Propositional logic in Lean

Jiří Rýdl

Natural deduction

Lean's syntax (see code)

Some examples (see code)

Propositional logic in natural deduction

Lean's prover is built upon the calculus of natural deduction. The system consists of several inference rules that fall into two classes:

- 1. introduction rules
- 2. elimination rules

There are no axioms and every proof of a proposition P is a proof from some hypotheses $P_1, P_2 \ldots P_n$. Derivations (proofs) are built from smaller ones.

Hypotheses can be *canceled*, e.g. in the introduction rule for implication a hypothesis is moved into the antecedent of the conclusion.

Rules for \rightarrow and \wedge

$$\frac{A \quad B}{A \land B} \land \mathbf{I} \qquad \frac{A \land B}{A} \land \mathbf{E}_{\mathbf{I}} \qquad \frac{A \land B}{B} \land \mathbf{E}_{\mathbf{r}}$$

Rules for \lor and \neg

Constants and proof by contradiction

$$\frac{\bot}{A} \bot \mathbf{E} \qquad \overline{\top} \top \mathbf{I}$$

These rules constitute a system for intuitionistic logic, if we add *reductio ad absurdum*, we obtain classical logic.

$$\frac{\neg A}{\vdots}^{1}$$

$$\frac{\bot}{A}^{1}$$
 RAA

Example derivation: V-elim

ÞA QVR K pra Pr(qvk) PAR V (PAR) (prg) v (prk) (prg) v (prk) Grag (pr(que)) - (prq) v (pre))

Example derivation: EM

Pag P1 91 (E07) 7P pr vp pv qr 7PV9 $\frac{\gamma p \vee q}{(p \sim q)} \rightarrow (p \vee q)$ 2

Example derivation - RAA

2 P 2 $\frac{\gamma + q}{(q + q)} \rightarrow (q + q)$

References

- Avigad, Logic and Proof (pictures of natural deduction inference rules are taken from Chapter 3)
- Avigad, Theorem proving in Lean