game

- Let $U, V, I$ be finite sets, and $R \subseteq U \times V \times I$ be a ternary relation such that:

$$
\forall u \in U \forall v \in V \exists i \in I((u, v, i) \in R)
$$

- KW-protocol: a finite binary tree T that represents the exchange bits of information
- The communication complexity of $R(C C(R))$ is the minimum height of a KW-protocol tree that computes R


## Local search problems

- Definition

A local search problem $L$ consist of a set $F_{L}(x) \subseteq N$ of solutions for every instance $x \in N$, an integer-valued cost function $c_{L}(s, x)$ and a neighborhood function $N_{L}(s, x)$ such that:

$$
\text { i) } 0 \in F_{L}(x) \text {; }
$$

$$
\text { ii) } \forall s \in F_{L}(x), N_{L}(s, x) \in F_{L}(x) \text {; }
$$

$$
\text { iii) } \forall s \in F_{L}(x) \text {, if } N_{L}(s, x) \neq s \text { then } c_{L}(s, x)<c_{L}\left(N_{L}(s, x)\right)
$$

- Definition

A local optimum for the problem $L$ on $x$ is an $s$ such that:

$$
\mathrm{s} \in F_{L}(x)
$$

and

$$
N_{L}(s, x)=s
$$

## Polynomial Local Search problems

- Definition

A local search problem L is polynomial
i) if the binary predicate $\mathrm{s} \in F_{L}(x)$ and the functions $c_{L}(s, x), N_{L}(s, x)$ are polynomially time computable
ii) there exists a polynomial $p_{L}(n)$ such that

$$
\forall s \in F_{L}(x)|s| \leq p_{L}(|x|)
$$

- Considering a Karchmer-Wigderson game
- Local search problems whose instances $x$ are (encondings of) pairs ( $u, v$ ); $u \in U, v \in V$

For any problem $L=<F_{L}, c_{L}, N_{L}>$

- Let $C\left(F_{L}, c_{L}\right)$ be the communication complexity of computing simultaneously the predicate $s \in F_{L}(u, v)$ and the function $c_{L}(s, u, v)$ in the model when the first player gets $(s, u)$, and the second gets $(s, v)$
$s$ is in the public domain and $\mathrm{C}\left(N_{L}\right)$ is defined similarly
- Definition

The size of L is:

$$
\left|\bigcup_{\substack{u \in U \\ v \in V}} F_{L}(u, v)\right| \cdot 2^{2 C\left(F_{L}, c_{L}\right)+C\left(N_{L}\right)}
$$

- Definition

We say that $R$ reduces to $L$ if there exists a polynomial function $p: \boldsymbol{N} \rightarrow I$ such that for any $(u, v) \in U \times V$ and any local optimum $s$ for $L$ on $(u, v)$, we have $(u, v, p(s)) \in R$

We define $\operatorname{size}(R)$ as

$$
\min \{\operatorname{size}(L) \mid R \text { reduces to } L\}
$$

## Theorem

a) For every partial Boolean function $f, \operatorname{size}\left(R_{f}\right)=\theta(S(f))$
b) For every monotone partial Boolean function $f$,

$$
\operatorname{size}\left(R_{f}^{m o n}\right)=\theta\left(S_{m o n}(f)\right)
$$

## Proof

## Let:

- $f$ be a partial Boolean function in $n$ variables
- $t \rightleftharpoons S(f)$
- $C$ be a size-t circuit computing $f$


## Proof

- Denote $f^{-1}(0)$ by $U$ and $f^{-1}(1)$ by $V$
- We aim to reduce $R_{f}$ to a local search problem $L$ of size $O(t)$.
- Assume $t \geq n-1$
- Arrange nodes $w_{1}, \ldots, w_{t}$ of $C$ such that a wire go from $w_{\mu}$ to $w_{v}$ only when $\mu<v$, and $f_{v}$ is the function computed at $w_{v}$
- Encode nodes $w_{1}, \ldots, w_{t}$ by integers $n_{1}, \ldots, n_{t}$ so that $n_{t}=0$ and $\{1, \ldots, n\} \cap\left\{n_{1}, \ldots, n_{t}\right\}=\varnothing$


## Proof

We construct $L$ as follows:

$$
F_{L}(u, v) \rightleftharpoons\left\{i \mid 1 \leq i \leq n \& u_{i} \neq v_{i}\right\} \cup\left\{n_{v} \mid 1 \leq v \leq t \& f_{v}(u)=0 \& f_{v}(v)=1\right\}
$$

$$
\begin{aligned}
& c_{L}(i, u, v) \rightleftharpoons 0 \text { for } 1 \leq i \leq n \\
& N_{L}(i, u, v) \rightleftharpoons i \text { for } 1 \leq i \leq n \\
& c_{L}\left(n_{v}, u, v\right) \rightleftharpoons v \text { for } 1 \leq v \leq t
\end{aligned}
$$

## Proof

$$
N_{L}\left(n_{v}, u, v\right) \rightleftharpoons 0 \quad \text { if } n_{v} \notin F_{L}(u, v)
$$

Otherwise, i.e. $f_{v}(u)=0, f_{v}(v)=1$
we choose one of the two sons of $w_{v}$ for which this property is preserved

If this son is a computational node $w_{\mu}$

$$
N_{L}\left(n_{v}, u, v\right) \rightleftharpoons n_{\mu}
$$

If this son is a leaf $x_{i}^{\epsilon}$

$$
N_{L}\left(n_{v}, u, v\right) \rightleftharpoons i
$$

## Proof

Then it is easy to see that $R_{f}$ reduces to $L$

And $C\left(F_{L}, c_{L}\right) \leq 2$ and $C\left(N_{L}\right) \leq 3$

Hence,

$$
\operatorname{size}(L) \leq O(n+t)
$$

And $t \geq n-1$

$$
\operatorname{size}(L) \leq O(t)
$$

For another non-trivial direction:

- Assume that $R_{L}$ reduces via a function $p$ to a local search problem $L$

Let

$$
\begin{gathered}
h_{0} \rightleftharpoons 2^{C\left(F_{L}, c_{L}\right)} \\
h_{1} \rightleftharpoons 2^{C\left(N_{L}\right)}
\end{gathered}
$$

- For every fixed $s \in \bigcup_{u \in U} F_{L}(u, v)$ $v \in V$

We have:
$P_{s}$ for computing $s \in F_{L}(u, v)$
$c_{L}(s, u, v)$ with at most $h_{0}$ different histories

- $h_{0}$ defines a partition of $U \times V$ :

$$
U_{s, 1} \times V_{s, 1} ; \ldots ; U_{s, h_{0}} \times V_{s, h_{0}}
$$

Such that $F_{L}, c_{L}$ are fully determined on $U_{s, i} \times V_{s, i}$
That is, for some predicates $\alpha_{s} \subseteq\left[h_{0}\right]$ and some $\eta_{s}:\left[h_{0}\right] \rightarrow N$, for all $i \in\left[h_{0}\right]$ and for all $(u, v) \in U_{s, i} \times V_{s, i}$ :

$$
\begin{gathered}
s \in F_{L}(u, v) \text { iff } i \in \alpha_{s} \\
c_{L}(s, u, v)=\eta_{s}(i)
\end{gathered}
$$

"good" rectangle $U_{s, i} \times V_{s, i}$

$$
i \in \alpha_{s}
$$

Cost of rectangle $U_{s, i} \times V_{s, i}$

$$
\eta_{s}(i)
$$

We order good rectangles, so their costs are non-decreasing:

$$
U^{1} \times V^{1} ; \ldots ; U^{H_{0}} \times V^{H_{0}}
$$

Where $H_{0} \leq \mid \underset{v \in V}{\mathrm{U}_{u \in U} F_{L}(u, v) \mid \cdot h_{0}}$

- Construct by induction on $v \leq H_{0}$ a circuit $C_{v}$ :

For every $\mu \leq v$ there exists a node $\omega_{\mu}$ of $C_{v}$ computing $f_{\mu}$ such that:

$$
\left.f_{\mu}\right|_{U^{\mu}} \equiv 0,\left.\quad f_{\mu}\right|_{V^{\mu}} \equiv 1
$$

Assume we already have $C_{v-1}$,
$C_{\nu}$ will be obtained by adding at most $h_{0} h_{1}$ new nodes for computing $f_{v}$ with required properties from $f_{1}, \ldots, f_{v-1}$

- Let

$$
U^{v} \times V^{v}=U_{s, i} \times V_{s, i}
$$

Consider the protocol $P_{S}^{*}$ of complexity at most $C\left(F_{L}, c_{L}\right)+C\left(N_{L}\right)$

We run the optimal protocol for computing $N_{L}(s, u, v)$

$$
s^{\prime} \rightleftharpoons N_{L}(s, u, v)
$$

Then we run $P_{s^{\prime}}$

- $y_{1}, \ldots, y_{H}$ for those histories of $P_{s}^{*}$ which correspond to at least one instance $(u, v) \in U_{s, i} \times V_{s, i}$
- For every $u \in U_{s, i}$ let $\bar{u}$ be the assignment on $\{0,1\}^{H}$
$\bar{u}_{h}=0$ if there exists $v \in V_{s, i}$ such that $P_{s}^{*}$ develops according to $h$
$\bar{u}_{h}=1$ otherwise
$\bar{v}_{h}=1$ iff there exists $u \in U_{s, i}$ such that $P_{s}^{*}$ develops according to $h$
- So for every pair $(u, v) \in U_{s, i} \times V_{s, i}$ we have

$$
\bar{u}_{h}=0, \bar{v}_{h}=1
$$

Hence, the partial Boolean function

$$
\begin{aligned}
& \hat{f}_{v}\left(y_{1}, \ldots, y_{H}\right)=0 \text { on }\left\{\bar{u}_{h} \mid u \in U_{s, i}\right\} \\
& \hat{f}_{v}\left(y_{1}, \ldots, y_{H}\right)=1 \text { on }\left\{\bar{v}_{h} \mid v \in V_{s, i}\right\}
\end{aligned}
$$

undefined elsewhere
is monotone and the protocol $P_{S}^{*}$ finds a solution to $R_{\hat{f}_{v}}^{m o n}$

- (Recall) Let

$$
U^{v} \times V^{v}=U_{s, i} \times V_{s, i}
$$

Consider the protocol $P_{S}^{*}$ of complexity at most $C\left(F_{L}, c_{L}\right)+C\left(N_{L}\right)$

We run the optimal protocol for computing $N_{L}(s, u, v)$

$$
s^{\prime} \rightleftharpoons N_{L}(s, u, v)
$$

Then we run $P_{s^{\prime}}$

- By proposition (from KW game):

For every (partial) monotone Boolean function $f$, $C\left(R_{f}^{\text {mon }}\right)=D_{\text {mon }}(f)$

$$
D_{\text {mon }}\left(\hat{f}_{v}\right) \leq C\left(F_{L}, c_{L}\right)+C\left(N_{L}\right)
$$

And the same bound holds for some total monotone extension $\bar{f}_{v}$

Note that this implies:

$$
S_{\text {mon }}\left(\bar{f}_{v}\right) \leq h_{0} h_{1}
$$

- Consider a particular $h$ of $P_{s}^{*}$
- Let $\left(s^{\prime}, j\right)$ be the corresponding subprotocol $P_{s^{\prime}}$
- By LS definition, ii)

$$
\forall s \in F_{L}(x), N_{L}(s, x) \in F_{L}(x)
$$

Rectangle $U_{s, i} \times V_{s, i}$ is good

- By part iii)

$$
\forall s \in F_{L}(x) \text {, if } N_{L}(s, x) \neq s \text { then } c_{L}(s, x)<c_{L}\left(N_{L}(s, x)\right)
$$

either $s^{\prime}=s$ or $c\left(U_{s^{\prime}, j} \times V_{s^{\prime}, j}\right)<c\left(U_{s, i} \times V_{s, i}\right)$

- If $s^{\prime}=s$
- $s$ is a local optimum for $L$ on every $(u, v) \in U_{s, i} \times V_{s, i}$
- Since $R_{f}$ reduces to $L$, this means that $u_{p(s)} \neq v_{p(s)}$
- Implying actually that $u_{p(s)}=\epsilon, v_{p(s)}=(\neg \epsilon)$
for some fixed $\epsilon \in\{0,1\}$
- Let $y^{\prime}{ }_{h} \rightleftharpoons x_{p(s)}^{(\neg \epsilon)}$
- If cost of $\left(U_{s^{\prime}, j} \times V_{s^{\prime}, j}\right)<\operatorname{cost}$ of $\left(U_{s, i} \times V_{s, i}\right)$

$$
U_{s^{\prime}, j} \times V_{s^{\prime}, j}=U^{\mu} \times V^{\mu}
$$

- For some $\mu \leq v$
- Let $y^{\prime}{ }_{h} \rightleftharpoons f_{\mu}$
- Finally
- Let $f_{v} \rightleftharpoons \bar{f}_{v}\left(y^{\prime}{ }_{h}, \ldots, y_{H}\right)$
- $f_{\nu}$ can be computed by appending at most $h_{0} h_{1}$ nodes to $C_{\nu-1}$
- Since $\bar{f}_{v}$ is monotone and for every $u \in U^{v}$

$$
\bar{f}_{v}\left(\bar{u}_{1}, \ldots, \bar{u}_{H}\right)=0
$$

To check $f_{v}(u)=0$, we only need to check, for any $h$

$$
y_{h}^{\prime}(u) \leq \bar{u}_{h}
$$

To check $f_{v}(u)=0$, we only need to check, for any $h$

$$
y_{h}^{\prime}(u) \leq \bar{u}_{h}
$$

Note that if $\bar{u}_{h}=0$, then for some $v \in V^{v}$ the computation on $(u, v)$ proceeds along $h$

Due to our choice of $y^{\prime}{ }_{h}$, implies $y^{\prime}{ }_{h}(u)=0$
By dual argument, $f_{v}(v)=1$, for all $v \in V^{v}$

This completes the construction of $C_{v}$

- Now

$$
C_{H_{0}} \text { has size at most } H_{0} h_{0} h_{1}
$$

- By LS problem definition i), all rectangles $U_{0, i} \times V_{0, i}$ are good
- Thus, adding at most $h_{0}$ new nodes to $C_{H_{0}}$ we compute $f$ by a circuit of size $O(\operatorname{size}(L))$


## Sources

- A.A.Razborov, Unprovability of lower bounds on the circuit size in certain fragments of bounded arithmetic, Izvestiya RAN., 59(1) (1995), 201-224.

