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PROPOSITIONAL PROOF SYSTEMS,
THE CONSISTENCY OF FIRST ORDER THEORIES

AND THE COMPLEXITY OF COMPUTATIONS

JAN KRAJíÈEK AND PAVEL PUDLÁK

Abstract. We consider the problem about the length of proofs of the sentences Cons(!!)
saying that there is no proof of contradiction in S whose length is ::; n. We show the relation of
this problem to some problems about propositional proof systems.

§O. Introduction. For a finitely axiomatized theory S let Cons(~) denote the
statement that there is no proof of contradiction in S whose length is ~ n. From the
point of view of foundations of mathematics it would be extremely interesting to
know how difficult is to prove Cons(~) in another theory T, in particular in a weaker
theory. A question that we shall address bere is whether there exists a consistent
(finitely axiomatized) theory T such that for every consistent (finitely axiomatized)
theory S sentences Cons(~) have short proofs in T, and whether such proofs caD be
easily constructed.

Another problem is connected with propositional proof systems. We accept a
very general definition of a propositional proof system which is equivalent to the
definition of [CR]. For two systems P, Q we write P ~ Q iff there exists a polynomial
p such that for every tautology t, if t has a proof of length n in Q then t has a proof
of length ~p(n)in P. In particular, if P polynomially simulates Q in the sense of
[CR], then P ~ Q. Clearly any two systems P, Q have a common lower bound. The
most interesting open problem about this quasiordering is whether there exists the
least element in it. ff .K,q}I = co.K,q}I then the answer is "yes", but it seems that the
existence of the least element might be a weaker statement than .K,q}I = co.K.9. We
shall not solve this problem. We shall only show that the positive answer to it is
equivalent to the existence of a theory T in which alt Cons(~), for any S consistent,
have short proofs. For the stronger statement that there exists a propositional proof
system which polynomialty simulates every propositional proof system, we prove
that it is equivalent to the existence of a theory T such that, for any fixed theory S,
proofs of Cons(~) in T caD be constructed in polynomial time (in n). AIso it is
equivalent to the existence of, in a sense, optimal deterministic algorithm for the set
of propositional tautologies.
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ff one considers the proofs of Cons(!:!) in T, one may suspect lhal even in the case
when 8 = T the proofs must be exponentially long (in n). But in [Pul,2] it has been
shown lhal for T finite and sufficiently strong there are such proofs which are only
polynomially long (in n), and in fact can be constructed by a deterministic Turing
machine in polynomial (in n) time. We think lhal it will be considerably more
difficult to determine the length of proofs of Cons(!:!) in T if T is weaker than 8. In
order to support this belief we shall use relativization, which is so far the only means
to prove some kind of independence in the complexity theory. As the relativization
of such a problem requires second order language of arithmetic and is not quite well
understood, we shall relativize an equivalent problem which can be stated using only
the concept of the Turing machine.

In §5 we shall consider what can be proveï about propositional proof systems in a
weak fragment of arithmetic 8}. We observe lhal results of Cook [Co] and Buss
[Bu] imply lhal the existence of a propositional proof system which polynomially
simulates every propositional proof system is in a certain sense consistent with 8}.
M. Oowd [Do] observed lhal Cook's theory PV proves the soundness of a Frege
system with substitution, which implies lhal extended Frege systems polynomially
simulate Frege systems with substitution. We shall sketch the proof of this result
with PV replaced by 8}, and then, in §6, we show an explicit simulation.

Related problems were studied especially in [Fr] and [Bu]. Friedman [Fr]
proveï a lower bound Q(nl/4) to the length of proof of ConT(!:!) in T and suggested
studying several problems of this kind. Buss [Bu] found a proof-theoretical
statement equivalent to %.9 = co%f!P.

§1. Preliminaries. We shall consider only .finitely axiomatized consistent theories
whose language contain the language oj arithmetic, i.e. the language {O, 1, <, =,
+, .}. N denotes the set of nonnegative integers. For nE N, !:! will be the numeral
based on the dyadic expansion of n. Thus the length of n is proportional to log n. AIl
finite objects will be considered as finite sequences in the alphabet {O, I}. The one-to-
one mapping between the sequences of O and 1 and dyadic expansions determines a
Godel numbering oj .finite objects, and this in turn determines the formalization.
Thus, e.g. for a formula cp, its formalization cp is a numeral whose length is pro-
portional to the length of cp. The length oj a sequence s will be denoted by Isl.

We shall denote the relation "d is a prooJ oj cp in T" by d: T I- cp. We define:

Tj-!!- cp .;;. 3d(ldl ~ n & d: T I- cp).

, Xk) a formula. We saJ that cp.•?;-Let T be a theory, R a k-ary relation on N, CP(Xl,
numerates (resp. .)('f!}J-numerates) R in T if

R(nl,...,nk)- Tl-cp(nl,...,nk)
- -

and there exists a polynomial time Turing machine M such that

nk) =;.. M(nl' ,nt): TI-~(nl' , nk),

, nt)).
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LEMMA 1.1. There exists a finite fragment To of the true arithmetic such lhal, for
every relation R on N, R E f!}J (resp. R E ';vf!}J) i.ff R is f!}J-numerable (resp. .;Vf!}J-
numerable) in To.

For the proof see the proof-sketch of Theorem 3.3 of [Pul]. Essentially the proof
consists of verifying that, for a suitable formalization of Turing machines, a given
accepting computation caD be easily transformed into a proof that such a
computation exists. It should be pointed out that natural formalizations of relations
in f!}J (in ';vf!}J) are actually f!}J-numerations (';vf!}J-numerations).

For ordinary Hilbert style proofs the ternary relation d: Tf- ~ is in ~ Hence let
Prf(x, y, z) be some formula which f!}J-numerates this relation in To. (Prf will be used
also for propositional proof systems.) We define

ConT(x) ~ Vy(lyl ~ x -+ -, Prf(y, T, Q...:=.j)).

(To be quite precise, we should also speak about a f!}J-numeration of the relation
Idl ~ n, but we shall omit such details here.)

Let TAUT be the set of propositional tautologies. Let Taut(x) denote a formula
such that -,Taut(x) ';vf!}J-numerates the complement of TAUT in To.

For a usual propositional proof system P such as Frege systems, Frege systems
with substitution, etc., the relation "d is a proof of t", denoted by d: Pf- t, is in ~
The general concept of a propositional cal cul us caD be defined just by this
requirement. For technical reasons we shall require a little more, namely that this
binary relation is computable in deterministic linear time. Thus we define: P is a
propositional proof system if P is a binary relation computable in deterministic linear
time such that

3d, d: Pf- t - t E TAUT

Roughly speaking, a propositional proof system is a nondeterministic acceptor for
TA UT, and the length of a proof is the length of an accepting computation. Clearly
if the provability relation d: P I- tis polynomial time computable we can transform
it into a linear time computable relation by increasing the lengths of proofs only
polynomially. Thus the usual propositional proof systems •ali into our definition,
except that the length of proofs is polynomially increased. A polynomial increase in
the length of proofs is for our purpose irrelevant.

Cook [Co] and Cook and Reckhow [CR] define a propositional proof system to
be a polynomial time computable function F such that the range of F is the
tautologies. Put otherwise, F(x) is the formula whose proof is x. Thus F corresponds
to P, where

d: Pf- t iff P(d) = t,

i.e. P is a polynomial time computable relation. As described above, P caD be
transformed into a relation satisfying our definition of propositional proof systems.
On the other band, if P is a proof system in our sense, define P as follows:

F(x)=y if3d,(d:Pf-y)/\x=[d,y],
= p v -, p otherwise.

Thus there is no essential difference between these two concepts.
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Since for each P we require that the binary relation d:P f- t is linear time
computable, we caD chaose suitable codes of (the Turing machines computing) the
calculi P so lhal the ternary relation d: Pf- t (where P is identified with its code) is
polynomial time computable. By Lemma lJ it caD be f!J>-numerated. We shall use
Prf(x, y, z) to denote its f!J>-numeration, the same formula as for first order theories.

Let Pand Q be two propositional proof systems. We say lhal P polynomially
simulates Q if there exists a polynomial time computable function F such lhal
d: Q f- t => F(d, t): Pf- t. Clearly if P polynomially simulates Q then P ~ Q.

Recall lhal the classes tff!!ff!J> (resp. .Ktff!!ff!J» are the classes of languages recognized
by deterministic Turing machines in time 2°(n) (resp. accepted by nondeterministic
Turing machines in time 2o(n)).

A language X is called sparse iff there exists a polynomial p such lhal for every n,
X contains at most p(n) words of length ~ n.

For a Turing machine M and an input w, TIME(M; w) denotes the length of (a
longest) computation of M on w. A machine M with an oracle A will be denoted by
MA; similarly f!J>A, .Kf!J>A, etc. denote the classes .?JI, .K.?JI, etc. relativized to A.

A propositional formula will be s9metimes called simply a proposition.

§2. The length of proofs of the consistency statements and the length of proofs in
propositional proof systems. Let us consider the following statements.

(1) There exists a finitely axiomatized fragment T of the true arithmetic such lhal
for every finitely axiomatized consistent theory S there exists a polynomial p such

Pln)that T ~ Cons(~), for every n E N.
(2) There exists a propositional proof system which is a least element in the

quasiordering ~ (see §O).
(3) There exists a propositional proof system P such that for every X ~ TAUT,

X E .K.?JI, there exists a polynomial p such that for every t EX, P ~ t.
(4) There exists a propositional proof system P such that for everyX ~ TA,MT,

X E.?JI, X sparse, there exists a polynomial p such that for every t E X, P ~t.
(5) For every A E co.Kf!J> there exists a nondeterministic Turing machine M

which accepts A and such that for every X ~ A, X E.?JI, X sparse there exists a
polynomial p such that, for every w E X, M accepts w in time ~p(lwl).

(6) There exists a finitely axiomatized fragment T of the true arithmetic such
that, for every finitely axiomatized consistent theory S, there exists a deterministic
Turing machine M and a polynomial p such that for any given n, M constructs a
proof of Cons(~) in T in time ~ p(n).

(7) There exists a propositional proof system which polynomially simulates every

propositional proof system.
(8) There exists a deterministic Turing machine M which recognizes TAUT and

suchthat for every deterministic Turing machine M' which recognizes TAUT there
exists a polynomial p such that for every t E TAUT

TIME(M; t) ~ p(ltl, TIME(M'; t».

(9) For every A e co";v.?P there exists a deterministic Turing machine M which
recognizes A and such that for every deterministic Turing machine Mr which
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recognizes A there exists a polynomial p such that for every W E A

TIME(M; w) ~ p(lwl, TIME(M'; w)).

Suppose (1) were true and T is a reasonable theory, say a fragment of Peano
arithmetic, and p(x) is some small polynomial. Then we could realize the Hilbert
program in a modified, finitistic sen se. We conjecture that this is not possible, i.e. (1)
is not true. The Doly information about this problem is that for T sufficiently strong,
every proof of ConT(~) in T has length at least n", e > O. On theother band proofs of
polynomial length (in n) can be constructed; in fact there exists a deterministic
Turing machine which constructs a proof of ConT(~) in T in time p(n), p a
polynomial (cf. [Fr] and [Pu1,2]).

Also, very little is known about propositional proof systems. No nontriviallower
bounds are known for proofs in ordinary propositional proof systems except of the
resolution system [Ha]. For instance we cannot rule out that the system in (7) is, say
a Frege system.

THEOREM 2.1. (i) Statements (1)-(5) are equivalent, and they are implied by ..IVlS',q{[!)J
= co..IVlS',q{[!)J and by statements (6)-(9).

(ii) Statements (6)-(9) are equivalent, and they are implied by lS',q{[!)J =..IVlS',q{,?JI.

[!)J = ..IV [!)J-
~ %.9 = co%.9

th"!!l'9 = %tf!!l'9
--

-. .KS.:!l'.9 = co.KS.:!l'.9

(6) +-+ (7) +-+ (8) +-+ (9)

:"'"-~
~(1) +-t (2) +-t (3) +-t (4) +-t(5)

§3. Proofs. In the first part of this section we shall exhibit rour basic
constructions:

(a 1) of a propositional proof system from a true theory,
(a2) of a theory from a propositional proof system,
(bl) of a bounded arithmetical formula from a proposition, and
(b2) of a proposition from a particular bounded arithmetical formula.
The constructions are not difficult, but since they are essential for the proofs and

also of some independent interest we describe them explicitly before the proofs.
In the second part of the section we shall prove Theorem 2.1.
From now on we shall consider only finitely axiomatized consistent theories.
Part 1. The constructions. We fix To, the theory ensured by Lemma 1.1. Let

Taut(x) and Prf(x,y, z) be the formulas introduced in §1.
(al) For T 2 To a finitely axiomatized part of the true arithmetic we define

propositional proof system P(T) by

d-Op(ldl): P(T) I- t iff d: TI- Taut(t).
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Here a string or zeros or length p(ldl) is added to d so that the binary relation "d is a
proor or t" in P(T) is linear time computable; p(x) is a suitable polynomial.

(a2) For P a propositional proor system we construct a tinitely axiomatized true
theory S(P) by:

S(P) ~ To v {Prf(x,•,Y) -+ Taut(y)}.

Further we shall call the forrnula Prf(x,•, y) -+ Taut(y) the essential axiom oj S(P).
(bl) Frorn a proposition t we construct a bounded arithrnetical sentence Taut(1.),

(It is well known that Taut(x) can be taken bounded, in particular as a 1I~ -forrnula;
cf. [Bu].)

(b2) Let cp(x) be of the form

\fXl < 2x...\fXk < 2xl/I(X,Xl,...,XJ,

where 1/1 is a bounded arithmetical formula of the form

Q1Yl <x...Q,y,<XU(X,Xl,...,Xk'Yl'...'Y,)'
where Qi E {\f, 3} and u is open and its atomic subformulas have the form u = v,
u + v = w or u . v = w, where u, v, w are O, 1 or a variable. We shalltransform each

closed instance cp(!!), n E N, of cp(x) into a proposition ttp,n.
For a given n, we caD transform 1/I(!!,Xl,.. .,xJ into an equivalent open formula

I/In(X 1,. . . , xJ by succesively replacing the bounded quantifiers by n-term conjunc-
tions or disjunctions. Then we introduce an n-tuple of propositional variables for
each Xi' i = 1,..., k, and replace each atomic formula u = w, u + v = w and u . v
= w by the conjunction of n formulas for the digits of w. (We caD assume without

los s of generality that u, v, w E {Xl'...' Xk, Q, 1,..., !!}.) The formulas for addition
and multiplication are easily obtained from the circuits of depth O(log(n)), whose
construction is well known [SaJ.

LEMMA 3.1. For T a finitely axiomatized fragment of the true arithmetic, P a
propositiona[proofsystem and t a tautology, there exists a polynomial p(x) such lhal

(i) if T ~ Taut(f) then P(T) ~ t, and
(ii) there is a polynomial p(x, y, z) which does not depend on P or t such lhal, for any

d, if d: Pf- t then
S(P) I p(ldl.IPI,ltl) Taut(!).

PROOF. (i)is trivial. For (ii), by Lemma 1.1 thereis a polynomial q(x, y, z) such that,
for any d, P, t, if d: P I- t then

Tolq<ldl,IPI,I/I)Prf(.4,f.,!).

Using the essential axiom of S(P) we deduce in S(P) the formula Taut(!) from
Prf(.4,f.,!) by a proof of length linear in Idl + lPI + Itl. Combining these two
proofs we obtain the proof of Taut(!). O

LEMMA 3.2. (i) For t a proposition and T;2 To,

t E TAUT iff N F= Taut(!) iff TI- Taut(!).

(ii) There exists a deterministic Turing machine M which constructs a proposition
tm." from any (p(x) Q{ the {arm described in the construction (b2) and from any n E N
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such that
a) tqo.n E TAUT iff N 1= cp(~), and
b) TIME(M; cp(x), n) ~ p(lcpl,n) for some polynomial p(x,y) not depending on cp

orn.
PROOF. (i) is trivial. (ii) The lemma holds with the tqo,n defined above; however the

proor would not be so easy as the proor for the rollowing construction or tqo,n'
Since the relation

{[2n,ml'" .,mk] IN 1= I/I(!!,'1.II'.. .,'1.Ik)}

is in .9, there exists a deterministic Turing rnachine which in tirne polynornial in n
constructs a circuit ~,n such that for ml'. . . , mk < 2n

C~,n(ml,...,mk) = 1 iff NI= I/I(!!,'1.II,...,'1.Ik),

where ml" . . , mk are considered to be 0-1 inputs of length n. By introducing new
propositional variables q for the vertices of C~,n we caD construct a propositional
forrnula tqo,n(PI"..,Pk,q) such that

C~.n(ml,...,mk)=l iff Vq,tqo.n(ml,...,mk,q).

Hence NI= cp(!!) iff NI= VXI < 2n,..VXk < 2nl/l(!!,XI,.",Xk) iff tqo.n(PI"..,Pk,q)
eTAUT. O

REMARK. Observe that the proof of Lernrna 3.2 works for any co%$.l!J:9-
predicate instead of cp (x). In fact, any co%$.l!J:9-predicate caD be defined by a
formula of the form described in the construction (b2); in particular, Cons(x) caD be
written in such a forrn (cf. [Bu]).

We shall write ... ~... to rnean that there exists a polynornial p such that, for
p(n)every n, . . . fo=!- . . . .

LEMMA 3.3. There exists a .finite fragment TI 2 To of the true arithmetic such that,
for every theory 5,

TI ri- Cons(!!) +-+ Taut~),

and these proofs can be constructed in time polynomial in n.
PROOF. Let cp(~,!!,~) be a .9-numeration of the construction (b2) or of the

construction of the proof of Lemma 3.2 restricted to formulas Cons(!!).
Let Ti be To plus the axiom

!p(X, y,Z) -fo [('v'u(lul ~ y -fo -, Prf(u, x,Q-=J))) Taut(z)].

Now for given S we caD construct tcons.n in time polynomial in n. By.9-numerability
we get a proof of

cp(~,!!,tcons.,,)

again in polynomial time. From this we obtain the required equivalence in Ti
immediately. O

Part 2. ProoJ oj the Theorem. The proof that %tI.f!J:.9 = co%tI.f!J:.9 implies (1) is
easy and has been shown in [Pul, Proposition 6.2]. The proof that tI.f!J:.9 = %tI.f!J:.9

implies (6) is almost the same-
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The following implications are trivial: (2) =;.. (3), (5) =;.. (4), (6) =;.. (1), (9) =;.. (8). It
remains to prove (3) =;.. (5), (4) =;.. (1), (1) =;.. (2) and(6) =;.. (9), (8) =;.. (6), (7) =;.. (6) and

(6) =;.. (7).
ProoJ oj (3) =;.. (5). ff A E co JVf!J' then A can be reduced to TAUT by a

deterministic polynomial time reduction F such that for some e > O we have
IF(w)1 ~ Iwl', for every input w. Thus if X ~ A, X E f!J', then F(X) ~ TAUT, F(X)
E JVf!J'. Now clearly the Turing machine M for A can be constructed from the proof

system and F. O
ProoJ oj (4) =;.. (1). Let P be a propositional proof system with the properties of

(4). Let S be an arbitrary consistent theory. Then the set {tcons.n lnE N} is contained
in TA UT, is in f!J' and is sparse. Thus there are proofs dn, n E N, of size polynomial in

n, such that dn: P I- tcons.n.
By f!J'-numerability,

To r;-Prf(~,l!,~),

whence, by the essential axiom of S(P),
"

S(P) ~ Taut(~).
Now, by Lemma 3.3, S(P) ~ Cons(:!:!); hence S(P) is the desired theory T satisfying

statement (1). O
ProoJ oj (1) => (2). Suppose T has the property stated in (1). We can assume lhal

Tis sufficiently strong, in particular lhal To ~ T and

(*) TI- -,Taut(x) -.. 3y(lyl ~ r(lxl) & Prf(y,!2, -,Taut(x))),

where -,Taut(x) is used as anabbreviation for the formalization of the function

n f-+ "the Godel number of -, Taut(:!:!)"

and r(x) is a suitable polynomial. Note lhal this is a special case of an antireflection
principle which holds in weak fragments of arithmetic; cf. [Bu, Theorem 7.4] and

[PW2, Theorem 6.4].
We shall show lhal P(T) is a least element in the quasiordering of the

propositional proof systems. Let Q be an arbitrary propositional proof system.
Suppose d: Q I- s, Idl = n. Then, by &-numerability in particular,

"
S(Q) ~ Prf(4,.Q,~),

and hence, by the essential axiom of S(Q),
q(,,) .

S(Q) ~ Taut(~), for some polynomlal q.

Using .ff&-numerability,

To ~ 3x(lxl ~ ~ & Prf(x, ~,~ ~).

Since Isl ~ Idl = n, To ~ S(Q) and
"

T ~ Cons(Q)(10. (r(n) + q(n))),

the last formula implies:

T ~ i3x(lxl ~ r(lsl) & Prf(x, To, iT~~).
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(We assume lhal, given proors or some o- or length a and -, o- oflength b, a proor or O
n= 1 or length 10(a + b) caD be constructed.) Hence, by (*), TI-;- Taut(§.); thus

n
P(T) I-;- s. O

ProoJ oj (6) => (9). Let T be the theory or (6) and A E co %~ By %9-
numerability or the complement or A there existsa polynomial pand a rormula t/I(x)
such lhal

p(IWI)
((*) w~A=To~II/I~)-

Let Mi, i E N, be an enumeration of deterministic Turing machines such that Mo is a
trivial exponential time algorithm for A (given by the Turing machine accepting the
complement of A) and such that the relation "C is the computation of the ith Turing
machine on w" is a relation in ,é?l'. Let cp(x,y, z) be a f!J>-numeration of this relation in

To-
Let Si' i E N, be the theory To u {'v'x'v'y(cp(x,i,Y)~ l/I(y»}. Since each Si contains

To, (*) is true for every Si (with the same polynomial p). By the !!J'-numerability and
the definition or Si there exists a polynomial q such lhal:

(**) ir C is an accepting computation or Mi on input w, then

Silq(ICI.i.IWIJI/I(~).
Now we shall describe a machine M with the property stated in (9). On an input w,
Iwl = n, M will simulate the work or Mi, i = O,..., n, in several rounds. Namely, in
the mlh round M simulates

(i) Dne additional computational step or Mo,..., Mn on wand
(ii) Dne additional computational step or Mo,..., Mn on inputs 1,2,..., m (thus,

for instance, it will simulate the first step or Mo,..., Mn on m); and
(iii) M will check ir there are i, k ~ n and j, 1 ~ m such lhal Mi has accepted w in j

steps and Mk has produced on input 1 a proor or Cons,(10(p(n) + q(j, i, n») in T; ir so
M stops and accepts w; otherwise it goes on until it finishes the simulation or Mo on
w and behaves as Mo.

First we shall show lhal M recognizes A. Ir M finishes the simulation or Mo, then
this is clear. So suppose lhal M accepts w because the situation in (iii) occurs.
Assume lhal w i A. Then, by (*),

Si ~-'I/I(~).

On the other band, Mj accepted w by a computation of length j. Thus, by (**),

Sj~I/I(~).

Hence there is a proof of a contradiction in Sj of length, say, lO(p(n) + q(j, i, n)). But
T proves Cons,(lO(p(n) + q(j, i, n))). Hence T would be inconsistent, which is a
contradiction. Thus W E A.

Now assume that M' recognizes A. Let M' = Mj. Then Sj is consistent. By (6),
some Mk constructs the proof of Cons,(ll) on input n in polynomial time r(n). Let w
beaninput, Iwl = n ~ i,k,w E A. Letj = TIME(Mj; w). BecauseofMk, Mwillfinda
proof of Cons(lO(p(n) + q(j, i, n))) in T in the r(lO(p(n) + q(j, i, n)))th round or.
sooner. Thus M will make at most max(r(lO(p(n) + q(j, i, n))),j) rounds when
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working on w. This value is bounded by a polynomial in n and j = TIME(M;; w).
Since the mth round of M takes polynomially many steps in n and m, the condition
of (9) is satisfied. O

ProoJ oj (8) = (6). Let M be a Turing machine with the property stated in (8). Let
S be a consistent theory. Then there exists a polynomial p such that for every n

TIME(M; tCoDs.n) ~ p(n).

ff not, we could combine M with a machine which recognizes the tautologies tcons.n,
nE N, in polynomial time, and thus obtain a machine which is more than
polynomially faster than M on an infinite set of inputs. The cest of the proof is the
same as the proof of (4) => (1). Therefore we leave it to the reader. O

Proof of (7) => (6). Let P be a propositional proof system which polynomially
simulates every propositional proof system. As in the proof of (4) => (1) we shall
show that T = S(P) is the theory required in (6). Let S be a consistent theory. Since
the set of tautologies {tcons.n lnE N} is in .9, there exists a propositional proof
system Q in which the proofs of these tautologies caD be constructed in polynomial
time. (E.g. for a suitable polynomial p(x), we caD take op(n) as the proof of tcons.n.) As
P polynomially simulates Q, the same must be true for P. Thus we caD construct in
polynomial time proofs dn: Pf-- tcons.n. The cest is the same as in the proof of (4)
=> (1). O

Proof of (6) => (7). Let T be the theory whose existence is assured by (6). Then
P(T) is a propositional proof system which polynomially simulates every pro-
positional proof system. The proof is almost identical with the proof of (1) => (2).
ODe has only to check that all proofs whose existence is claimed caD in fact be
constructed in polynomial time. O

§4. A relativization.
THEOREM 4.1. There exists a recursive oracle A such that the following holds. There

exists B E co%.9A such that for every nondeterministic oracle Turing machine MA
there exists X ~ B, X E .9A and X sparse, such that either

(a) MA does not accept B, or
(b) for infinitely many inputs w E X, TIME(MA; w) ;?: 21wl.
Thus (5) is false relative to an oracle. On the other band if A is such that %.9A

= co%.9A then (5) is true relative to A (such an oracle has been constructed in

[BGS]).
PROOF. B wil1 be constructed so that there exists an oracle Turing machine Mg

which accepts B in time n . 2n. Thus we need only consider oracle Turing machines

which stop after 22n steps on every input of length n (since we caD combine any MA
with Mg withoutincreasing the running time). Let Mf, i E N, be an enumeration of
such machines such that each machine occurs in it infinitely many times and such
that, for every MA,

(*) {ji Mf = MA} e.9;

Let f(n) be the recursively defined runction f(l) = 1, f(n + 1) = 22!(") + 1. Thus
Mf working on w, Iwl = f(n), cannot query the oracle about words or length
f(n + 1).
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Define A ~ {O, 1}*, A = U':=oA(n), by A(O) = e5 and

A(n + 1) = A(n) u {w Ilwl = f(n + 1) & the lexicographically first accept-
ing comp utation or M A(") on 0/(" + 1) which does

"+1

not query all words or length f(n + 1) does not
query w}.

(Here, and in the sequel, om is the word consisting of m zeros.) Thus A(n + 1) = A(n)
if there is no accepting computation of M :<:1 on o/(n+ 1), or if every such accepting
computation queries all words of length f(n + 1).

Claim. M:<:l accepts o/(n+1) ifJ M:+1 accepts o/(n+1).
Proof. =. By the construction of A, the lexicographically first accepting com-

Putation of MA(n) on o/(n+ 1) is also an accepting computation of MA(n+ 1) and MAn+1 n+1 n+1
caD use only the part A(n + 1) of A on o/(n+ 1).

0::. ff M:~n1 does not accept o/(n+ 1), then A(n + 1) = A(n). Again M:+ 1 CaD use
only A(n + 1) = A(n) on o/(n+1). The claim is proved.

Let B = {w I Vv E A, lvi # Iwl}. Thus B E co%.9A. Now let an arbitrary M be
given. We consider three cases.

(i) There exists n such that M: = MA and there exists an accepting computa-
tion of M:(n-1) on O/In) which does not query all words of length f(n). Then M:
accepts O/In) by the claim, but A(n)\A(n - 1)# Q5, i.e. O/In) ~ B. Hence MA does

notaccept B.
(ii) There exists n such that M: = MA and no computation of M:(n-1) accepts

O/In). Then, by the claim, M: does not accept O/In), but A(n) = A(n - 1), i.e. O/In) E B..

Hence MA does not accept B.
(iii) For every n such that M: = MA there exists an accepting computation of

M:(n-1) on O/In), and each such computation queries all words of length f(n). Then,
for every such n, A(n) = A(n - 1), i.e. O/In) E B, and TIME(M: , O/In)) ;?; 2/(n). Thus
for X = {O/In) I M: = MA} we have X ~ B, X is sparse, TIME(MA; w);?; 21wl for
w EX, and, by (*), X E.9 ~ .9A. O

§5. Propositional proof systems in a weak fragment of arithmetic. In theprevious
sections we have investigated relations between general first order theories
(fragments of arithmetic) and propositional proof systems. In this section we shall
concentrate on particular theories and particular propositional proof systems.

We shall recall the definition of a Frege system from [CR]. A Frege rule is a rule of
the form

Ci, ,c"
D

where CI,..., Cn, Dare propositional formulas such that CI,..., Cn F= D.. ff O' is a
substitution of formulas for propositional atom s, then we say that O'(D)jollows from
O'(CI),..., O'(Cn) by the rule above. A proof from a set of rules is, as usual, a sequence
of formulassuch that each formula follows from the previous ODe by some rule. An
implicationally complete finite set of Frege rules is called a Frege system; for details
cf. [CR]. The usual textbook system s with finitely many axiom schemes and modus
ponens as a rule are Frege systems. The extension rule is the rule which allows ODe to
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introduce formulas of the form p = A, where A is an arbitrary formula and p is an
atom which does not occur in A, in any preceding formula of the proof and in the
last formula of the proof. The substitution rule allows ODe to deduce u(A) from A for
any substitution u.

Any two Frege system s polynomially simulate each other, and the same is true for
any two Frege systems with the extension rule and any two Frege systems with the
substitution rule. Let F, EF, and SF denote respectively some Frege system, some
Frege system with the extension, and some Frege system with the substitution rule.
We shall not define the system ER of extended resolution, since ODe caD easily show
that it has the same power as EF.

In [Bu] Buss introduced several fragments of arithmetic. The most interesting
seems to be the ODe denoted by S ~. Roughly speaking, it consists of some basic
theory, which includes binary operation 2 Íog(x+ 1)" r\og(y+ 1) and induction E~-LIND
which has the form

~(O) 1\ ('v'X, ~(x) -+ ~(x + 1) -+ 'v'x, ~(rlog(x)-')

for ~ E I;~ o The formulas in I;~ define in the standard model of arithmetic just the
.KfP-predicates. He proved that the statement .KfP r'\ co.KfP = fP is in a certain
schematic way consistent with S ~. Namely if, for ~(x) E I;~, -, ~(x) is provably in S ~
equivalent to some l/J(x) E I;~, then it provably in S~ defines a set in fP.

In the same way our statement (7) is consistent with S ~ o This follows from a
theorem of Cook [Co] and the result of Buss [Bu] that S~ is in a sense a
conservative extension of Cook's equational theory PVo Using this conservativity of
S~ over PV, Cook's theorem caD be stated in our notation as followso

THEOREM 5.1 (COOK, Buss). (a) S~ I- Prf(x,ER,y) -+ Taut(y).
(b) For every propositional proof system P, if

S~ I- Prf(x,P,y) -+ Taut(y),

then there exists a function f which is provably(in S~) polynomial time computable and
such lhal

s~ f- Prf(x,P,y) -+ Prf(j(x,y),ER,y).

In [Do] and [KP] a similar relation between S~, i ~ 1, and propositional proof
systems for quantified Boolean formulas has been shown. The meaning of the
theorem is that (a) S~ proves the consistency of ER, and (b) if S~ proves that P is
consistent, then it caD be polynomially simulated by ER. Thus our statement (7),
with P = ER, is consistent with S~ in the same schematic way as %.9 n co%.9 = .9
is consistent with S~.

We observe that a weaker version of another schematic statement, proveï by A.
Wilkie [W], follows from Theorem 5.1. (Wilkie uses SF, but ER and SF are provably
in S~ equivalent.)

COROLLARY 5.2. Suppose S~ f- %.9 = co%.9. Then there exists a polynomial p(x)
such that

(*) S~ f- Taut(y) -+ 3x, Ixl ~ p(IYI) /\ Prf(x, ER, y).
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PROOF. ff S~ I- JVt7J' = COJVf?JI, we have

S~ I- Taut y .-+ 3x, Ixl ~ q(lyl} A cp(x, y},

where q(x) is a polynomial and cp(x, y} is provably polynomial time computable.
Thus if we think of Ixl ~ q(lyl} A cp(x,y) as a propositional proof system then s~
proves its consistency, and thus by Theorem 5.1 ER has provably (in S~) poly-
nomially long proofs too. D

M. Dowd [Do] observed that the relation between the propositional proof
systems ER and PV caD be used to settle a problem posed by Cook and Reckhow
[CR]. They have shown that SF polynomially simulates EF, and conjectured that
the converse is not true.Since the following result is only stated in [Do] we shall give
a sketch of its proof.

THEOREM 5.3 (cf.[Do]).

s ~ I- Prf(x, SF, y) -+ Taut(y).

COROLLARY 5.4 (cf. [Do]). ER, and hence also EF, polynomially simulates SF.
The corollary follows immediately from 5.1 and 5.3.
PROOF OF THEOREM 5.3 (outline). We assume that formulas are arithmetized in

the usual way, see [Bu]. A substitution O' is a finite mapping assigning to some
propositional variables p some formulas B. We define O'p = P if p is not in the
domain of 0'. Thus we may consider O' to be a LI~-definablefunction assigning to any
propositional variable a propositional formula.

The truth value of a formula A for given truth assignment 'L" will be denoted by
Tr(A, 'L"); we again define 'L"P = O if p is not in the domain of 'L". Let Eval(w, A, 'L") be a

formalization of "w is a computation of the truth value of A for 'L"" and let Val(w) be
the last truth value in the computation. Then we have, for a suitable constant c,

Tr(A, 'L") = Ii - 3w ~ Ac, Eval(w, A, 'L") 1\ Val(w) = Ii,- V'W ~ Ac, Eval(w, A, 'L") -+ Val(w) = Ii.

Hence Tr(A, t) = e is L1 ~. Define

Taut(A) +-+ Vt ~ A, Tr(A,t) = 1
Thus Taut(A) is II~.

A truth assignment 't and a substitution u determine another truth assignment 'ta
in a natural wav:

-r"(p) = Tr(up, -r).

Clearly -r, u 1-+ -r" is a L1~ definable function. The following identities are easily
provable in S ~ .

(i) Tr(iA,-r) = l-Tr(A,-r);Tr(A 1\ B,-r)=Tr(A,-r).Tr(B,-r), (ii) u(iA) = iu(A), u(A 1\ B) = u(A) 1\ u(B), Claim. S~ f- Tr(u(A),-r) = Tr(A,-r").

This is proved using the identities (i) and (i i) and induction over the length of A.
As an immediate corollary we have

S~ f- Taut(A) -+ Taut(u(A)).
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Thus S~ proves that the substitution rule preserves tautologi~s. Forthe other rules
of SF the same fact is easily provable. As Taut is II~ and S~ proves also II~-LIND
(see [Bu, Chapter 2]), we can now use induction over the length of the proof to show
tha•each formula in an SF-proof is a tautology. O

§6. Explicit polynomial simolation of the sobstitotion role by the extension
role. The proof above did not give an explicit polynomial simulation of SF by EF.
We shall describe such a simulation bere.

In order to simplify the ex po si ti on we shall assume lhal SF contains only modus
ponens and substitution as rules. ff the system contained other Frege rules the
simulation would be essentially the same.

Let CPi (ji),..., CP.(ji) be an SF proof, where ji = (Pi"'" Pm) are all propositional
variables occurring in the proof. Let ij i' . . . , ijn be vectors of propositional variables
which contain distinct elements, and let ij. = ji.

Let 1/1; denote cp;(ijJ, i = 1,..., n. For j = 1,..., n define a vector ~ of m formulas as

follows:
(1) ff CPj(ji)js an axiom or has been obtained from previous formulas by modus

ponens, then Pj = ijj.
(2) Jf CPj(ji) has been obtained from cp;(ji) by a substitution, say CPj(ji) = cp;(-a;(ji)),

then Pj = -a;(ijj).
Denote by

~.j=l/IiAl/li+1A"'Al/lj, j,i=O,...,n-1,
j ~ i - 1, where I[Ii,i-1 is the empty expression or the truth.

Now the simulation of the proof above in EF proceeds as follows. First we
introduce variables ij" -1, . . . , ij 1 by the extension rule by putting

qi,k = (~+1,i A -,l/Ii+1 A Pi+1,k) V... V (~+1,n-1 A -'1/1" A Pn,J.

Cleatly, for i < j,
'11+ l,j-l 1\ -, I/Ij -+ qi,k == {>'j,k

caD be derived by a polynomial proof. Hence we have polynomial proofs also of

'11+ l,j-l 1\ -, I/Ij -+ lpi{ijJ == lpi{PJ,

which can be written also as

(*) 'Pi+l,j-l 1\ Il/Ij-'l/Ii = l/Ii(PJ.

Now we shall prove succesively 1/11,1/12,...,1/1"0 Since 1/1" = •P,,(ji) we obtain a
polynomial simulation.

Suppose 1/11'. o., I/Ij-l has already been proved.
(1) First suppose that •Pfji) is an axiom. Then I/Ij is also an axiom.
(2) Suppose that •Pj(ji) follows from •Pu(ji) and •Pv(ji), u, v < j, by modus ponens.

First derive 'Pu+ l,j-l and 'l'v+ l,j-l. Thus we get from (*), with i = u and i = v,

I I/Ij -. •Pu(~) 1\ •Pv(~)o

Applying modus ponens to •Pil(PJ and •Pv(~), we obtain I I/Ij -. •Pj(PJ, which is I I/Ij
-'1/1;; hence 1/1; follows.
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(3) Suppose lhal CPj(ji) has been obtained by a substitution, saYCPj(ji) = cPj(iX"(ji»,
i < j. In the same way as above, from (*) we obtain '!/Ij ~ cPj(PJ. But by definition

cpj(~) = cPj(iX"(ijJ) = CPj(ijJ = !/Ij.

Thus I/Ij follows. o
§7. Conclusions, problems, remarks. Apparently it will be difficult to settle

whether the statements (1)-(9) are true or not. Thus we would li ke to pose more
accessible problems.

Assume that (1) is not true, which seems to be likely. Then for every fragment T of
the true arithmetic there must be a consistent (finitely axiomatized) theory S such
that the Cons(!!)'s do not have polynomially long (in n) proofs in T. Is it possible to
construct Sfrom T using only the information that (1) is false? We state it as our first
problem.

PROBLEM 1. Find a construction of a consistent finitely axiomatized theory S(T)
from a fragment (finitely axiomatized) T of the true arithmetic such that the
following is true: ff ConS(T)(!!) have polynomially long proofs in T, then, for every
consistent (finitely axiomatized) theory S, Cons(!!) have polynomially long proofs
in T.

Natural candidates for S(T) are T + ConT (cf. Problem 1(1) in [Pul]) or the
"jump of T" (cf. [Bu]).

ODe caD ask analogous questions for propositional proof systems. The proofs of
this paper suggest the following candidate of a set of propositions which do not have
polynomially long proofs in a given system. Given P, let tlI +:t tcons(p)." (cf. §3).

PROBLEM 2. Do the t,,'s have polynomially long proofs in P?
For similarly constructed propositions Cook conjectured in [Co] that they do not

have short proofs in the extended resolution. A construction of prepositional
formulas from bounded arithmetical formulas was used also in [PW1].

Let S(P) (P(T)) be the theory (the propositional proof system) constructed from
P (from T) in §3. It would be interesting to find out that S(P) is some familiar theory
for some particular propositional proof system P, and similarly for P(T). However,
it follows from the results of §5 that for ordinary propositional proof systems S(P) is
a very weak theory. Namely S(SF) (SF is the Frege system with substitution) is
contained in S~, and S~ proves that SF polynomially simulates other ustlal
propositional proof systems (Gentzen systems, the extended resolution, extended
Frege system s). On the other band P(T) seems to be a very powerful propositional
proof system already for weak fragment s of arithmetic. Since S(SF) ~ S~, P(S~)
polynomially simulates all ordinary propositional proof systems. We are not able to
prove that it is strictly stronger, but there is evidence for it. Namely, the consistency
of P(T) (as it is defined) entails the consistency of T, but already the consistency of a
very weak theory, Robinson's arithmetic, is not provable in bounded arithmetic with
exponentiation.

We may define the quasiordering of propositional proof systems less effectively.
Put P ~ ' Q iff for any polynomial q(x) there is a polynomial p(x) such that for any

tautology t if Q accepts t in time ~q(ltl) then P accepts t in time ~p(ltl). It is easy to
construct P, Q such that P ~'Q but not P ~ Q. But there is a ~ '-least system iff there
is a ~ -least ODe (the latter implies the former and the former implies (3)).
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Statements similar to (8) and (9) but different have been studied elsewhere. For
instance let us define, for a deterministic Turing machine M and a set A accepted

byM,

fM(n) = max' '"

Iwl:s;n.weA

Then the well-known construction of Levin [Le, Theorem 2], gives an M for an
%r!P-complete set A such that for any other deterministic Turing machine M' which
recognizes A, fM(n) can be bounded by a polynomial in fM,(n). There is no simple
relation between this result and Dur statements.

The statement (6) is a strengthening of (1). There are at least two other
straightforward strengthenings of (1):

(10) There is a finitely axiomatized fragment T of the true arithmetic and a
polynomial p(x, y) such that for any consistent finitely axiomatized theory S and
any n E N there is a proof of Cons(!!) in T of length ~p(1 SI, n).

(11) There is a finitely axiomatized fragment T of the true arithmetic, a
deterministic Turing machine M and a polynomial p(x, y) such that for any
consistent finitely axiomatized theory S and any nE N, M constructs from (S, n)
a proof of Cons(!!) in T in time ~p(ISI,n).

It is easy to plave that %r!P = co%r!P =- (10) and r!P = %r!P =- (11). Thus the
following diagram holds:

TIME(M: w)

.9 = .K.9-
/ \

~(11)
/ \/

;1/'f!P = co%f!P- \
rS'.r!f.9 = ';vrS'.r!f.9 /

~--- ~
-"(10)

\
,. (6)

/'
\/

JV'tf,q{f?ji = coJV'tf,q{f?ji
--

\ i•'
--(1)

So it is natural to pose the following questions.
PROBLEM 3. Does (1) => %tf!1:f!j) = co%tf!1:f!j)? Does (6) => tf!1:f!j) = %tf!1:f!j)? Find,

at least, oracles relative to which the first or the second of these implications is
not true.

Note that in [BGS] an oracle A has been constructed such that f!j)A ~ %f!j)A and
%f!j)A = CO%f!j)A, and that in [Wi] oracles Band C were found such that f!j)B ~
%f!j)B and tf!1:f!j)B = %tf!1:f!j)B, and tf!1:f!j)c ~ %tf!1:f!j)c and %tf!1:f!j)c = co%t!!1:f!j)c.

Observe that in (1), (6), (10) and (11) we need only Llo-soundness of T (cf.
construction (a1)). Since Robinson's arithmetic Q proves all true J:?-sentences, the
assumption "T is a finite fragment of the true arithmetic" caD be equivalently
replaced by "T is a finite consistent extension of Q". Moreover we can assume that
T = O u {(f)}. for some n?-sentence (f).
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