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Abstract

We introduce the notion of natural proof. We argue that the known proofs of low-
er bounds on the complexity of explicit Boolean functions in non-monotone models
fall within our definition of natural. We show based on a hardness assumption that
natural proofs can’t prove super-polynomial lower bounds for general circuits. With-
out the hardness assumption, we are able to show that they can’t prove exponential
lower bounds (for general circuits) for the discrete logarithm problem. We show that
the weaker class of AC"-natural proofs which is sufficient to prove the parity lower
bounds of Furst, Saxe, and Sipser, Yao, and Hastad is inherently incapable of proving
the bounds of Razborov and Smolensky. We give some formal evidence that natural
proofs are indeed natural by showing that every formal complexity measure which
can prove super-polynomial lower bounds for a single function, can do so for almost
all functions, which is one of the two requirements of a natural proof in our sense.
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1. Introduction

It is natural to ask what makes lower bound questions such as P L PSPACE, P L NP,

and P = NC so difficult to solve. A non-technical reason for thinking they are difficult
might be that some very bright people have tried and failed but this is hardly satisfactory.
A technical reason along the same lines would be provided by a reduction to these questions
from another problem known to be really hard such as the Riemann Hypothesis. Perhaps
the ultimate demonstration that P = NP is a hard problem would be to show it to be
independent of set theory (ZFC).

Another way to answer this question is to demonstrate that known methods are inher-
ently too weak to solve problems such as P =~ NP. This approach was taken in Baker, Gill,
and Solovay [7], who used oracle separation results for many major complexity classes to
argue that relativizing proof techniques could not solve these problems. Since relativizing
proof techniques involving diagonalization and simulation were the only available tools at
the time of their work, progress along known lines was ruled out.

Because of this, people began to study these problems from the vantage of Boolean
circuit complexity, rather than machines. The new goal is to prove a stronger, non-uniform
version of P # NP, namely that SAT (or some other problem in NP) does not have
polynomial-size circuits. Many new proof techniques have been discovered and successfully
applied to prove lower bounds in circuit complexity, as exemplified by [11, 1, 40, 14, 27,
28, 3, 2, 37, 4, 29, 36, 8, 5, 23, 24, 15, 13, 17, 26, 6] among others, although the lower
bounds have not come up near the level of P or even NC. These techniques are highly
combinatorial, and in principle they are not subject to relativization. They exist in a
much larger variety than their recursion-theoretic predecessors. Even so, in this paper we
give evidence of a general limitation on their ability to resolve P L NP and other hard
problems.

Section 2 introduces and formalizes the notion of a natural proof. We argue that all
lower bound proofs known to date against non-monotone Boolean circuits are natural, or
can be represented as natural. In Section 3 we present diverse examples of circuit lower
bound proofs and show why they are natural in our sense. While Section 5 gives some
general theoretical reasons why proofs against circuits tend to be natural. Section 4 gives
evidence that “naturalizable” proof techniques cannot prove strong lower bounds on circuit
size. In particular, we show modulo a widely believed cryptographic assumption that
no natural proof can prove super-polynomial lower bounds for general circuits, and show
unconditionally that no natural proof can prove exponential lower bounds on the circuit
size of the discrete logarithm problem.



Natural proofs form a hierarchy according to the complexity of the combinatorial prop-
erty involved in the proof. We show without using any cryptographic assumption that
AC"-natural proofs, which are sufficient to prove the parity lower bounds of [11, 40, 14],
are inherently incapable of proving the bounds for AC°[g]-circuits of [29, 36, 8].

One application of natural proofs was given in [33]. It was shown there that in certain
fragments of Bounded Arithmetic any proof of super-polynomial lower bounds for general
circuits would naturalize, i.e., could be recast as a natural proof. Combined with the
material contained in Section 4 of this paper, this leads to the independence of such lower
bounds from these theories (assuming our cryptographic hardness assumption). See also
[19, 34] for interpretations of this approach in terms of the propositional calculus, [10, 25]
for further results in this direction, and [35] for an informal survey.

1.1. Notation and definitions

We denote by F,, the set of all Boolean functions in n variables. Most of the time, it will
be convenient to think of f, € F), as a binary string of length 2", called the truth-table of
fn- fn is a randomly chosen function from F},, and in general we reserve the bold face in
our formulae for random objects.

The notation AC*, NC* is used in the standard sense to denote non-uniform class-
es. AC°m], TC® and P/poly are the classes of functions computable by polynomial-size
bounded-depth circuits allowing M O D-m gates, bounded-depth circuits allowing threshold
gates and unbounded-depth circuits over a complete basis, respectively.

2. Natural proofs

2.1. Natural combinatorial properties

We start by defining what we mean by a “natural combinatorial property”; natural proofs
will be those that use a natural combinatorial property.

Formally, by a combinatorial property of Boolean functions we will mean a set of
Boolean functions {C,, C F,,|n € w}. Thus, a Boolean function f, will possess property
C, if and only if f, € C,. (Alternatively, we will sometimes find it convenient to use
function notation: C,(f,) = 1if f, € C,, and C,(f,) = 0 if f, € C,,.) The combinatorial
property C,, is natural if it contains a subset C; with the following two conditions:



?
Constructivity: The predicate f,, € C} is in P. Thus, C; is computable in time which
is polynomial in the truth table of f,;

Largeness: |C*| > 2700 . |F, |.
A combinatorial property C,, is useful against P/poly if it satisfies:

Usefulness: The circuit size of any sequence of functions fi, fa,..., fa, ..., where f, € C,,,
is super-polynomial, i.e., for any constant k, for sufficiently large n, the circuit size
of f, is greater than n*.

A proof that some function does not have polynomial-sized circuits is natural against
P/poly if the proof contains, more or less explicitly, the definition of a natural combinatorial
property C,, which is useful against P/poly.

Note that the definition of a natural proof, unlike that of a natural combinatorial
property, is not precise. This is because while the notion of a property being explicitly
defined in a journal paper is perfectly clear to the working mathematician, it is a bit
slippery to formalize. This lack of precision will not affect the precision of our general
statements about natural proofs (see Section 4) because they will appear only in the form
“there exists (no) natural proof...”, and should be understood as equivalent to “there
exists (no) natural combinatorial property C,,...”

The definitions of natural property and natural proof can be explained much less for-
mally. First, a proof that some explicit function {g,} does not have polynomial-sized
circuits must plainly identify some combinatorial property C,, of g, that is used in the
proof. That is, the proof will show that all functions f,, that have this property, including
gn itself, are hard to compute. In other words, C,, is useful. If {g,} € NP, then the proof
concludes P # N P. Our main contention, backed by evidence in the next section, is that
current proof techniques would strongly tend to make this C), large and constructive as
defined above. (Or at least these two conditions would hold for some sub-property C; of
Cy.)

In order to understand the definition of large more intuitively, let N = 2". Largeness
requires that ‘\f’i\‘ > ﬁ for some fixed £ > 0, i.e., f,, has a non-negligible chance of having
property C,.

Constructivity is a more subtle notion to understand and justify. We take as our basic
benchmark of “constructive” that f, € C, be decidable in time 2°( i.e., polynomial
as a function of 2”. Now, this is exponential in the number n of variables in f,, and
this makes our concept somewhat mysterious, especially since we are going to employ it




for studying computations which are polynomial in n! The best justification we have is
empirical: the vast majority of properties of Boolean functions or n-vertex graphs (etc.)
that one encounters in combinatorics are at worst exponential-time decidable, and, as a
matter of fact, known lower bounds proofs operate only with such properties. It also should
be noted that even with this loose notion of constructivity we manage to prove in Section
4 strong negative results on the non-existence of natural proofs.

More specifically, consider a commonly-envisioned proof strategy for proving P #= NP:

e Formulate some mathematical notion of “discrepancy” or “scatter” or “variation” of
the values of a Boolean function, or of an associated polytope or other structure. (In
our terms, this notion would be formalized as a combinatorial property C,, that is
true of any function with sufficiently high discrepancy.)

e Show by an inductive argument that polynomial-sized circuits can only compute
functions of “low” discrepancy. (In our terms, this would mean showing that C,, is
“useful”, because any function with property C), can’t be computed by a polynomial-
sized circuit.)

e Then show that SAT, or some other function in NP, has “high” discrepancy. (In our
terms, this means showing that SAT has property C,,.)

Our main theorem in Section 4 gives evidence that no proof strategy along these lines
can ever succeed. We show that any large and constructive C,, that is useful against P/poly
provides a statistical test that can be used to break any polynomial-time pseudo-random
number generator. Specifically, it would violate the fairly widely believed conjecture that
there exist pseudo-random generators of hardness 2, for some ¢ > 0 (e.g., the standard
generator based on the discrete logarithm function [9] is believed to be 2"'"*-hard).

What we are saying, subject to the truth of the hard pseudo-random generator conjec-
ture, is this: Any proof that some function {f,} does not have small circuits must either
seize on some very specialized property of f,, i.e. one shared by only a negligible fraction
of functions, or must define a very complicated property C,,, one outside the bounds of
most mathematical experience. In our terms, the proof must be unnatural by violating
either “largeness” or “constructivity.” In Section 5 we give some solid theoretical evidence
for largeness, by showing that any C), based on a formal complexity measure must be large.
We do not have any similar formal evidence for constructivity, but from experience it is
plausible to say that we do not yet understand the mathematics of C,, outside exponential
time (as a function of n) well enough to use them effectively in a combinatorial style proof.



We make this point in Section 3, where we argue that all known lower bound proofs against
non-monotone circuits are natural by our definition.

The best example of a purportedly unnatural argument is a traditional counting argu-
ment. The combinatorial property C,, would just be something asserting that {f,} is not
in P/poly (e.g., Cy,(f,) = 1 exactly when the complexity of f, is greater than n'°8™). The
proof that C, is large does not give us the least hint as to how to prove the existence of
a large constructive subset C; C C,,. Moreover, a consequence of Theorem 4.1 is that if
our pseudo-random generator assumption is true then such C} cannot exist at alll Thus,
a counting argument is presumably not a natural argument. This poses no problem for us
since counting arguments (closely associated with diagonalization arguments) have yet not
proved any lower bounds for explicit functions (except when counting is used for limited
purposes, as in [36, 5]. These examples perfectly fit our general framework see Sections
3.2.1, 3.4.) The question of whether (unlimited) counting or diagonalization arguments are
sufficiently powerful to resolve barrier problems in complexity theory predates the combi-
natorial style lower bounds of the 1980s. Our results have nothing to say — one way or the
other concerning the future promise of diagonalization and counting arguments.

Another exception to our scheme is the list of strong lower bounds proofs against
monotone circuit models [2, 3, 4, 17, 26, 27, 28, 37]. Here the issue is not constructivity
— the properties used in these proofs are all feasible — but that there appears to be no
good formal analogue of the largeness condition. In particular, no one has formulated a
workable definition of a “random monotone function.”

All the lower bound proofs surveyed in this paper explicitly state a natural property,
and so are natural proofs. In some cases this property is explicit in the original paper,
while in others we need to do some work to bring out a natural property C}: that yields
the same lower bound. We call this latter process naturalizing the original proof. This
can be subtle (see e.g. Section 3.2.1 below). Given C,, one must exhibit C and prove
that it has both the constructivity and largeness conditions. The key to doing this seems
to lie in carefully analyzing the lower bound proof that used C,,. In the case where a
researcher intends to build a lower bound proof around some property C,,, evaluating
C,, for naturalness might be non-trivial. Nonetheless, in light of our framework, such an
evaluation could be worthwhile: if it is natural, C,, is not a useful property for solving
P £ NP and similar questions. Just as a researcher might rule out an approach to lower
bounds because it relativizes, he/she might rule out an approach to circuit lower bounds
because it “naturalizes”.



2.2. Properties which are I'-natural against A with density ¢,

It is easy and useful to extend the definition of natural proof to a more general, parame-
terized version. Understanding this more general definition is important to understanding
the results as presented in this paper.

Let T" and A be complexity classes. Call a combinatorial property C,, I'-natural with
density 0, if it contains C; C (), with the following two conditions:

?
Constructivity: The predicate f,, € C; is computable in I" (recall, C} is a set of truth-
tables with 2" bits);

Largeness: |C}| > 6, - |F,|.
A combinatorial property C,, is useful against A if it satisfies:

Usefulness: For any sequence of functions f,,, where the event f,, € C,, happens infinitely

often, {f,} & A.

A lower bound proof that some explicit function is not in A is called I'-natural against
A with density 6, if it states a I'-natural property C', which is useful against A with density
O, -

The “default” settings of our parameters will be I' = P, A = P/poly, and 6, = 279,
as in the initial definition. Our main result implies the negative statement that, under our
pseudo-randomness assumption, no proof with these parameters can show that SAT does
not have polynomial-sized circuits. In fact, as we survey the known lower bound arguments
they all remain natural even when the parameters are more restrictively adjusted. We are
unaware of a lower bound proof for which we cannot exhibit a C; which is P-natural with
density close to one. For most known arguments, I' can be restricted to NC? or lower.
Our full negative result (strengthened by an observation of Razborov [33]) is that, under
our pseudo-randomness assumption, no property with I'=quasi-polynomial-sized circuits,
A = P/poly, and §, = 279 can exist. Thus, our negative result rules out proofs with
much more inclusive parameters than currently known circuit lower bounds.

3. Examples of naturalizing arguments

3.1. AC° lower bounds for parity: AC’-natural

One of the first combinatorial arguments to give people hope and direction in lower bound
research was [11] where it was shown that PARITY ¢ ACY (independently this result,
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using somewhat different machinery, was discovered in [1]). Substantial technical im-
provements to their bounds were subsequently given by [40, 14]. All these proofs are
AC -natural.

The C,, used by these arguments simply says that there does not exist a restriction
of the variables with the appropriate number of unassigned variables which forces f, to
be a constant function. The “appropriate” number of unassigned variables is different in
[11, 40, 14] and determines the bounds obtained.

All three papers argue explicitly that C,(f,) = 1 implies that {f,} & AC®, in other
words, that C, is useful against AC®. C, is a natural property. In fact, we can choose
Cr =0,

A simple counting argument shows that C is true of a random function (C} has the
largeness condition).

Cr is in AC®! (C’ has constructivity). Indeed, suppose k is the “appropriate” number
of unassigned variables. Given the truth table for f, as input, we compute C}(f,) as
follows. List all (Z) on—k — 90(n) restrictions of n — k variables. For each one there is a

circuit of depth 2 and size 2°(™ which outputs a 1 iff that restriction does not leave f, a
constant function. Output the AND of all these circuits. The resulting circuit has depth
3 and is polynomial-sized in 2".

3.2. AC[q] lower bounds: NC?-natural

In this subsection we look at the proofs from [29, 36, 8] of lower bounds on the size of
AC"[g]-circuits, ¢ being a power of a prime. The naturalness of these proofs is especially
transparent in the framework of [29]. Namely, we have a GF[2]-linear mapping M from F,,
to a matrix space, and we simply take C* to be the set of all f,, € F,, for which rank(M(f,,))
is large. After reviewing the argument in Section 3.2.1 below, it will be an exercise for the
reader to show that C*(f,) = 1 for at least 1/2 fraction of all f,, € F},. Since computing the
rank is in NC?, we see that the proof is NC?-natural. Smolensky’s proof [36] is analyzed
below.

We will show in Section 4 that there is no AC°-natural proof against AC°[2]. Along
with the previous subsection, this gives the insight that [29, 36, 8] had to require arguments
from a stronger class than those of [11, 40, 14].

3.2.1. Smolensky’s proof: a non-trivial example of naturalization

The argument given in Smolensky [36] is a perfect example of a natural circuit lower bound
proof, but this is not immediately obvious. We will outline a special case of his argument:



a proof that parity does not have small AC°[3] circuits.

First, we recall the notion of polynomial approximation of a Boolean function. Think
of the Boolean value TRUE as corresponding to the field element —1 and the Boolean
value FALSE as corresponding to the field element 1. Let f be a Boolean function and
p be a polynomial over Zs where f and p have an identical set of variable names. Any
assignment A to f can be viewed as an assignment to p; in the case p(A) and f(A)
evaluate to corresponding values we consider them equal on this assignment. Otherwise,
we consider them to differ. The better p approximates f, the fewer assignments on which
they differ. Since we will only be interested in the values polynomials take on {-1,1}
(Boolean) assignments, we will consider polynomials to be multi-linear by default (no
variable gets raised to a power greater than one).

Proof outline: Smolensky’s proof has two main pieces. (1) Any function computed by
a “small” AC°[3] circuit can be “reasonably” approximated by a “low” degree polynomial
over Zsz. (2) The parity function in n variables can’t be “reasonably” approximated by a
“low” degree polynomial over Zs. The proof of (1) is not important here and is omitted.
(2) is proved by contradiction. Suppose there were a “low” degree (degree d) polynomial p
which agrees with the polynomial zyz523 - - z,, (the parity function) on all but a “small”
number of Boolean assignments. Let W be the set of Boolean assignments on which they
differ. Let N = 2". Let w be the size of the set W. We will assume that n is odd and
use [ and [y to denote polynomials of degree less than n/2. Every multi-linear polynomial
q can be written in the form x; - - - x,l; + 5. This means that, ignoring the inputs in W,
every Zs-valued function on {—1,1}"\ W (and there are 3V =% of them) can be represented
in the form pl; + l5. This representation has degree (n — 1)/2 + d which by a counting
argument can’t represent as many as 3¥ % functions. Contradiction.

This proof might seem to be exploiting a very particular fact about how the parity
function is expressed as a polynomial; it is not obvious how this same proof would apply to
a large fraction of functions. Even worse, the proof refers to a seemingly non-constructive
counting argument. However, the proof technique s by its nature applicable to many
functions, and counting Boolean functions eventually boils down to counting dimensions
of certain linear spaces which already s feasible in our sense.

There is one choice of C, clear from the proof: C,(f,) = 1 if f, can’t be reasonably
approximated by a low degree polynomial over Zj (for the appropriate definitions of reason-
able and low). Part (1) of Smolensky’s argument proves that C,, is useful against AC[3].
Why is C,, naturall’ To see it we have to make a choice of C}.

The simple choice is C;; = C,. It is fairly obvious that C; satisfies the largeness
condition. But what about P/poly-constructivityl' It is not at all clear that there is a
polynomial-size circuit which can determine if a function (given by its truth-table) can be
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approximated by a low-degree polynomial over Zs. This remains an open problem.
Thus we sink deeper into the proof and try to put

C*(f.) = 1 if every polynomial ¢ can be written in the form f,l; + I, (1)

where f, is the unique multi-linear polynomial representing f,. Then we have construc-
tivity.

In order to see this, denote by L the vector space of all polynomials of degree less than
n/2, and by T the complementary vector space of all (multi-linear) polynomials without
monomials of degree less than n/2. The whole polynomial space is then represented as
the direct sum L @ T and also, since n is odd, we have dim(L) = dim(7) = N/2. Now,
C*(fn) = 1iff the linear mapping 74, : L — T takingl € L to the projection of f,l € L&T
onto T is one-to-one (the reader can check his understanding at this point by verifying that
the parity function has this property). Thus checking that C(f,,) = 1 amounts to checking
that a matrix easily computable from f,, is non-singular which can be done in NC2.

For so chosen C the largeness condition also looks plausible. But we have no easy
proof of it.

We turn around this difficulty by trying to extend the definition of (1) as much as we
can (so that we’ll have more functions satisfying it) while preserving its spirit (so that
constructivity will also be preserved) and keeping the lower bound provided by it. A short
examination shows that the definition

C(fa) = 1iff dim(ful + L) > N (1/2+ ¢) (2)

which for € = 1/2 is the same as (1), is actually as good as (1) itself for arbitrary fixed
¢ > 0. Indeed, (2) implies that at least 3¥(/2¥9=% functions on {—1,1}" \ W can be
represented by a degree (n — 1)/2 + d polynomial, and the same counting argument still
works.

But if we define C* as in (2) with e = 1/4, we also have largeness! This immediately
follows from the fact that for every f,, € F, either C}(f,) =1or Ci(z1® - Bz, B fn) =1
(cf. the proof of Theorem 5.2 a) below).!

To show this fact, note that if dim (fnL + L) > 3N/4 then C}(f,) = 1. Otherwise we
have

dim((ml---mnfnL+L)/L) =
dim ((151 Y fnL)/fnL) >

1C* can be further adjusted to be a property of density close to one, as opposed to 1/2.
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dim (1 wa Lo Ful o+ L)/ + 1) =
dim ((T'+ L)/(fuL + L)) > N/4

(:uhe first equality here comes from the observation that (f,)? = 1 and thus multiplying by
fn defines an automorphism of L & T'). This gives us C(z1 ® ... ® z, ® f,) = 1.
So, C, is an NC?-natural property.

Smolensky’s proof is the most difficult example of naturalization we have encountered
in our analysis. On the other hand, it perfectly illustrates the general empirical idea of
“adjusting” C), in both directions in order to come up with a natural C.

3.3. Perceptron lower bounds for parity: P-natural

In [6], it is shown that a small constant-depth circuit (over {A,V,—}) which is allowed a
single majority gate can’t approximate the parity function. The authors did this by first
showing tight lower bound on the degree of a perceptron required to approximate parity
to within a given e. Their argument is natural.

Some definitions from [6]. A real polynomial p strongly represents a Boolean function?
f just in case sgn(p(z)) = f(z) for all input vectors z; such a polynomial is also called
a perceptron to compute f. Let p weakly represent f just in case p is not the constant
zero function on {—1,1}", and sgn(p(z)) = f(z) for all x where p(z) is nonzero. The weak
degree, d,,(f), is defined as the least & for which there exists a non-zero degree k polynomial
which weakly represents f.

A natural C), stated in the paper is that f, can’t be well approximated by the sign
of a low degree polynomial. It is explicitly shown that any f, with property C, can’t
be approximated by a small, constant-depth circuit with one majority gate, i.e., C), has
usefulness. To see that (), is natural one must exhibit a proper subset C;.

Let C*(f,) = 1 if d,(fn) is greater than the appropriate threshold. [6] explicitly
showed that C(f,) = 1 implies that a polynomial must have appropriately high degree to
approximate f, with its sign, i.e., C*(f,) = 1 implies that C,,(f,) = 1. d,, is computable in
polynomial-time using linear programming. This shows that C}; has constructivity. Since
the linear programming seems essential it is doubtful that anything substantially more
constructive than C could be found in the above argument, e.g., an NC-natural property
for example.

2In this section we, similarly to 3.2.1, represent Boolean functions as mappings from {—1,1}" to { 1,1},
and fg stands for the point-wise product, which is the same as f @ g in the {0, 1}-notation
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To argue that C) has the largeness property, we can show the following improvement
of an Q(n/logn) lower bound from [6]:

Theorem 3.1. For a uniformly chosen f, € F,, Pld,(f,) > n/20] > 1 — g-29(")

Proof. We use the following well-known facts:

Proposition 3.2. Let aq,...,axy € R Then there exist ay,...,a’y € Z such that |a}| <
exp(O(NlogN)) (1 <i < N), and for every z; € {—1,1}¥,

N N
sgn (Z a,;sc,;) = sgn (Z aé-sc,;) )
i=1 i—1

Proposition 3.3. Every integer polynomial p(z1, . .., x,) of degree d which is not an iden-
tically zero on {—1,1}", differs from zero on at least 2" ¢ points from {—1,1}".

The proof of Proposition 3.2 can be found e.g. in [21]; Proposition 3.3 is folklore.
Let f, € F,. If f, is weakly represented by a polynomial p of degree at most n/20,
we firstly apply Proposition 3.2 to the vector of coefficients of p. The length N of this

vector is 22;/30 T; < 2n(H{A/200+0(1) "wwhere H(e) is the entropy function. We find that

p can be replaced by a polynomial p’ with integer coefficients whose bit size is at most
O (N2 lOg N) < 2n(2~H(1/20)+o(1)).

fn can be uniquely retrieved from the pair (p/, f}), where f] is the list of values of f,
on zeros of p' (arranged, say, in the lexicographic order). From Proposition 3.3 we know
that the bit size of f/ is at most 2" — 2!%/20" thus the bit size of the pair (p', f!) is at
most 2" — 219/20n 4 gn(2H{1/20)+e(1) " Gince 2- H(1/20) < 12, the proof is completed by the
standard counting argument.m

3.4. Lower bounds on formula size: AC’-natural

Andreev [5] gives a promising lower bound for the formula size of an explicit function. His
bound was subsequently improved in [23, 24]. Finally, Hastad [15] gave a nearly optimal
lower bound (almost n®) of the formula size for Andreev’s function.

Andreev’s function is a Boolean function A,, on 2n bits: ai,as,...,a,; b1, by, ... . b,.
The a’s are partitioned into logn groups of size n/logn each. Let h; be the parity of the
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bits in the jth group. The bits hy, hs, ..., hiogn index a number ¢ from 1 to n. The value
of the function A,, is the bit b;.

All these proofs work by using a shrinkage factor T which was successively improved
in the last three papers until 7 = Q(n?). (Q is the “soft Omega” notation which is like Q
but ignores multiplicative factors of (logn)* for constant k.)

The meaning of T is that when a formula is hit by a random restriction it is almost
certain to shrink by a factor of 7. Thus, to prove a formula lower bound, just show that
a formula must have size s after being hit by a random restriction. It follows that the
original formula had size around sn?.

The natural property Cs, is that there is a restriction of b’s such that any of its exten-
sions leaving at least one unrestricted variable in each group of a’s induces a formula of size
Q(n/logn). This property is useful since a random restriction leaving (log n)? unrestricted
variables leaves at least one such variable in each group: for some fixing of b’s, a random
restriction to the a’s will shrink the formula to Q(n/logn). Obviously, As, has Cs, (simply
restrict b’s so that they will encode the most complex function in logn variables) which
implies that it must have formula complexity at least Q(n?).

We can choose 5, = Cs,. The fact that Cj, has largeness is easy to prove. Con-
structivity is also easy if we observe that there are only 29" formulas of size less than
n/logn.

3.5. Lower bounds against depth-2 threshold circuits:
TC'-natural

Hajnal et al. [13] show that the MOD-2 inner-product function requires depth-2 threshold
circuits of exponential size. Any Boolean function can be viewed as a Boolean matrix by
dividing the inputs into two equal sets with the left half indexing the rows and the right
half indexing the columns. Seen in this way the inner-product function is a Hadamard
matrix. Their proof shows that any matrix with low discrepancy can’t be computed by
small depth-2 threshold circuits. Choose C), to be true of all functions whose matrices have
low discrepancy. Their main lemma shows that any Hadamard matrix has low discrepancy.
The same argument shows that any matrix which is almost Hadamard in the sense that
the dot product of any two rows or any two columns is small also has the low discrepancy
property. Thus, the C} suggested by their proof is to check that the function viewed as a
matrix is almost Hadamard, for the appropriate definition of almost. It is possible to define
“almost” so as to guarantee that C): has largeness and preserves usefulness. Constructivity:
For each of the 2°(™) dot products, feed the binary AND’s into a threshold gate; feed the
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outputs of the threshold gates into a large fan-in AND. This is in T'C°.

3.6. Lower bounds against switching-and-rectifier networks:
AC-natural

It was shown in [30] that any switching-and-rectifier network (in particular, any nonde-
terministic branching program) for a large variety of symmetric functions must have size
Q(na(n)), where a(n) is a function which slowly grows to infinity. A similar result was
proven in [18] for @-branching programs.

The proofs are based upon a purely combinatorial characterization of the network size
in terms of particular instances of the MINIMUM COVER problem. Let C,, be the set of
those functions f,, for which the size 7(f,) of the minimal solution to the corresponding
instance is Q(na(n)).

The key lemma in these proofs says that if f,, outputs a 1 on any input with s(n) ones,
and outputs a 0 on any input with s(n) — d(n) ones, then 7(f,) > Q(na(n)) (s(n) and
d(n) are functions which slowly grow to infinity; s(n) > d(n)).

Denote this property by A,. It obviously violates the largeness condition. We circum-
vent this by letting C} be the set of those functions for which any restriction p assign-
ing n/2 variables to zero can be extended to another restriction p’ by assigning to zero
(n/2 —loglogn) additional variables in such a way that the induced function has Ajogiog n-

To see C; C C,, recall from [30, 18] that every covering set d; (A) has its associated
variable z; such that restricting this variable to 0 kills d; .(A). Now, for any collection of
o(na(n)) covering sets we simply assign n/2 most frequently represented z;’s to 0, and this
leaves us with a collection in which every variable corresponds to at most o(«(n)) sets.
Hence, for every extension p’ of this restriction, the size of the resulting collection will be
o(loglogn - a(n)). Thus, by the above lemma, this collection (and hence the original one)
does not cover all the points from the universe (a(n) and a(loglogn) differ by at most 1).

C: isin AC? (cf. Section 3.1).

To see the largeness condition, note that for every p we can choose n*/* extensions
P15+ -5 Pha2 SO that the sets of variables unassigned by every two different pj, p; from this
list have at most one variable in common. The event “f, restricted by p; has Aiggiogn”
depends only on those inputs that have either s(n) or s(n) — d(n) ones, and, moreover, all
these ones correspond to variables not assigned by p;. Since d(n) > 1 and s(n) —d(n) > 1,
our assumption on pf, ..., pl 5/, implies that these sets of inputs are pairwise disjoint (when
i ranges over {1,...,n%?}). Hence, the events “f, restricted by p. has Ajglogn” are
independent, and we can apply the standard counting argument.

3/2
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4. Inherent limitations of natural proofs

In this section, we argue that natural proofs for lower bounds are almost self-defeating.
The idea is that a natural proof that some function f is not in P/poly has an associated
algorithm. But just as the proof must distinguish f from a pseudo-random function in
P/poly (one being hard the other not), the associated algorithm must be able to tell the
difference between the two. Thus, the algorithm can be used to break a pseudo-random
generator. This is self-defeating in the sense that a natural proof that hardness exists
would have as an automatic by-product an algorithm to solve a “hard” problem.

For a pseudo-random generator Gy : {0, 1}* — {0, 1}?** define its hardness H(G},) as
the minimal S for which there exists a circuit C of size < S such that

1

PO(Gr(@)) =1] - P[C(y) =1]| = 5

(cf. [9]). Here, as usual, x is taken at random from {0, 1}*, and y is taken at random from

{0, 1)2,

Theorem 4.1. There is no lower bound proof which is P/poly-natural against P/poly,
unless H(Gy) < 22" for every pseudo-random generator Gy, = {0,1}* — {0,1}2% in
P/poly.

In particular, if 2" -hard functions exist then there is no P/poly-natural proof (against
P/poly).

Proof. For the sake of contradiction, suppose that such a lower bound proof exists
and C,, is associated P/poly-natural combinatorial property. Let C* C C,, satisfy the
constructivity and largeness conditions. W.l.o.g. we may assume from the very beginning
that C* = C,,.

We use a slightly modified construction from [12]. Let G}, : {0,1}¥ — {0,1}?** be a
polynomial time computable pseudo-random generator, and € > 0 be an arbitrary constant.
Set n = [k¢]. We use G : {0,1}F — {0,1}?* for constructing a pseudo-random function
generator f : {0,1}¥ — F, in the same way as in [12]. Namely, let Gy, G; : {0,1}F —
{0, 1}* be the first and the last k bits of G, respectively. For a string y € {0, 1}" we define
G, :{0,1}* — {0,1}* by G, = G, 0 G,, ,0---0G,,, and for z € {0,1}* let f(z)(y) be
the first bit of G, (z).

Note that f(z)(y) is computable by poly-size circuits, hence (from the definition of
a proof natural against P/poly) the function f(z) € F, is not in C, for any fixed = €
{0,1}* and any sufficiently large k. In other words, C, has empty intersection with
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{f(x) ‘ z € {0, 1}’“}, and this disjointness implies that C, provides a statistical test for
f(x), with
IP[Co(fn) = 1] = P[Cu(f () = 1]] > 2790 (3)

Note that this test is computable by circuits of size 20,
Constructing from this a statistical test for strings in our case is even simpler than in
[12]. Namely, we arrange all internal nodes of the binary tree T of height n:

U1, V2, ..., U(2n-1)

in such a way that if v; is a son of v; then ¢ < j. Let 7} be the union of subtrees of T' made
by {v1,...,v;} along with all leaves. For a leaf y of T let v;(y) be the root of the subtree
in T; containing y. Let G;,, = G, 0---0G, . . . where h(i,y) is the distance between
v;i(y) and y. Finally, define the random collection f;,, by letting f;,(y) be the first bit of
Giy (wvi(y)), where x, are taken from {0, 1}* uniformly and independently for all roots v
of trees from 7T;.

Since fy,, is fn, and fon_y, is f(x), we have from (3) that for some i,

P[Co(fin) = 1] = PlCu(fis1n) = 1] > 90,

Fix x, for all roots v of subtrees in T;,; other than v;; so that the bias 2-0(") ig preserved.
Then we have a statistical test for strings distinguishing between G (mvi“) and (x,, x,m),

where v',v" are the two sons of v; ;. Thus H(Gj) < 20(m) < 920(k)  As € was arbitrary,
the result follows.m

The assumption that 2" -hard functions exist is quite plausible. For example, despite
many advances in computational number theory, multiplication seems to provide a basis
for a family of such functions (known factoring algorithms are sufficiently exponential).

Based upon lower bounds for the parity function, Nisan [22] constructed a very strong
generator secure against AC%-attack. In fact, an easy analysis of his generator in terms of
its own complexity gives the following:

Theorem 4.2. For any integer d, there exists a family G, s C F,, where s is a seed of
size polynomial in n such that G, € AC°[2] and G,, ¢ looks random for 20 _size depth-d
circuits, i.e., for any polynomial-size (in 2™) depth d circuit family C,, : F,, — {0,1},

|P[Cn(.fn) = 1] - P[Cn(Gn,S) = 1” <2 em (4)

Here s is a random seed of the appropriate size.

16



Theorem 4.3. There is no lower bound proof which is AC°-natural against AC°[2].

Proof. Assume, on the contrary, that such a proof exists, and that C,, has the same
meaning as in the proof of Theorem 4.1. Let d be the depth of a size 2°™ circuit to
compute C,. Let G, s be the generator which is pseudo-random against depth-d 20(n)._
sized circuits from Theorem 4.2. From the definition of a proof natural against AC°[2],
for sufficiently large n, C,(Gns) = 0. Now, (4) immediately contradicts the largeness
condition.m

In fact, it is clear from the above proofs that whenever a complexity class A contains
pseudo-random function generators that are sufficiently secure against I'-attack, then there
is no I'-natural proof against A. E.g., it is easy to see that Theorems 4.1, 4.3 are still valid
for the larger class of I'-natural proofs, where I' consists of languages computable by quasi-
polynomial-sized circuits. This observation is of little importance for the examples of
natural proofs given in this paper. However, it is useful in the context of proofs feasible
in the logical sense [33], where quasi-polynomial limitations on the complexity arise more
often. Formally, we define P/qpoly as the class of non-uniform, quasi-polynomial size
circuits, i.e., size nl°8 n®
Theorem 4.4. There is no lower bound proof which is p/qpoly—natuml against P/poly
unless H(Gy) < kY for every pseudo-random generator Gy, {0,1}F — {0,1}%* in
P/poly.

4.1. Natural proofs are not applicable to the discrete logarithm
problem

It is possible (though we are unaware of any such examples) that a lower bound proof for
restricted models might be natural, but cannot be applied to any explicit function. In other
words, the proof might simply argue that many functions are complex without providing us
with any explicit examples of such functions. Given our hardness assumption, no natural
proof can prove lower bounds against P/poly whether or not the proof makes explicit what
the hard function is. Avi Wigderson has pointed out that if we restrict ourselves to certain
explicit functions, we can prove unconditional results in the style of Theorem 4.1. A good
example of such a function is the discrete logarithm. The key point is that the discrete
logarithm is known to be hard on average if and only if it is hard in the worst case. In
this section, we show that there is no natural proof that the discrete logarithm requires
exponential-sized circuits.
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Recall from [9] that for a prime p and a generator g for Z;, the predicate B, 4(z) on Z3
is defined to be 1iflog, z < (p—1)/2 and 0 otherwise. B, ,(x) was shown in [9] to be a hard
bit of the discrete logarithm problem. We consider B, ;(z) as a Boolean function in [log p]
variables (extended by, say, zeros on those inputs  which do not represent an integer in
the range [1,p — 1]). Our principal goal in this section is to show that no P/poly-natural
proof against “sufficiently large” Boolean circuits can be applied to By 4(x).

To explain the meaning of “sufficiently large”, we need a couple of technical definitions.
For an integer-valued function t(n), let SIZE(t(n)) be the complexity class consisting of
all functions {f,} which have circuit size O(t(n)). Let

t1(n) = max{z|t(z) <n}.
We say that ¢(n) is half-exponential if it is non-decreasing and
11 (n°) < oflog(n)) (5)

for every C' > (0. The meaning of this definition is that, roughly speaking, the second
iteration of #(n) should grow faster than the exponent. For example, £(n) = 2™ is half-
exponential, whereas #(n) = 20°8™ ig not.

Theorem 4.5. Let t(n) be an arbitrary half-exponential function. Then there is no com-
binatorial property C, useful against SIZE(t(n)) and satisfying P/poly-constructivity and
largeness conditions such that U,c, C, contains infinitely many functions of the form
By 4(z).

Proof. Assume the contrary, and let {B,, ,, } be an infinite sequence contained in U, ¢, Cy,
such that [logp,] < [logps] < ... Let k, = [logp,|. Applying the usefulness condition
to the sequence f, obtained from {B,, 4, } by letting f, = 0 for those n which are not of
the form [logp, |, we will find in {B,, ,, } an infinite subsequence where all functions have
the circuit size at least t(k,). W.l.o.g. we may assume that this is the case for our original
sequence.

Let G, : {0,1}** — {0,1}" be the standard pseudo-random generator from [9]
based upon {B,, g }. It is easy to check that the proof of [9, Theorem 3] actually extends
to showing that the circuit size of {B,, 4, } is polynomial in H(G,) + k,. Thus, we have

t(k,) < (H(G,) + k). (6)

Now we convert G, into the pseudo-random function generator f, : {0, 1}2k” — F,,
as in the proof of Theorem 4.1, where n, will be specified a little bit later. There exists a

18



fixed constant C' > 0 such that for almost all v, f,(z)(y) is computable by circuits of size
(k, +n,)°. Let n, =t 1 (kS+1) + 1.

(5) implies that #(k,) > k! for almost all v, since otherwise we would have k, <
t1 (k:yc“) <logt(k,) < (C + 1)logk,. Hence n, < k,. Now we have that for almost all
v every function in the image of the generator f, has circuit size at most (k, + n,)¢ <
(2k,)¢ < kS*! < t(n,). Applying the usefulness condition again, we find that for almost
all v, the image of the generator f, has the empty intersection with C,,. Arguing as in the
proof of Theorem 4.1, we get from this

H(G,) <200, (7)
Finally note that C,, # 0 for almost all n (from largeness) and, thus,

t(n) < 2" (8)

(again, for almost all n.)
The required contradiction is now obtained simply by combining the inequalities (5)
(with n:=k,, C :=C +1), (6), (7), (8):

m, = 71k + 1 < o(logt(k,)) < o(log H(G,) +logk,) < o(n,) + o(logk,) < o(n,).

Corollary 4.6. There is no combinatorial property C,, useful against NesqSIZE (2”5)
and satisfying P/poly-constructivity and largeness conditions such that U,c, Cn contains

infinitely many functions of the form B, ,(x).

new

Proof. N..(SIZE (2") D SIZE (22 10%”), and t(n) = 2% ¥ is half-exponential.m

It is easy to see that the above proof is actually valid for an arbitrary collection {f, 4} of
functions poly-time nonuniformly Turing reducible to the corresponding discrete logarithm
problem in place of {B, ,}.

5. One property of formal complexity measures

A formal complexity measure (see e.g. [38, Section 8.8], [31]) is an integer-valued function
poon F, such that p(f) < 1 for f € {~z1,...,wp,21,...,7,} and u(f * g) < p(f) +
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p(g) for all f,g € F, and * € {A,V}. The meaning of this definition is that for every
formal complexity measure u, p(f) provides a lower bound on the formula size of f, and
actually many known lower bounds, both for monotone and non-monotone formulae, can
be viewed from this perspective. See the above-cited sources for examples. Also, for any
approximation model 9 (see [39, 32] for most general definitions), we have p(f * g, M) <
p(f,9) + p(g, ) + 1, hence p(f, M) + 1 is a formal complexity measure.

In this section we show that any formal complexity measure p which takes a large value
at a single function, must take large values almost everywhere. In particular, every combi-
natorial property based on such a measure automatically satisfies the largeness condition
in the definition of natural property.

More specifically, we have the following:

Theorem 5.1. Let pu be a formal complexity measure on F,, and p(f) = t for some
f € F,. Then:

a) for at least 1/4 fraction of all functions g € F,, u(g) > t/4;

b) for any € = €(n) we have that for at least (1 — €) fraction of g € F),,

t
o) 2 Q| —————m | =1,

(n + log %)

In fact, the main argument used in the proof of this theorem is valid for arbitrary
Boolean algebras, and we formulate it as a separate result since this might be of independent
interest.

Theorem 5.2. Let B be a finite Boolean algebra with N atoms and S C B.

a) if |S| > 3|B| then every element of B can be represented in the form

(s1 Asa)V(s3Asq); si€S (1<i<4); 9)

b) if S contains all atoms and coatoms of B then every element of B can be represented
in the form

V. /\ (10

where s;; € S and £ < O (log N‘L‘gf‘)
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Proof of Theorem 5.1 from Theorem 5.2. Let S = {g| u(g) < t/4} for part a), and
u(g) <o b, }, where ¢ is a sufficiently small constant, for part b). Note

S = {g . (n—HOlg%)

that in part b) we may assume that 0 -

—1t - > n+1 since otherwise there is nothing to
(n-l—log %)
prove. Since p (A, p;) < nand p (Vi p;) < n, where p; is either z; or —z;, this implies
that S contains all atoms and coatoms of F;,, the latter being viewed as a Boolean algebra.

Now, if |S| > 2|B| in part a) or |S| > ¢|B| in part b), then we would apply Theorem
5.2 and represent f in the form (9), (10) respectively. This representation in both cases
would imply the bound u(f) < ¢, the contradiction.m

Now we prove Theorem 5.2. Denote by b a randomly chosen element of B.

Proof of Theorem 5.2 a). Fix by € B and consider the representation
bo=(bA(-b® b))V (=bA(bDb)).

As all four random variables b, (—=b @ by), —b, (b @ by) are uniformly distributed on B and
|S| > 3|B|, for at least one particular choice b of b we have b, (=b @ by), b, (b @ by) € S.m

For proving part b) of Theorem 5.2 we need the following

Lemma 5.3. Let B be a finite Boolean algebra with N atoms and S C B. Then there
B|

exists a subset Sy C S of cardinality O(log N) such that ASy contains at most O (log m)

atoms.

Proof of Lemma 5.3. Let us call an atom a good if Pla < s] < 2/3 and bad otherwise.
Here s is picked at random from S.
Now, the standard entropy-counting argument gives us that there are at most

B
O (log Fﬂ)

bad atoms. An equally standard argument implies that if we take a random subset Sy C S
of cardinality C'log N, the constant C being sufficiently large, then for any good atom a,
Pla < ASp] < N~'. Hence, for at least one particular choice Sy of Sy, ASy contains only
bad atoms, and the lemma follows.m

Proof of Theorem 5.2 b). Denote % by €. Once again, fix by € B. Let us call

c < by good if P[b € S|bAby=c|] > 5 and bad otherwise. Note that b A by is uniformly
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distributed on the Boolean algebra By = {c¢| ¢ < by }. Hence

P[c is good] > %, (11)
where ¢ is chosen from By at random.

Now, fix a good ¢ € By. The set B(c) = {b€ B|bAby=c} is a Boolean algebra.
Applying Lemma 5.3 to this algebra and to S := S N B(c), we come up with S; C S of
cardinality O(log N) such that ¢ < ASy and (ASp\c) has at most O (log %) atoms. We
extend Sy by including to it the corresponding coatoms and find that every good ¢ € B,
can be represented in the form /\ﬁz1 sj, $; €8, £ <0 (log %)

Next we apply the dual version of Lemma 5.3 to the Boolean algebra By and S :=
{c € By|cis good}. In view of (11), the same argument as above yields that by = V/_, ¢,
where ¢; are either good or atoms. The statement follows.m

6. Conclusion

We do not conclude that researchers should give up on proving serious lower bounds. Quite
the contrary, by classifying a large number of techniques that are unable to do the job we
hope to focus research in a more fruitful direction. Pessimism will only be warranted if a
long period of time passes without the discovery of a non-naturalizing lower bound proof.

As long as we use natural proofs we have to cope with a duality: any lower bound proof
must implicitly argue a proportionately strong upper bound. In particular, we have shown
that a natural proof against complexity class A implicitly shows that A does not contain
strong pseudo-random function generators. In fact, the proof gives an algorithm to break
any such generator. Seen this way, even a natural proof against NC' (or TC") becomes
difficult or impossible. In [16] it is argued based on the hardness of subset sum that a
pseudo-random function should exist in TC® C NC'. Consider the plausible conjecture
that there exists a (pseudo-random) function f € NC' (or TC?) such that G, ,(z) =
f(s#z) is a pseudo-random function generator. A natural proof that P # NC" or P # TC"
would give an algorithm to break it. Thus, we see that working on lower bounds using
natural methods is like breaking a secret code determined by the class we are working
against!

With this duality in mind, it is no coincidence that the technical lemmas of [14, 36, 29]
yield much of the machinery for the learning result of [20].
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