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Recall: Karchmer-Wigderson game

• Let 𝑈, 𝑉, 𝐼 be finite sets, and 𝑅 ⊆ 𝑈 × 𝑉 × 𝐼 be a ternary relation 
such that:

∀𝑢 ∈ 𝑈 ∀𝑣 ∈ 𝑉 ∃𝑖 ∈ 𝐼 𝑢, 𝑣, 𝑖 ∈ 𝑅

• KW-protocol: a finite binary tree T that represents the exchange 
bits of information

• The communication complexity of R (CC(R)) is the minimum 
height of a KW-protocol tree that computes R



Local search problems

• Definition

A local search problem L consist of a set 𝐹𝐿 𝑥 ⊆ N of solutions for 
every instance x ∊ N, an integer-valued cost function 𝑐𝐿 𝑠, 𝑥 and a 
neighborhood function 𝑁𝐿 𝑠, 𝑥 such that:

i) 0 ∈ 𝐹𝐿 𝑥 ;

ii) ∀𝑠 ∈ 𝐹𝐿 𝑥 , 𝑁𝐿 𝑠, 𝑥 ∈ 𝐹𝐿 𝑥 ;

iii) ∀𝑠 ∈ 𝐹𝐿 𝑥 , if 𝑁𝐿 𝑠, 𝑥 ≠ 𝑠 𝑡ℎ𝑒𝑛 𝑐𝐿 𝑠, 𝑥 < 𝑐𝐿 𝑁𝐿(𝑠, 𝑥)



• Definition

A local optimum for the problem L on x  is an s such that:

s ∈ 𝐹𝐿 𝑥

and

𝑁𝐿 𝑠, 𝑥 = 𝑠



Polynomial Local Search problems

• Definition

A local search problem L is polynomial

i) if the binary predicate s ∈ 𝐹𝐿 𝑥 and the functions
𝑐𝐿 𝑠, 𝑥 , 𝑁𝐿 𝑠, 𝑥 are polynomially time computable 

ii) there exists a polynomial 𝑝𝐿 𝑛 such that

∀𝑠 ∈ 𝐹𝐿 𝑥 𝑠 ≤ 𝑝𝐿 𝑥



• Considering a Karchmer-Wigderson game

• Local search problems whose instances x are (encondings of) 
pairs 𝑢, 𝑣 ; 𝑢 ∈ 𝑈, 𝑣 ∈ 𝑉

For any problem 𝐿 =< 𝐹𝐿 , 𝑐𝐿 , 𝑁𝐿 >

• Let 𝐶 𝐹𝐿 , 𝑐𝐿 be the communication complexity of computing
simultaneously the predicate s ∈ 𝐹𝐿 𝑢, 𝑣 and the function
𝑐𝐿 𝑠, 𝑢, 𝑣 in the model when the first player gets (𝑠, 𝑢), and the
second gets (𝑠, 𝑣)

s is in the public domain and C(𝑁𝐿) is defined similarly



• Definition

The size of L is:

ራ
𝑢∈𝑈
𝑣∈𝑉

𝐹𝐿(𝑢, 𝑣) ∙ 22𝐶 𝐹𝐿,𝑐𝐿 +𝐶(𝑁𝐿)



• Definition

We say that R reduces to L if there exists a polynomial function
𝑝: 𝑵 → 𝐼 such that for any (𝑢, 𝑣) ∈ 𝑈 × 𝑉 and any local optimum s
for L on (𝑢, 𝑣), we have 𝑢, 𝑣, 𝑝 𝑠 ∈ 𝑅

We define size(R) as

min 𝑠𝑖𝑧𝑒 𝐿 𝑅 𝑟𝑒𝑑𝑢𝑐𝑒𝑠 𝑡𝑜 𝐿}



Theorem

a) 𝐹𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑝𝑎𝑟𝑡𝑖𝑎𝑙 𝐵𝑜𝑜𝑙𝑒𝑎𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑓, 𝑠𝑖𝑧𝑒 𝑅𝑓 = 𝜃 𝑆 𝑓

b) 𝐹𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑚𝑜𝑛𝑜𝑡𝑜𝑛𝑒 𝑝𝑎𝑟𝑡𝑖𝑎𝑙 𝐵𝑜𝑜𝑙𝑒𝑎𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑓,

𝑠𝑖𝑧𝑒 𝑅𝑓
𝑚𝑜𝑛 = 𝜃 𝑆𝑚𝑜𝑛 𝑓



Proof

Let:

• 𝑓 be a partial Boolean function in n variables

• 𝑡 ⇌ 𝑆(𝑓)

• C be a size-t circuit computing 𝑓



Proof

• Denote 𝑓−1 0 𝑏𝑦 𝑈 and 𝑓−1(1) 𝑏𝑦 𝑉

• We aim to reduce 𝑅𝑓 to a local search problem L of size 𝑂 𝑡 .

• Assume 𝑡 ≥ 𝑛 − 1

• Arrange nodes 𝑤1, … , 𝑤𝑡 of 𝐶 such that a wire go from 𝑤𝜇to 𝑤𝜈

only when 𝜇 < 𝜈, and 𝑓𝜈 is the function computed at 𝑤𝜈

• Encode nodes 𝑤1, … , 𝑤𝑡 by integers 𝑛1, … , 𝑛𝑡 so that 𝑛𝑡 = 0 and 
1, … , 𝑛 ∩ 𝑛1, … , 𝑛𝑡 = ∅



Proof

We construct L as follows:

𝐹𝐿 𝑢, 𝑣 ⇌ 𝑖│1 ≤ 𝑖 ≤ 𝑛 & 𝑢𝑖 ≠ 𝑣𝑖 ∪ 𝑛𝜈│1 ≤ 𝜈 ≤ 𝑡 &𝑓𝜈 𝑢 = 0 & 𝑓𝜈 𝑣 = 1

𝑐𝐿 𝑖, 𝑢, 𝑣 ⇌ 0 for 1 ≤ 𝑖 ≤ 𝑛

𝑁𝐿 𝑖, 𝑢, 𝑣 ⇌ 𝑖 for 1 ≤ 𝑖 ≤ 𝑛

𝑐𝐿 𝑛𝜈 , 𝑢, 𝑣 ⇌ 𝜈 for 1 ≤ 𝜈 ≤ 𝑡



Proof

𝑁𝐿 𝑛𝜈 , 𝑢, 𝑣 ⇌ 0 if 𝑛𝜈 ∉ 𝐹𝐿 𝑢, 𝑣

Otherwise, i.e. 𝑓𝜈 𝑢 = 0, 𝑓𝜈(𝑣) = 1

we choose one of the two sons of 𝑤𝜈 for which this property is
preserved

If this son is a computational node 𝑤𝜇

𝑁𝐿 𝑛𝜈 , 𝑢, 𝑣 ⇌ 𝑛𝜇

If this son is a leaf 𝑥𝑖
𝜖

𝑁𝐿 𝑛𝜈 , 𝑢, 𝑣 ⇌ 𝑖



Proof

Then it is easy to see that 𝑅𝑓 𝑟𝑒𝑑𝑢𝑐𝑒𝑠 𝑡𝑜 𝐿

And 𝐶(𝐹𝐿 , 𝑐𝐿) ≤ 2 and 𝐶 𝑁𝐿 ≤ 3

Hence,
𝑠𝑖𝑧𝑒 𝐿 ≤ 𝑂 𝑛 + 𝑡

And 𝑡 ≥ 𝑛 − 1
𝑠𝑖𝑧𝑒(𝐿) ≤ 𝑂(𝑡)



For another non-trivial direction:

• Assume that 𝑅𝐿reduces via a function p to a local search problem L



Let
ℎ0 ⇌ 2𝐶(𝐹𝐿,𝑐𝐿)

ℎ1 ⇌ 2𝐶(𝑁𝐿)

• For every fixed 𝑠 ∈ 𝑢∈𝑈ڂ
𝑣∈𝑉

𝐹𝐿(𝑢, 𝑣)

We have:

𝑃𝑠 for computing 𝑠 ∈ 𝐹𝐿 𝑢, 𝑣

𝑐𝐿 𝑠, 𝑢, 𝑣 with at most ℎ0 different histories



• ℎ0 defines a partition of 𝑈 × 𝑉: 

𝑈𝑠,1 × 𝑉𝑠,1; … ; 𝑈𝑠,ℎ0
× 𝑉𝑠,ℎ0

Such that 𝐹𝐿 , 𝑐𝐿 are fully determined on 𝑈𝑠,𝑖 × 𝑉𝑠,𝑖

That is, for some predicates 𝛼𝑠 ⊆ ℎ0 and some 𝜂𝑠: ℎ0 → 𝑵, for all 
𝑖 ∈ ℎ0 and for all (𝑢, 𝑣) ∈ 𝑈𝑠,𝑖× 𝑉𝑠,𝑖:

𝑠 ∈ 𝐹𝐿 𝑢, 𝑣 iff 𝑖 ∈ 𝛼𝑠

𝑐𝐿 𝑠, 𝑢, 𝑣 = 𝜂𝑠(𝑖)



“good” rectangle 𝑈𝑠,𝑖 × 𝑉𝑠,𝑖

𝑖 ∈ 𝛼𝑠

Cost of rectangle 𝑈𝑠,𝑖 × 𝑉𝑠,𝑖

𝜂𝑠(𝑖)

We order good rectangles, so their costs are non-decreasing:

𝑈1 × 𝑉1; … ; 𝑈𝐻0 × 𝑉𝐻0

Where 𝐻0 ≤ 𝑢∈𝑈ڂ
𝑣∈𝑉

𝐹𝐿(𝑢, 𝑣) ∙ ℎ0



• Construct by induction on 𝜈 ≤ 𝐻0 a circuit 𝐶𝜈:

For every 𝜇 ≤ 𝜈 there exists a node 𝜔𝜇 of 𝐶𝜈 computing 𝑓𝜇 such that:

𝑓𝜇|𝑈𝜇 ≡ 0, 𝑓𝜇|𝑉𝜇 ≡ 1

Assume we already have 𝐶𝜈−1, 

𝐶𝜈 will be obtained by adding at most ℎ0ℎ1 new nodes for
computing 𝑓𝜈 with required properties from 𝑓1, … , 𝑓𝜈−1



• Let
𝑈𝜈 × 𝑉𝜈 = 𝑈𝑠,𝑖 × 𝑉𝑠,𝑖

Consider the protocol 𝑃𝑠
∗ of complexity at most 𝐶 𝐹𝐿 , 𝑐𝐿 + 𝐶 𝑁𝐿

We run the optimal protocol for computing 𝑁𝐿 𝑠, 𝑢, 𝑣

𝑠′ ⇌ 𝑁𝐿 𝑠, 𝑢, 𝑣

Then we run 𝑃𝑠′



• 𝑦1, … , 𝑦𝐻 for those histories of 𝑃𝑠
∗ which correspond to at least one 

instance (𝑢, 𝑣) ∈ 𝑈𝑠,𝑖 × 𝑉𝑠,𝑖

• For every 𝑢 ∈ 𝑈𝑠,𝑖 let ത𝑢 be the assignment on 0,1 𝐻

ത𝑢ℎ = 0 if there exists 𝑣 ∈ 𝑉𝑠,𝑖 such that 𝑃𝑠
∗ develops according to h

ത𝑢ℎ = 1 otherwise

ҧ𝑣ℎ = 1 iff there exists 𝑢 ∈ 𝑈𝑠,𝑖 such that 𝑃𝑠
∗ develops according to h



• So for every pair (𝑢, 𝑣) ∈ 𝑈𝑠,𝑖 × 𝑉𝑠,𝑖 we have

ത𝑢ℎ = 0 , ҧ𝑣ℎ = 1

Hence, the partial Boolean function
መ𝑓𝜈 𝑦1, … , 𝑦𝐻 = 0 on {ത𝑢ℎ|𝑢 ∈ 𝑈𝑠,𝑖}

መ𝑓𝜈 𝑦1, … , 𝑦𝐻 = 1 on { ҧ𝑣ℎ|𝑣 ∈ 𝑉𝑠,𝑖}

undefined elsewhere

is monotone and the protocol 𝑃𝑠
∗ finds a solution to 𝑅 መ𝑓𝜈

𝑚𝑜𝑛



• (Recall) Let
𝑈𝜈 × 𝑉𝜈 = 𝑈𝑠,𝑖 × 𝑉𝑠,𝑖

Consider the protocol 𝑃𝑠
∗ of complexity at most 𝐶 𝐹𝐿 , 𝑐𝐿 + 𝐶 𝑁𝐿

We run the optimal protocol for computing 𝑁𝐿 𝑠, 𝑢, 𝑣

𝑠′ ⇌ 𝑁𝐿 𝑠, 𝑢, 𝑣

Then we run 𝑃𝑠′



• By proposition (from KW game):
𝐹𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 (𝑝𝑎𝑟𝑡𝑖𝑎𝑙) 𝑚𝑜𝑛𝑜𝑡𝑜𝑛𝑒 𝐵𝑜𝑜𝑙𝑒𝑎𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑓,
𝐶 𝑅𝑓

𝑚𝑜𝑛 = 𝐷𝑚𝑜𝑛 𝑓

𝐷𝑚𝑜𝑛
መ𝑓𝜈 ≤ 𝐶 𝐹𝐿 , 𝑐𝐿 + 𝐶 𝑁𝐿

And the same bound holds for some total monotone extension ҧ𝑓𝜈

Note that this implies:
𝑆𝑚𝑜𝑛

ҧ𝑓𝜈 ≤ ℎ0ℎ1



• Consider a particular h of 𝑃𝑠
∗

• Let (𝑠′, 𝑗) be the corresponding subprotocol 𝑃𝑠′

• By LS definition, ii)
∀𝑠 ∈ 𝐹𝐿 𝑥 , 𝑁𝐿 𝑠, 𝑥 ∈ 𝐹𝐿 𝑥

Rectangle 𝑈𝑠,𝑖 × 𝑉𝑠,𝑖 is good

• By part iii)
∀𝑠 ∈ 𝐹𝐿 𝑥 , if 𝑁𝐿 𝑠, 𝑥 ≠ 𝑠 𝑡ℎ𝑒𝑛 𝑐𝐿 𝑠, 𝑥 < 𝑐𝐿 𝑁𝐿(𝑠, 𝑥)

either 𝑠′ = 𝑠 or 𝑐(𝑈𝑠′,𝑗 × 𝑉𝑠′,𝑗) < 𝑐(𝑈𝑠,𝑖 × 𝑉𝑠,𝑖)



• If 𝑠′ = 𝑠

• s is a local optimum for L on every (𝑢, 𝑣) ∈ 𝑈𝑠,𝑖 × 𝑉𝑠,𝑖

• Since 𝑅𝑓 reduces to L, this means that 𝑢𝑝(𝑠) ≠ 𝑣𝑝(𝑠)

• Implying actually that 𝑢𝑝(𝑠) = 𝜖, 𝑣𝑝(𝑠) = ¬𝜖

for some fixed 𝜖 ∈ {0,1}

• Let 𝑦′ℎ ⇌ 𝑥𝑝(𝑠)
(¬𝜖)



• If 𝑐𝑜𝑠𝑡 𝑜𝑓 (𝑈𝑠′,𝑗 × 𝑉𝑠′,𝑗) < 𝑐𝑜𝑠𝑡 𝑜𝑓 (𝑈𝑠,𝑖 × 𝑉𝑠,𝑖)

𝑈𝑠′,𝑗 × 𝑉𝑠′,𝑗 = 𝑈𝜇 × 𝑉𝜇

• For some 𝜇 ≤ 𝜈

• Let 𝑦′ℎ ⇌ 𝑓𝜇



• Finally

• Let 𝑓𝜈 ⇌ ҧ𝑓𝜈 𝑦′
ℎ

, … , 𝑦𝐻

• 𝑓𝜈 can be computed by appending at most ℎ0ℎ1 nodes to 𝐶𝜈−1

• Since ҧ𝑓𝜈 is monotone and for every 𝑢 ∈ 𝑈𝜈

ҧ𝑓𝜈 ത𝑢1, … , ത𝑢𝐻 = 0

To check 𝑓𝜈 𝑢 = 0, we only need to check, for any h

𝑦′
ℎ(𝑢) ≤ ത𝑢ℎ



To check 𝑓𝜈 𝑢 = 0, we only need to check, for any h

𝑦′
ℎ

(𝑢) ≤ ത𝑢ℎ

Note that if ത𝑢ℎ = 0, then for some 𝑣 ∈ 𝑉𝜈 the computation on (𝑢, 𝑣)
proceeds along h

Due to our choice of 𝑦′
ℎ, implies 𝑦′

ℎ 𝑢 = 0

By dual argument, 𝑓𝜈 𝑣 = 1, for all 𝑣 ∈ 𝑉𝜈

This completes the construction of 𝐶𝜈



• Now

𝐶𝐻0
has size at most 𝐻0ℎ0ℎ1

• By LS problem definition i), all rectangles 𝑈0,𝑖 × 𝑉0,𝑖 are good

• Thus, adding at most ℎ0 new nodes to 𝐶𝐻0
we compute 𝑓 by a 

circuit of size 𝑂 𝑠𝑖𝑧𝑒 𝐿
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