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1. IntroductionIt is natural to ask what makes lower bound questions such as P ?= PSPACE, P ?= NP ,and P ?= NC so di�cult to solve. A non-technical reason for thinking they are di�cultmight be that some very bright people have tried and failed { but this is hardly satisfactory.A technical reason along the same lines would be provided by a reduction to these questionsfrom another problem known to be really hard such as the Riemann Hypothesis. Perhapsthe ultimate demonstration that P ?= NP is a hard problem would be to show it to beindependent of set theory (ZFC).Another way to answer this question is to demonstrate that known methods are inher-ently too weak to solve problems such as P ?= NP . This approach was taken in Baker, Gill,and Solovay [7], who used oracle separation results for many major complexity classes toargue that relativizing proof techniques could not solve these problems. Since relativizingproof techniques involving diagonalization and simulation were the only available tools atthe time of their work, progress along known lines was ruled out.Because of this, people began to study these problems from the vantage of Booleancircuit complexity, rather than machines. The new goal is to prove a stronger, non-uniformversion of P 6= NP , namely that SAT (or some other problem in NP ) does not havepolynomial-size circuits. Many new proof techniques have been discovered and successfullyapplied to prove lower bounds in circuit complexity, as exempli�ed by [11, 1, 40, 14, 27,28, 3, 2, 37, 4, 29, 36, 8, 5, 23, 24, 15, 13, 17, 26, 6] among others, although the lowerbounds have not come up near the level of P or even NC. These techniques are highlycombinatorial, and in principle they are not subject to relativization. They exist in amuch larger variety than their recursion-theoretic predecessors. Even so, in this paper wegive evidence of a general limitation on their ability to resolve P ?= NP and other hardproblems.Section 2 introduces and formalizes the notion of a natural proof. We argue that alllower bound proofs known to date against non-monotone Boolean circuits are natural, orcan be represented as natural. In Section 3 we present diverse examples of circuit lowerbound proofs and show why they are natural in our sense. While Section 5 gives somegeneral theoretical reasons why proofs against circuits tend to be natural. Section 4 givesevidence that \naturalizable" proof techniques cannot prove strong lower bounds on circuitsize. In particular, we show modulo a widely believed cryptographic assumption thatno natural proof can prove super-polynomial lower bounds for general circuits, and showunconditionally that no natural proof can prove exponential lower bounds on the circuitsize of the discrete logarithm problem. 2



Natural proofs form a hierarchy according to the complexity of the combinatorial prop-erty involved in the proof. We show without using any cryptographic assumption thatAC0-natural proofs, which are su�cient to prove the parity lower bounds of [11, 40, 14],are inherently incapable of proving the bounds for AC0[q]-circuits of [29, 36, 8].One application of natural proofs was given in [33]. It was shown there that in certainfragments of Bounded Arithmetic any proof of super-polynomial lower bounds for generalcircuits would naturalize, i.e., could be recast as a natural proof. Combined with thematerial contained in Section 4 of this paper, this leads to the independence of such lowerbounds from these theories (assuming our cryptographic hardness assumption). See also[19, 34] for interpretations of this approach in terms of the propositional calculus, [10, 25]for further results in this direction, and [35] for an informal survey.1.1. Notation and de�nitionsWe denote by Fn the set of all Boolean functions in n variables. Most of the time, it willbe convenient to think of fn 2 Fn as a binary string of length 2n, called the truth-table offn. fn is a randomly chosen function from Fn, and in general we reserve the bold face inour formulae for random objects.The notation ACk, NCk is used in the standard sense to denote non-uniform class-es. AC0[m], TC0 and P=poly are the classes of functions computable by polynomial-sizebounded-depth circuits allowingMOD-m gates, bounded-depth circuits allowing thresholdgates and unbounded-depth circuits over a complete basis, respectively.2. Natural proofs2.1. Natural combinatorial propertiesWe start by de�ning what we mean by a \natural combinatorial property"; natural proofswill be those that use a natural combinatorial property.Formally, by a combinatorial property of Boolean functions we will mean a set ofBoolean functions fCn � Fn j n 2 !g. Thus, a Boolean function fn will possess propertyCn if and only if fn 2 Cn. (Alternatively, we will sometimes �nd it convenient to usefunction notation: Cn(fn) = 1 if fn 2 Cn, and Cn(fn) = 0 if fn 62 Cn.) The combinatorialproperty Cn is natural if it contains a subset C�n with the following two conditions:
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Constructivity: The predicate fn ?2 C�n is in P . Thus, C�n is computable in time whichis polynomial in the truth table of fn;Largeness: jC�nj � 2�O(n) � jFnj.A combinatorial property Cn is useful against P=poly if it satis�es:Usefulness: The circuit size of any sequence of functions f1; f2; : : : ; fn; : : :, where fn 2 Cn,is super-polynomial, i.e., for any constant k, for su�ciently large n, the circuit sizeof fn is greater than nk.A proof that some function does not have polynomial-sized circuits is natural againstP=poly if the proof contains, more or less explicitly, the de�nition of a natural combinatorialproperty Cn which is useful against P=poly.Note that the de�nition of a natural proof, unlike that of a natural combinatorialproperty, is not precise. This is because while the notion of a property being explicitlyde�ned in a journal paper is perfectly clear to the working mathematician, it is a bitslippery to formalize. This lack of precision will not a�ect the precision of our generalstatements about natural proofs (see Section 4) because they will appear only in the form\there exists (no) natural proof: : : ", and should be understood as equivalent to \thereexists (no) natural combinatorial property Cn: : : "The de�nitions of natural property and natural proof can be explained much less for-mally. First, a proof that some explicit function fgng does not have polynomial-sizedcircuits must plainly identify some combinatorial property Cn of gn that is used in theproof. That is, the proof will show that all functions fn that have this property, includinggn itself, are hard to compute. In other words, Cn is useful . If fgng 2 NP , then the proofconcludes P 6= NP . Our main contention, backed by evidence in the next section, is thatcurrent proof techniques would strongly tend to make this Cn large and constructive asde�ned above. (Or at least these two conditions would hold for some sub-property C�n ofCn.)In order to understand the de�nition of large more intuitively, let N = 2n. Largenessrequires that jC�njjFnj � 1Nk for some �xed k > 0, i.e., fn has a non-negligible chance of havingproperty Cn.Constructivity is a more subtle notion to understand and justify. We take as our basicbenchmark of \constructive" that fn 2 Cn be decidable in time 2O(n), i.e., polynomialas a function of 2n. Now, this is exponential in the number n of variables in fn, andthis makes our concept somewhat mysterious, especially since we are going to employ it4



for studying computations which are polynomial in n! The best justi�cation we have isempirical: the vast majority of properties of Boolean functions or n-vertex graphs (etc.)that one encounters in combinatorics are at worst exponential-time decidable, and, as amatter of fact, known lower bounds proofs operate only with such properties. It also shouldbe noted that even with this loose notion of constructivity we manage to prove in Section4 strong negative results on the non-existence of natural proofs.More speci�cally, consider a commonly-envisioned proof strategy for proving P 6= NP :� Formulate some mathematical notion of \discrepancy" or \scatter" or \variation" ofthe values of a Boolean function, or of an associated polytope or other structure. (Inour terms, this notion would be formalized as a combinatorial property Cn that istrue of any function with su�ciently high discrepancy.)� Show by an inductive argument that polynomial-sized circuits can only computefunctions of \low" discrepancy. (In our terms, this would mean showing that Cn is\useful", because any function with property Cn can't be computed by a polynomial-sized circuit.)� Then show that SAT, or some other function in NP , has \high" discrepancy. (In ourterms, this means showing that SAT has property Cn.)Our main theorem in Section 4 gives evidence that no proof strategy along these linescan ever succeed . We show that any large and constructive Cn that is useful against P=polyprovides a statistical test that can be used to break any polynomial-time pseudo-randomnumber generator. Speci�cally, it would violate the fairly widely believed conjecture thatthere exist pseudo-random generators of hardness 2n�, for some � > 0 (e.g., the standardgenerator based on the discrete logarithm function [9] is believed to be 2n1=3-hard).What we are saying, subject to the truth of the hard pseudo-random generator conjec-ture, is this: Any proof that some function ffng does not have small circuits must eitherseize on some very specialized property of fn, i.e. one shared by only a negligible fractionof functions, or must de�ne a very complicated property Cn, one outside the bounds ofmost mathematical experience. In our terms, the proof must be unnatural by violatingeither \largeness" or \constructivity." In Section 5 we give some solid theoretical evidencefor largeness, by showing that any Cn based on a formal complexity measure must be large.We do not have any similar formal evidence for constructivity, but from experience it isplausible to say that we do not yet understand the mathematics of Cn outside exponentialtime (as a function of n) well enough to use them e�ectively in a combinatorial style proof.5



We make this point in Section 3, where we argue that all known lower bound proofs againstnon-monotone circuits are natural by our de�nition.The best example of a purportedly unnatural argument is a traditional counting argu-ment. The combinatorial property Cn would just be something asserting that ffng is notin P=poly (e.g., Cn(fn) = 1 exactly when the complexity of fn is greater than nlog n). Theproof that Cn is large does not give us the least hint as to how to prove the existence ofa large constructive subset C�n � Cn. Moreover, a consequence of Theorem 4.1 is that ifour pseudo-random generator assumption is true then such C�n cannot exist at all! Thus,a counting argument is presumably not a natural argument. This poses no problem for ussince counting arguments (closely associated with diagonalization arguments) have yet notproved any lower bounds for explicit functions (except when counting is used for limitedpurposes, as in [36, 5]. These examples perfectly �t our general framework { see Sections3.2.1, 3.4.) The question of whether (unlimited) counting or diagonalization arguments aresu�ciently powerful to resolve barrier problems in complexity theory predates the combi-natorial style lower bounds of the 1980s. Our results have nothing to say { one way or theother { concerning the future promise of diagonalization and counting arguments.Another exception to our scheme is the list of strong lower bounds proofs againstmonotone circuit models [2, 3, 4, 17, 26, 27, 28, 37]. Here the issue is not constructivity{ the properties used in these proofs are all feasible { but that there appears to be nogood formal analogue of the largeness condition. In particular, no one has formulated aworkable de�nition of a \random monotone function."All the lower bound proofs surveyed in this paper explicitly state a natural property,and so are natural proofs. In some cases this property is explicit in the original paper,while in others we need to do some work to bring out a natural property C�n that yieldsthe same lower bound. We call this latter process naturalizing the original proof. Thiscan be subtle (see e.g. Section 3.2.1 below). Given Cn, one must exhibit C�n and provethat it has both the constructivity and largeness conditions. The key to doing this seemsto lie in carefully analyzing the lower bound proof that used Cn. In the case where aresearcher intends to build a lower bound proof around some property Cn, evaluatingCn for naturalness might be non-trivial. Nonetheless, in light of our framework, such anevaluation could be worthwhile: if it is natural, Cn is not a useful property for solvingP ?= NP and similar questions. Just as a researcher might rule out an approach to lowerbounds because it relativizes, he/she might rule out an approach to circuit lower boundsbecause it \naturalizes".
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2.2. Properties which are �-natural against � with density �nIt is easy and useful to extend the de�nition of natural proof to a more general, parame-terized version. Understanding this more general de�nition is important to understandingthe results as presented in this paper.Let � and � be complexity classes. Call a combinatorial property Cn �-natural withdensity �n if it contains C�n � Cn with the following two conditions:Constructivity: The predicate fn ?2 C�n is computable in � (recall, C�n is a set of truth-tables with 2n bits);Largeness: jC�nj � �n � jFnj.A combinatorial property Cn is useful against � if it satis�es:Usefulness: For any sequence of functions fn, where the event fn 2 Cn happens in�nitelyoften, ffng 62 �.A lower bound proof that some explicit function is not in � is called �-natural against� with density �n if it states a �-natural property Cn which is useful against � with density�n. The \default" settings of our parameters will be � = P , � = P=poly, and �n = 2�O(n),as in the initial de�nition. Our main result implies the negative statement that, under ourpseudo-randomness assumption, no proof with these parameters can show that SAT doesnot have polynomial-sized circuits. In fact, as we survey the known lower bound argumentsthey all remain natural even when the parameters are more restrictively adjusted. We areunaware of a lower bound proof for which we cannot exhibit a C�n which is P -natural withdensity close to one. For most known arguments, � can be restricted to NC2 or lower.Our full negative result (strengthened by an observation of Razborov [33]) is that, underour pseudo-randomness assumption, no property with �=quasi-polynomial-sized circuits,� = P=poly, and �n = 2�O(n) can exist. Thus, our negative result rules out proofs withmuch more inclusive parameters than currently known circuit lower bounds.3. Examples of naturalizing arguments3.1. AC0 lower bounds for parity: AC0-naturalOne of the �rst combinatorial arguments to give people hope and direction in lower boundresearch was [11] where it was shown that PARITY 62 AC0 (independently this result,7



using somewhat di�erent machinery, was discovered in [1]). Substantial technical im-provements to their bounds were subsequently given by [40, 14]. All these proofs areAC0-natural.The Cn used by these arguments simply says that there does not exist a restrictionof the variables with the appropriate number of unassigned variables which forces fn tobe a constant function. The \appropriate" number of unassigned variables is di�erent in[11, 40, 14] and determines the bounds obtained.All three papers argue explicitly that Cn(fn) = 1 implies that ffng 62 AC0, in otherwords, that Cn is useful against AC0. Cn is a natural property. In fact, we can chooseC�n = Cn.A simple counting argument shows that C�n is true of a random function (C�n has thelargeness condition).C�n is in AC0! (C�n has constructivity). Indeed, suppose k is the \appropriate" numberof unassigned variables. Given the truth table for fn as input, we compute C�n(fn) asfollows. List all �nk�2n�k = 2O(n) restrictions of n � k variables. For each one there is acircuit of depth 2 and size 2O(n) which outputs a 1 i� that restriction does not leave fn aconstant function. Output the AND of all these circuits. The resulting circuit has depth3 and is polynomial-sized in 2n.3.2. AC0[q] lower bounds: NC2-naturalIn this subsection we look at the proofs from [29, 36, 8] of lower bounds on the size ofAC0[q]-circuits, q being a power of a prime. The naturalness of these proofs is especiallytransparent in the framework of [29]. Namely, we have a GF [2]-linear mappingM from Fnto a matrix space, and we simply take C�n to be the set of all fn 2 Fn for which rank(M(fn))is large. After reviewing the argument in Section 3.2.1 below, it will be an exercise for thereader to show that C�n(fn) = 1 for at least 1/2 fraction of all fn 2 Fn. Since computing therank is in NC2, we see that the proof is NC2-natural. Smolensky's proof [36] is analyzedbelow.We will show in Section 4 that there is no AC0-natural proof against AC0[2]. Alongwith the previous subsection, this gives the insight that [29, 36, 8] had to require argumentsfrom a stronger class than those of [11, 40, 14].3.2.1. Smolensky's proof: a non-trivial example of naturalizationThe argument given in Smolensky [36] is a perfect example of a natural circuit lower boundproof, but this is not immediately obvious. We will outline a special case of his argument:8



a proof that parity does not have small AC0[3] circuits.First, we recall the notion of polynomial approximation of a Boolean function. Thinkof the Boolean value TRUE as corresponding to the �eld element �1 and the Booleanvalue FALSE as corresponding to the �eld element 1. Let f be a Boolean function andp be a polynomial over Z3 where f and p have an identical set of variable names. Anyassignment A to f can be viewed as an assignment to p; in the case p(A) and f(A)evaluate to corresponding values we consider them equal on this assignment. Otherwise,we consider them to di�er. The better p approximates f , the fewer assignments on whichthey di�er. Since we will only be interested in the values polynomials take on f�1; 1g(Boolean) assignments, we will consider polynomials to be multi-linear by default (novariable gets raised to a power greater than one).Proof outline: Smolensky's proof has two main pieces. (1) Any function computed bya \small" AC0[3] circuit can be \reasonably" approximated by a \low" degree polynomialover Z3. (2) The parity function in n variables can't be \reasonably" approximated by a\low" degree polynomial over Z3. The proof of (1) is not important here and is omitted.(2) is proved by contradiction. Suppose there were a \low" degree (degree d) polynomial pwhich agrees with the polynomial x1x2x3 � � �xn (the parity function) on all but a \small"number of Boolean assignments. Let W be the set of Boolean assignments on which theydi�er. Let N = 2n. Let w be the size of the set W . We will assume that n is odd anduse l1 and l2 to denote polynomials of degree less than n=2. Every multi-linear polynomialq can be written in the form x1 � � �xnl1 + l2. This means that, ignoring the inputs in W ,every Z3-valued function on f�1; 1gn nW (and there are 3N�w of them) can be representedin the form pl1 + l2. This representation has degree (n � 1)=2 + d which by a countingargument can't represent as many as 3N�w functions. Contradiction.This proof might seem to be exploiting a very particular fact about how the parityfunction is expressed as a polynomial; it is not obvious how this same proof would apply toa large fraction of functions. Even worse, the proof refers to a seemingly non-constructivecounting argument. However, the proof technique is by its nature applicable to manyfunctions, and counting Boolean functions eventually boils down to counting dimensionsof certain linear spaces which already is feasible in our sense.There is one choice of Cn clear from the proof: Cn(fn) = 1 if fn can't be reasonablyapproximated by a low degree polynomial over Z3 (for the appropriate de�nitions of reason-able and low). Part (1) of Smolensky's argument proves that Cn is useful against AC0[3].Why is Cn natural? To see it we have to make a choice of C�n.The simple choice is C�n = Cn. It is fairly obvious that C�n satis�es the largenesscondition. But what about P=poly-constructivity? It is not at all clear that there is apolynomial-size circuit which can determine if a function (given by its truth-table) can be9



approximated by a low-degree polynomial over Z3. This remains an open problem.Thus we sink deeper into the proof and try to putC�n(fn) = 1 if every polynomial q can be written in the form �fnl1 + l2; (1)where �fn is the unique multi-linear polynomial representing fn. Then we have construc-tivity.In order to see this, denote by L the vector space of all polynomials of degree less thann=2, and by T the complementary vector space of all (multi-linear) polynomials withoutmonomials of degree less than n=2. The whole polynomial space is then represented asthe direct sum L � T and also, since n is odd, we have dim(L) = dim(T ) = N=2. Now,C�n(fn) = 1 i� the linear mapping �fn : L �! T taking l 2 L to the projection of �fnl 2 L�Tonto T is one-to-one (the reader can check his understanding at this point by verifying thatthe parity function has this property). Thus checking that C�n(fn) = 1 amounts to checkingthat a matrix easily computable from fn is non-singular which can be done in NC2.For so chosen C�n the largeness condition also looks plausible. But we have no easyproof of it.We turn around this di�culty by trying to extend the de�nition of (1) as much as wecan (so that we'll have more functions satisfying it) while preserving its spirit (so thatconstructivity will also be preserved) and keeping the lower bound provided by it. A shortexamination shows that the de�nitionC�n(fn) = 1 i� dim( �fnL+ L) � N (1=2 + �) (2)which for � = 1=2 is the same as (1), is actually as good as (1) itself for arbitrary �xed� > 0. Indeed, (2) implies that at least 3N(1=2+�)�w functions on f�1; 1gn n W can berepresented by a degree (n � 1)=2 + d polynomial, and the same counting argument stillworks.But if we de�ne C�n as in (2) with � = 1=4, we also have largeness! This immediatelyfollows from the fact that for every fn 2 Fn either C�n(fn) = 1 or C�n(x1�� � ��xn�fn) = 1(cf. the proof of Theorem 5.2 a) below).1To show this fact, note that if dim � �fnL + L� � 3N=4 then C�n(fn) = 1. Otherwise wehave dim�(x1 � � �xn �fnL + L)=L� =dim�(x1 � � �xnL + �fnL)= �fnL� �1C�n can be further adjusted to be a property of density close to one, as opposed to 1=2.10



dim�(x1 � � �xnL + �fnL+ L)=( �fnL + L)� =dim�(T + L)=( �fnL+ L)� � N=4(the �rst equality here comes from the observation that ( �fn)2 = 1 and thus multiplying by�fn de�nes an automorphism of L� T ). This gives us C�n(x1 � : : :� xn � fn) = 1.So, Cn is an NC2-natural property.Smolensky's proof is the most di�cult example of naturalization we have encounteredin our analysis. On the other hand, it perfectly illustrates the general empirical idea of\adjusting" Cn in both directions in order to come up with a natural C�n.3.3. Perceptron lower bounds for parity: P -naturalIn [6], it is shown that a small constant-depth circuit (over f^;_;:g) which is allowed asingle majority gate can't approximate the parity function. The authors did this by �rstshowing tight lower bound on the degree of a perceptron required to approximate parityto within a given �. Their argument is natural.Some de�nitions from [6]. A real polynomial p strongly represents a Boolean function2f just in case sgn(p(x)) = f(x) for all input vectors x; such a polynomial is also calleda perceptron to compute f . Let p weakly represent f just in case p is not the constantzero function on f�1; 1gn, and sgn(p(x)) = f(x) for all x where p(x) is nonzero. The weakdegree, dw(f), is de�ned as the least k for which there exists a non-zero degree k polynomialwhich weakly represents f .A natural Cn stated in the paper is that fn can't be well approximated by the signof a low degree polynomial. It is explicitly shown that any fn with property Cn can'tbe approximated by a small, constant-depth circuit with one majority gate, i.e., Cn hasusefulness. To see that Cn is natural one must exhibit a proper subset C�n.Let C�n(fn) = 1 if dw(fn) is greater than the appropriate threshold. [6] explicitlyshowed that C�n(fn) = 1 implies that a polynomial must have appropriately high degree toapproximate fn with its sign, i.e., C�n(fn) = 1 implies that Cn(fn) = 1. dw is computable inpolynomial-time using linear programming. This shows that C�n has constructivity. Sincethe linear programming seems essential it is doubtful that anything substantially moreconstructive than C�n could be found in the above argument, e.g., an NC-natural propertyfor example.2In this section we, similarly to 3.2.1, represent Boolean functions as mappings from f�1; 1gn to f�1; 1g,and fg stands for the point-wise product, which is the same as f � g in the f0; 1g-notation11



To argue that C�n has the largeness property, we can show the following improvementof an 
(n= logn) lower bound from [6]:Theorem 3.1. For a uniformly chosen fn 2 Fn, P[dw(fn) � n=20] > 1� 2�2
(n) .Proof. We use the following well-known facts:Proposition 3.2. Let a1; : : : ; aN 2 R. Then there exist a01; : : : ; a0N 2 Z such that ja0ij �exp(O(N logN)) (1 � i � N), and for every xi 2 f�1; 1gN ,sgn NXi=1 aixi! = sgn NXi=1 a0ixi! :Proposition 3.3. Every integer polynomial p(x1; : : : ; xn) of degree d which is not an iden-tically zero on f�1; 1gn, di�ers from zero on at least 2n�d points from f�1; 1gn.The proof of Proposition 3.2 can be found e.g. in [21]; Proposition 3.3 is folklore.Let fn 2 Fn. If fn is weakly represented by a polynomial p of degree at most n=20,we �rstly apply Proposition 3.2 to the vector of coe�cients of p. The length N of thisvector is Pn=20i=0  ni ! � 2n(H(1=20)+o(1)), where H(�) is the entropy function. We �nd thatp can be replaced by a polynomial p0 with integer coe�cients whose bit size is at mostO (N2 logN) � 2n(2�H(1=20)+o(1)).fn can be uniquely retrieved from the pair (p0; f 0n), where f 0n is the list of values of fnon zeros of p0 (arranged, say, in the lexicographic order). From Proposition 3.3 we knowthat the bit size of f 0n is at most 2n � 219=20n, thus the bit size of the pair (p0; f 0n) is atmost 2n � 219=20n + 2n(2�H(1=20)+o(1)). Since 2 �H(1=20) < 1920 , the proof is completed by thestandard counting argument.3.4. Lower bounds on formula size: AC0-naturalAndreev [5] gives a promising lower bound for the formula size of an explicit function. Hisbound was subsequently improved in [23, 24]. Finally, H�astad [15] gave a nearly optimallower bound (almost n3) of the formula size for Andreev's function.Andreev's function is a Boolean function A2n on 2n bits: a1; a2; : : : ; an; b1; b2; : : : ; bn.The a's are partitioned into logn groups of size n= logn each. Let hj be the parity of the12



bits in the jth group. The bits h1; h2; : : : ; hlog n index a number i from 1 to n. The valueof the function A2n is the bit bi.All these proofs work by using a shrinkage factor T which was successively improvedin the last three papers until T = ~
(n2). (~
 is the \soft Omega" notation which is like 
but ignores multiplicative factors of (logn)k for constant k.)The meaning of T is that when a formula is hit by a random restriction it is almostcertain to shrink by a factor of T . Thus, to prove a formula lower bound, just show thata formula must have size s after being hit by a random restriction. It follows that theoriginal formula had size around sn2.The natural property C2n is that there is a restriction of b's such that any of its exten-sions leaving at least one unrestricted variable in each group of a's induces a formula of size
(n= logn). This property is useful since a random restriction leaving (logn)2 unrestrictedvariables leaves at least one such variable in each group: for some �xing of b's, a randomrestriction to the a's will shrink the formula to 
(n= logn). Obviously, A2n has C2n (simplyrestrict b's so that they will encode the most complex function in logn variables) whichimplies that it must have formula complexity at least ~
(n3).We can choose C�2n = C2n. The fact that C�2n has largeness is easy to prove. Con-structivity is also easy if we observe that there are only 2O(n) formulas of size less thann= logn.3.5. Lower bounds against depth-2 threshold circuits:TC0-naturalHajnal et al. [13] show that the MOD-2 inner-product function requires depth-2 thresholdcircuits of exponential size. Any Boolean function can be viewed as a Boolean matrix bydividing the inputs into two equal sets with the left half indexing the rows and the righthalf indexing the columns. Seen in this way the inner-product function is a Hadamardmatrix. Their proof shows that any matrix with low discrepancy can't be computed bysmall depth-2 threshold circuits. Choose Cn to be true of all functions whose matrices havelow discrepancy. Their main lemma shows that any Hadamard matrix has low discrepancy.The same argument shows that any matrix which is almost Hadamard in the sense thatthe dot product of any two rows or any two columns is small also has the low discrepancyproperty. Thus, the C�n suggested by their proof is to check that the function viewed as amatrix is almost Hadamard, for the appropriate de�nition of almost. It is possible to de�ne\almost" so as to guarantee that C�n has largeness and preserves usefulness. Constructivity:For each of the 2O(n) dot products, feed the binary AND's into a threshold gate; feed the13



outputs of the threshold gates into a large fan-in AND. This is in TC0.3.6. Lower bounds against switching-and-recti�er networks:AC0-naturalIt was shown in [30] that any switching-and-recti�er network (in particular, any nonde-terministic branching program) for a large variety of symmetric functions must have size
(n�(n)), where �(n) is a function which slowly grows to in�nity. A similar result wasproven in [18] for �-branching programs.The proofs are based upon a purely combinatorial characterization of the network sizein terms of particular instances of the MINIMUM COVER problem. Let Cn be the set ofthose functions fn for which the size �(fn) of the minimal solution to the correspondinginstance is 
(n�(n)).The key lemma in these proofs says that if fn outputs a 1 on any input with s(n) ones,and outputs a 0 on any input with s(n) � d(n) ones, then �(fn) � 
(n�(n)) (s(n) andd(n) are functions which slowly grow to in�nity; s(n)� d(n)).Denote this property by An. It obviously violates the largeness condition. We circum-vent this by letting C�n be the set of those functions for which any restriction � assign-ing n=2 variables to zero can be extended to another restriction �0 by assigning to zero(n=2� log logn) additional variables in such a way that the induced function has Alog log n.To see C�n � Cn, recall from [30, 18] that every covering set �i;�(A) has its associatedvariable xi such that restricting this variable to 0 kills �i;�(A). Now, for any collection ofo(n�(n)) covering sets we simply assign n=2 most frequently represented xi's to 0, and thisleaves us with a collection in which every variable corresponds to at most o(�(n)) sets.Hence, for every extension �0 of this restriction, the size of the resulting collection will beo(log logn � �(n)). Thus, by the above lemma, this collection (and hence the original one)does not cover all the points from the universe (�(n) and �(log logn) di�er by at most 1).C�n is in AC0 (cf. Section 3.1).To see the largeness condition, note that for every � we can choose n3=2 extensions�01; : : : ; �0n3=2 so that the sets of variables unassigned by every two di�erent �0i; �0j from thislist have at most one variable in common. The event \fn restricted by �0i has Alog log n"depends only on those inputs that have either s(n) or s(n)� d(n) ones, and, moreover, allthese ones correspond to variables not assigned by �0i. Since d(n) > 1 and s(n)� d(n) > 1,our assumption on �01; : : : ; �0n3=2 implies that these sets of inputs are pairwise disjoint (wheni ranges over f1; : : : ; n3=2g). Hence, the events \fn restricted by �0i has Alog log n" areindependent, and we can apply the standard counting argument.14



4. Inherent limitations of natural proofsIn this section, we argue that natural proofs for lower bounds are almost self-defeating.The idea is that a natural proof that some function f is not in P=poly has an associatedalgorithm. But just as the proof must distinguish f from a pseudo-random function inP=poly (one being hard the other not), the associated algorithm must be able to tell thedi�erence between the two. Thus, the algorithm can be used to break a pseudo-randomgenerator. This is self-defeating in the sense that a natural proof that hardness existswould have as an automatic by-product an algorithm to solve a \hard" problem.For a pseudo-random generator Gk : f0; 1gk �! f0; 1g2k de�ne its hardness H(Gk) asthe minimal S for which there exists a circuit C of size � S such thatjP[C(Gk(x)) = 1]�P[C(y) = 1]j � 1S(cf. [9]). Here, as usual, x is taken at random from f0; 1gk, and y is taken at random fromf0; 1g2k.Theorem 4.1. There is no lower bound proof which is P=poly-natural against P=poly,unless H(Gk) � 2ko(1) for every pseudo-random generator Gk : f0; 1gk �! f0; 1g2k inP=poly.In particular, if 2n�-hard functions exist then there is no P=poly-natural proof (againstP=poly).Proof. For the sake of contradiction, suppose that such a lower bound proof existsand Cn is associated P=poly-natural combinatorial property. Let C�n � Cn satisfy theconstructivity and largeness conditions. W.l.o.g. we may assume from the very beginningthat C�n = Cn.We use a slightly modi�ed construction from [12]. Let Gk : f0; 1gk �! f0; 1g2k be apolynomial time computable pseudo-random generator, and � > 0 be an arbitrary constant.Set n = dk�e. We use G : f0; 1gk �! f0; 1g2k for constructing a pseudo-random functiongenerator f : f0; 1gk �! Fn in the same way as in [12]. Namely, let G0; G1 : f0; 1gk �!f0; 1gk be the �rst and the last k bits of G, respectively. For a string y 2 f0; 1gn we de�neGy : f0; 1gk �! f0; 1gk by Gy 
 Gyn �Gyn�1 � � � � �Gy1, and for x 2 f0; 1gk let f(x)(y) bethe �rst bit of Gy(x).Note that f(x)(y) is computable by poly-size circuits, hence (from the de�nition ofa proof natural against P=poly) the function f(x) 2 Fn is not in Cn for any �xed x 2f0; 1gk and any su�ciently large k. In other words, Cn has empty intersection with15



nf(x) ��� x 2 f0; 1gko, and this disjointness implies that Cn provides a statistical test forf(x), with jP[Cn(fn) = 1]�P[Cn(f(x)) = 1]j � 2�O(n): (3)Note that this test is computable by circuits of size 2O(n).Constructing from this a statistical test for strings in our case is even simpler than in[12]. Namely, we arrange all internal nodes of the binary tree T of height n:v1; v2; : : : ; v(2n�1)in such a way that if vi is a son of vj then i < j. Let Ti be the union of subtrees of T madeby fv1; : : : ; vig along with all leaves. For a leaf y of T let vi(y) be the root of the subtreein Ti containing y. Let Gi;y 
 Gyn � � � � �Gyn�h(i;y)+1, where h(i; y) is the distance betweenvi(y) and y. Finally, de�ne the random collection fi;n by letting fi;n(y) be the �rst bit ofGi;y �xvi(y)�, where xv are taken from f0; 1gk uniformly and independently for all roots vof trees from Ti.Since f0;n is fn, and f2n�1;n is f(x), we have from (3) that for some i,jP[Cn(fi;n) = 1]�P[Cn(fi+1;n) = 1]j � 2�O(n):Fix xv for all roots v of subtrees in Ti+1 other than vi+1 so that the bias 2�O(n) is preserved.Then we have a statistical test for strings distinguishing between G �xvi+1� and (xv0 ;xv00),where v0; v00 are the two sons of vi+1. Thus H(Gk) � 2O(n) � 2O(k�). As � was arbitrary,the result follows.The assumption that 2n�-hard functions exist is quite plausible. For example, despitemany advances in computational number theory, multiplication seems to provide a basisfor a family of such functions (known factoring algorithms are su�ciently exponential).Based upon lower bounds for the parity function, Nisan [22] constructed a very stronggenerator secure against AC0-attack. In fact, an easy analysis of his generator in terms ofits own complexity gives the following:Theorem 4.2. For any integer d, there exists a family Gn;s � Fn, where s is a seed ofsize polynomial in n such that Gn;s 2 AC0[2] and Gn;s looks random for 2O(n)-size depth-dcircuits, i.e., for any polynomial-size (in 2n) depth d circuit family Cn : Fn �! f0; 1g,jP[Cn(fn) = 1]�P[Cn(Gn;s) = 1]j < 2�!(n): (4)Here s is a random seed of the appropriate size.16



Theorem 4.3. There is no lower bound proof which is AC0-natural against AC0[2].Proof. Assume, on the contrary, that such a proof exists, and that Cn has the samemeaning as in the proof of Theorem 4.1. Let d be the depth of a size 2O(n) circuit tocompute Cn. Let Gn;s be the generator which is pseudo-random against depth-d 2O(n)-sized circuits from Theorem 4.2. From the de�nition of a proof natural against AC0[2],for su�ciently large n, Cn(Gn;s) = 0. Now, (4) immediately contradicts the largenesscondition.In fact, it is clear from the above proofs that whenever a complexity class � containspseudo-random function generators that are su�ciently secure against �-attack, then thereis no �-natural proof against �. E.g., it is easy to see that Theorems 4.1, 4.3 are still validfor the larger class of �-natural proofs, where � consists of languages computable by quasi-polynomial-sized circuits. This observation is of little importance for the examples ofnatural proofs given in this paper. However, it is useful in the context of proofs feasiblein the logical sense [33], where quasi-polynomial limitations on the complexity arise moreoften. Formally, we de�ne ~P=qpoly as the class of non-uniform, quasi-polynomial sizecircuits, i.e., size nlog nO(1).Theorem 4.4. There is no lower bound proof which is ~P=qpoly-natural against P=polyunless H(Gk) � 2ko(1) for every pseudo-random generator Gk : f0; 1gk �! f0; 1g2k inP=poly.4.1. Natural proofs are not applicable to the discrete logarithmproblemIt is possible (though we are unaware of any such examples) that a lower bound proof forrestricted models might be natural, but cannot be applied to any explicit function. In otherwords, the proof might simply argue that many functions are complex without providing uswith any explicit examples of such functions. Given our hardness assumption, no naturalproof can prove lower bounds against P=poly whether or not the proof makes explicit whatthe hard function is. Avi Wigderson has pointed out that if we restrict ourselves to certainexplicit functions, we can prove unconditional results in the style of Theorem 4.1. A goodexample of such a function is the discrete logarithm. The key point is that the discretelogarithm is known to be hard on average if and only if it is hard in the worst case. Inthis section, we show that there is no natural proof that the discrete logarithm requiresexponential-sized circuits. 17



Recall from [9] that for a prime p and a generator g for Z�p, the predicate Bp;g(x) on Z�pis de�ned to be 1 if logg x � (p�1)=2 and 0 otherwise. Bp;g(x) was shown in [9] to be a hardbit of the discrete logarithm problem. We consider Bp;g(x) as a Boolean function in dlog pevariables (extended by, say, zeros on those inputs x which do not represent an integer inthe range [1; p� 1]). Our principal goal in this section is to show that no P=poly-naturalproof against \su�ciently large" Boolean circuits can be applied to Bp;g(x).To explain the meaning of \su�ciently large", we need a couple of technical de�nitions.For an integer-valued function t(n), let SIZE(t(n)) be the complexity class consisting ofall functions ffng which have circuit size O(t(n)). Lett�1(n)
 max fx j t(x) � ng :We say that t(n) is half-exponential if it is non-decreasing andt�1(nC) � o(log t(n)) (5)for every C > 0. The meaning of this de�nition is that, roughly speaking, the seconditeration of t(n) should grow faster than the exponent. For example, t(n) = 2n� is half-exponential, whereas t(n) = 2(log n)C is not.Theorem 4.5. Let t(n) be an arbitrary half-exponential function. Then there is no com-binatorial property Cn useful against SIZE(t(n)) and satisfying P=poly-constructivity andlargeness conditions such that Sn2! Cn contains in�nitely many functions of the formBp;g(x).Proof. Assume the contrary, and let fBp� ;g�g be an in�nite sequence contained in Sn2! Cnsuch that dlog p1e < dlog p2e < : : : Let k� 
 dlog p�e. Applying the usefulness conditionto the sequence fn obtained from fBp� ;g�g by letting fn � 0 for those n which are not ofthe form dlog p�e, we will �nd in fBp� ;g�g an in�nite subsequence where all functions havethe circuit size at least t(k�). W.l.o.g. we may assume that this is the case for our originalsequence.Let G� : f0; 1g2k� �! f0; 1g4k� be the standard pseudo-random generator from [9]based upon fBp� ;g�g. It is easy to check that the proof of [9, Theorem 3] actually extendsto showing that the circuit size of fBp� ;g�g is polynomial in H(G�) + k�. Thus, we havet(k�) � (H(G�) + k�)O(1) : (6)Now we convert G� into the pseudo-random function generator f� : f0; 1g2k� �! Fn�as in the proof of Theorem 4.1, where n� will be speci�ed a little bit later. There exists a18



�xed constant C > 0 such that for almost all �, f�(x)(y) is computable by circuits of size(k� + n�)C . Let n� 
 t�1(kC+1� ) + 1.(5) implies that t(k�) > kC+1� for almost all �, since otherwise we would have k� �t�1 �kC+1� � � log t(k�) � (C + 1) log k�. Hence n� � k�. Now we have that for almost all� every function in the image of the generator f� has circuit size at most (k� + n�)C �(2k�)C � kC+1� � t(n�). Applying the usefulness condition again, we �nd that for almostall �, the image of the generator f� has the empty intersection with Cn. Arguing as in theproof of Theorem 4.1, we get from thisH(G�) � 2O(n�): (7)Finally note that Cn 6= ; for almost all n (from largeness) and, thus,t(n) � 2n (8)(again, for almost all n.)The required contradiction is now obtained simply by combining the inequalities (5)(with n := k�, C := C + 1), (6), (7), (8):n� = t�1(kC+1� ) + 1 � o(log t(k�)) � o (logH(G�) + log k�) � o(n�) + o(log k�) � o(n�):Corollary 4.6. There is no combinatorial property Cn useful against T�>0 SIZE �2n��and satisfying P=poly-constructivity and largeness conditions such that Sn2! Cn containsin�nitely many functions of the form Bp;g(x).Proof. T�>0 SIZE �2n�� � SIZE �22plog n�, and t(n) = 22plog n is half-exponential.It is easy to see that the above proof is actually valid for an arbitrary collection ffp;gg offunctions poly-time nonuniformly Turing reducible to the corresponding discrete logarithmproblem in place of fBp;gg.5. One property of formal complexity measuresA formal complexity measure (see e.g. [38, Section 8.8], [31]) is an integer-valued function� on Fn such that �(f) � 1 for f 2 f:x1; : : : ;:xn; x1; : : : ; xng and �(f � g) � �(f) +19



�(g) for all f; g 2 Fn and � 2 f^;_g. The meaning of this de�nition is that for everyformal complexity measure �, �(f) provides a lower bound on the formula size of f , andactually many known lower bounds, both for monotone and non-monotone formulae, canbe viewed from this perspective. See the above-cited sources for examples. Also, for anyapproximation modelM (see [39, 32] for most general de�nitions), we have �(f � g;M) ��(f;M) + �(g;M) + 1, hence �(f;M) + 1 is a formal complexity measure.In this section we show that any formal complexity measure � which takes a large valueat a single function, must take large values almost everywhere. In particular, every combi-natorial property based on such a measure automatically satis�es the largeness conditionin the de�nition of natural property.More speci�cally, we have the following:Theorem 5.1. Let � be a formal complexity measure on Fn, and �(f) = t for somef 2 Fn. Then:a) for at least 1=4 fraction of all functions g 2 Fn, �(g) � t=4;b) for any � = �(n) we have that for at least (1� �) fraction of g 2 Fn,�(g) � 
0B@ t�n + log 1��21CA� n:In fact, the main argument used in the proof of this theorem is valid for arbitraryBoolean algebras, and we formulate it as a separate result since this might be of independentinterest.Theorem 5.2. Let B be a �nite Boolean algebra with N atoms and S � B.a) if jSj > 34 jBj then every element of B can be represented in the form(s1 ^ s2) _ (s3 ^ s4); si 2 S (1 � i � 4); (9)b) if S contains all atoms and coatoms of B then every element of B can be representedin the form _̀i=1 `̂j=1 sij; (10)where sij 2 S and ` � O �log N �jBjjSj �. 20



Proof of Theorem 5.1 from Theorem 5.2. Let S 
 fg j �(g) < t=4g for part a), andS 
 (g ����� �(g) � � � t(n+log 1� )2 ), where � is a su�ciently small constant, for part b). Notethat in part b) we may assume that � � t(n+log 1� )2 � n+1 since otherwise there is nothing toprove. Since � (Vni=1 pi) � n and � (Wni=1 pi) � n, where pi is either xi or :xi, this impliesthat S contains all atoms and coatoms of Fn, the latter being viewed as a Boolean algebra.Now, if jSj > 34 jBj in part a) or jSj � �jBj in part b), then we would apply Theorem5.2 and represent f in the form (9), (10) respectively. This representation in both caseswould imply the bound �(f) < t, the contradiction.Now we prove Theorem 5.2. Denote by b a randomly chosen element of B.Proof of Theorem 5.2 a). Fix b0 2 B and consider the representationb0 = (b ^ (:b� b0)) _ (:b ^ (b� b0)) :As all four random variables b; (:b� b0);:b; (b� b0) are uniformly distributed on B andjSj > 34 jBj, for at least one particular choice b of b we have b; (:b� b0);:b; (b� b0) 2 S.For proving part b) of Theorem 5.2 we need the followingLemma 5.3. Let B be a �nite Boolean algebra with N atoms and S � B. Then thereexists a subset S0 � S of cardinality O(logN) such that ^S0 contains at most O �log jBjjSj�atoms.Proof of Lemma 5.3. Let us call an atom a good if P[a � s] � 2=3 and bad otherwise.Here s is picked at random from S.Now, the standard entropy-counting argument gives us that there are at mostO log jBjjSj!bad atoms. An equally standard argument implies that if we take a random subset S0 � Sof cardinality C logN , the constant C being su�ciently large, then for any good atom a,P[a � ^S0] < N�1. Hence, for at least one particular choice S0 of S0, ^S0 contains onlybad atoms, and the lemma follows.Proof of Theorem 5.2 b). Denote jSjjBj by �. Once again, �x b0 2 B. Let us callc � b0 good if P[b 2 S jb ^ b0 = c ] � �2 and bad otherwise. Note that b ^ b0 is uniformly21



distributed on the Boolean algebra B0 
 fc j c � b0g. HenceP[c is good] � �2 ; (11)where c is chosen from B0 at random.Now, �x a good c 2 B0. The set B(c) 
 fb 2 B j b ^ b0 = cg is a Boolean algebra.Applying Lemma 5.3 to this algebra and to S := S \ B(c), we come up with S0 � S ofcardinality O(logN) such that c � ^S0 and (^S0nc) has at most O �log 1�� atoms. Weextend S0 by including to it the corresponding coatoms and �nd that every good c 2 B0can be represented in the form Vj̀=1 sj; sj 2 S; ` � O �log N� �.Next we apply the dual version of Lemma 5.3 to the Boolean algebra B0 and S :=fc 2 B0 j c is goodg. In view of (11), the same argument as above yields that b0 = Wì=1 ci,where ci are either good or atoms. The statement follows.6. ConclusionWe do not conclude that researchers should give up on proving serious lower bounds. Quitethe contrary, by classifying a large number of techniques that are unable to do the job wehope to focus research in a more fruitful direction. Pessimism will only be warranted if along period of time passes without the discovery of a non-naturalizing lower bound proof.As long as we use natural proofs we have to cope with a duality: any lower bound proofmust implicitly argue a proportionately strong upper bound. In particular, we have shownthat a natural proof against complexity class � implicitly shows that � does not containstrong pseudo-random function generators. In fact, the proof gives an algorithm to breakany such generator. Seen this way, even a natural proof against NC1 (or TC0) becomesdi�cult or impossible. In [16] it is argued based on the hardness of subset sum that apseudo-random function should exist in TC0 � NC1. Consider the plausible conjecturethat there exists a (pseudo-random) function f 2 NC1 (or TC0) such that Gn;s(x) =f(s#x) is a pseudo-random function generator. A natural proof that P 6= NC1 or P 6= TC0would give an algorithm to break it. Thus, we see that working on lower bounds usingnatural methods is like breaking a secret code determined by the class we are workingagainst!With this duality in mind, it is no coincidence that the technical lemmas of [14, 36, 29]yield much of the machinery for the learning result of [20].22
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