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Abstract. For any countable nonstandard model M of a sufficiently strong
fragment of arithmetic ~ and any nonstandard numbers a, C EM, MF C ~ a,
there is a model K of T which agrees with M up to a and such that in K there is a
proof of contradiction in T with Godel number ~ 2ac.

lntroduction

For any M a model of arithmetic and a EM, M r a will denote the structure with the
universe {iEMIMFi~a}, and with operations inherited from M. Thus + and.
are only partial functions in M r a.

The general question that we study bere is this: For which functions f(x) the
structure M ra uniquely determines the st,ructure Mr f(a)?

"Determines" means "up to elementary equivalence" or equivaiently as all
Mra are recursively saturated "up to isomorphism",

It is easily seen that Mra determines Mrak, for any k<w. Paris and
Dimitracopoulos [3J showed that M ra does not determineM r2G. Namely, they
proveï that for any countable nonstandard model M of PA and any aEM
nonstandard, there is K a model of PA such that aEK, Mra=Kra, but
Mr22°$Kr22°. Thus either Mra does not determine Mr2G or Mr2G does not
determine M r22O.

Later Hájek [3J found ODe L1o formula 4>(x) such that for any aEM as above,
there is K, a E K, K r a = Mr a and KF 4>(22°) and MF -,4>(22°) or KF -,4>(22°) and
MF 4>(22°). He has also shown that for any a E M as above, there is K such that
aEK, Mra=Kra and

224
Kp3d<2 PrfpA(d,O= 1).

Recently Solovay (unpublished manuscript) showed that there is a K such that
even Kp3d<224 PrfpA(d, 0= 1).
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The main result or this paper shows that for any nonstandard number C E M r a
there is a model K which agrees with M up to a and

Kt=3d<2ac PrfpA(d,O= 1).

This improves the results or Hájek [2] and Solovay (unpublished manuscript).
The result is derived rrom the bounds to the length or proors or "finitistic
consistency statements" in Pudlák [4, 5], which were initiated by Smorynski [7].
It should be stres sed that bere we have talked about the Gïdel numbers or the
proors. Later we shall use also the length of proofs which means that the bounds
wil1 be less by Dne exponential.

These questions are closely connected with some problems in complexity
theory (see [3]). Paris and Dimitracopoulos [3] proveï for instance that if M r a
determines Mraloga then PH=t=PSPACE. We shal1 prove two statements orthis
kind.

1. Preliminaries and Definitions

The proof of Dur result is based on an estimate proved in [4J. We shall recall this
estimate and also some other definitions and facts.

We shall identify syntactical expressions with 0-1 sequences or the positive
integers which these sequences define in dyadic notation. Thus the length, denoted
by I.. .1, of an expression is the number of bits. Proofs are sequence of formulas (not
trees). The n-th numeral, denoted by tl, is the term defined inductively by Q=O, 1 = 1
and, for n~1,

.f!!=(1+1).tl, ~=«1+1).tl)+1

Thus I~I = O(logn). Alllogarithms are to the base 2. The relation

Tf.!!.'A

denotes that there is a proof d of A in theory T with the length Idl ~ m. For a fixed
recursive axiomatization of T this relation is recursive. However such information
is not sufficient for deriving any bounds. Therefore we shall assume more: that T as
a set of axioms is in NP. Then Tf.!!.' A can be decided in nondeterministic time
p(m, lAJ) for some polynomial p. Given an NP axiomatization of 1; let ConT(a) be
the "natural" formalization of:

not Tj-!! (0= 1)

(Fór a more precise meaning of "natural" see [4].) ConT denotes \fxConT(x),
We shall fix a sufficiently strong fragment of arithmetic To and consider only

theories T in the language of arithmetic L which contain To. It is convenient to take
1110 + Exp as To (i.e., Peano arithmetic with induction restricted to bounded
formulas plus an axiom saying that exponentiation is a total function), because in
this theory the formalization of syntax is easy, However we could use a weaker
theory. The exponentiation xY is usually not included in the language of arithmetic.
In order to simplify the exposition we shall include it in our language L, thus
L={O,1, +,', ~,xY}.
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Lemma 1.1. There exists a polynomial p(x) such that Jor any true statement A oj the
Jorm tl=m, tl=l=m, tl+m=[<;, tl + m=l= [<;, tl' m= [<;, tl' m=l= [<;, tl~m, tl.:;t;m, tl'll=[<; or
tl'll =1= [<;,

To~A

Proof. It is easily seen lhal the usual polynomial time algorithms for computing
with integers in binary notation can be transformed into such proofs. O

Lemma 1.2. For every NP axiomatized theory 1; To ~ T there exists I) > O, k < (J) such
that To proves the formalization of the following statement:

"For any n, m, if there is no proof of contradiction in T with
length ~nm.k then

(*) not T~Con~t1m)."

Proof.Theorem 3.60f[4] andLemma 1.1 abovegive(*)undertheassumptionthat
Tis consistent. The proof actually shows lhal if a proof of Con~t1m) in T oflength
~n.'m is given (and if I) is small) then a proof of a contradiction in T can be
constructed from it. (This is quite similar to the proof ofthe second incompleteness
theorem.) It is a matter of a routine computation to show lhal such a proof of a
contradiction has length polynomial in nm. The metatheory lhal we need bere is
very weak: we need the Diagonalization Lemma and elementary transformations
of proofs. Hence this proof can be formalized in To. O

Further we shall use the following notation. Given a model M we identify its
elements with their names. For b E M, Diag(M tb) is the set of sentences ofthe form
e = f, e ~ f, e + f = g, e + f ~ g, e . f = g, e . f ~g, e ~ f, e ~ f, eJ = g, and eJ ~ g, for e,

f, g~b, which are trne in Mtb; Th(Mtb) are all sentences in the language of
arithmetic which are trne in M tb and where the operations are treated as ternary
relations.

2. The Results

Theorem 2.1. Let T~ To be a recursively axiomatizable theory, let Con~x) be a
Jormalization oj the consistency oj T up to the length x corresponding to some NP-
numeration oj the axioms oj 1: Let M be a nonstandard countable model oj T and c, a,
nonstandard elements oj M, Mt= c ~ a. Then there exists a countable model K oj T
such that a E K and

(i) M ~a=K ~a,

(ii) M~2a~K,
(iii) Kt=--, Con~aC).

Recall that ,Conr<aC) implies 3d<2Qc, PrfT(d,O=1).

Proof. Fix M, a, c satisfying the assumptions of the theorem. If MF ,Conr<ak) for
some k < w then we can pul K = M. So we can assume the opposite. Then choosing
c possibly smal1er we can meet the assumption of Lemma 1.2: in M there is no
proof of contradiction in T with length ~ aC' ko. for suitable kn < w.
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Let L(2a) be the language L augmented with all e e M ~2a. An L(2a) forrnula A
can be turned into an M formal forrnula in the language L by translating each e as
the e-th nurneral. This translation will be denoted by t(A). Observe that for each
(standard) formula of L(2a), It(A)1 ~ k . a, for sorne k < m; the sarne is true for the
translations of (standard) proofs.

Define an L(2a) theory S by

S:={AeL(2a)IMp T~t(A), for sorne k<m}+ -,Con~aC).

Clearly T~ S.

Claim 1. DiagM(2a)~s.

This is an imrnediate corollary of Lernrna 1.1.

Claim 2. S is consistent.

ProoJ oj the claim. Suppose it is not. Then there is a proof d of

T+A1 + ...+A"I-ConT(aC),

where

MF [T~ t(AJ,(*) , t(An)J ,

for some k < OJ. If we replace the constants in d by the corresponding numerals, we
obtain an M-proof of

T+t(AJ+ + t(AJI-ConT(g')

of length ~ t . a for some t <~. Combining this M -proof with the M -proofs of
t(A1), ...,t(A,,) of(*) we obtain

MF [T~ ConT(g')] ,

for some m < (1). But by Lemma 1.2 we have

MF -, [TF Conr<g')]

which is a contradiction, since

MFam~ae.c

We shal1 use the Omitting Type Theorem [1] to construct the required model K.
Let .(x) be the type in L(2U) defined by

.(x): = {x~a} + {x:j::elee M ta}.

Claim 3. S local1y omits type .(x).

ProoJ oj the claim: Assume that for some L(2U) formula A(x):

SI-A(x)-+x~a,

SI-A(x)-+x:j::e. for e~a.
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By the same argument as in Claim 2, we have

MI= [T~ t(A(x»-x~a],

(**) MI= [T~ t(A(x»-x=F~], for e~a,

where k, ko, kl, ...,ka<w. Using induction in M we can take minimal gEM such
that (**) holds with ke replaced by g for all e ~ a. Since all ke' e ~ a, are standard, g is
standard too (by underspill). Now we can combine the a+2 shortest proofs of
t(A(x»-x~g and t(A(x»-x=F~ in M and we obtain

MI= [T~ t(A(x»-(x ~g /\ x =FO /\ ... /\ X =F g)]

for some m < w. On the other band we have also
t

MI=[T~-,(x~g/\X=FQ/\ ... /\X=Fg)],

for some t < w, thus for some r < w,

MI= [T~-, t(A(x»],

i.e., \fx-,A(X)ES. Hence S+3xA(x) is inconsistent. This proves the claim.
Now by the Omitting Type Theorem there exists a model KI= S which omits

.(x). Since Diag(M r2~ ~ S we can embed M r2a into K and all the properties of K
are clearly satisfied. D

Remark. Observe that Theorem 2.1 implies that, in fact, we can have M r2ak ~ K, for
allk < wsimultaneously. To getthisapplythetheorem tOCl andaC2instead ofcanda,
for some nonstandard Ci' C2 s.t. Cl.C2~C.

The following theorem is a strengthening of a statement proveï by Solovay
(unpublished manuscript). He proveï this result with the assumptions 22r < a and
c=a.log(a)-l. Recall that 11:; is the fragment ofPeano arithmetic PA obtained
by restricting the schema of induction to 1:; formulas.

Theorem 2.2. Let M be a countable nonstandard model oj PA, let r, c, a be
nonstandard elements oj M, MI= r, c ~ a, and suppose MI= ConlJ:r. Then there exists
a model K oj PA such that a E K and

(i) Mra=Kra,
(ii) Mr2a~K,

(iii) KI= -,ConlJ:r(aC), (i.e., KI=3d<2acPrhJ:r(d,O=1»), and KI=ConlJ:r-l:

We need the following lemmas.

Lemma 2.3. There exists I: > O such that Jor all k, i ~ 1 and n ~ k, i, it is not true that

11:;~ ConlJ:,(tlk).

ProoJ-sketch. Theorem 3.6 of [4] does not say that there is a single I: > O for all 11:;.
However in [5] the proof ofthis theorem was analyzed more clo sely. It was shown
there (Lemma 2.1) that a lower bound to the length of proof of ConT(tl) in Tis a
linear function of J-l(n) where J(n) is any polynomial time computable function
such that

(*) T~ A implies T~ rTI-!! Al.
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Since r is nonstandard, PA~S. By the formalization ofLemma 2.4 in PA and since
r~a we have also ConIE..-l ES. The consistency of S is proveï using the
formalization of Lemma 2.3. We needed this stronger lemma in order to obtain 8
standard also for r nonstandard. The cest of the proof does not require any
comments. O

We are not able to show that the bound to the length of the proof of
contradiction in K in Theorem 2.1 is optimal. However we shall prove that it is
optimal under an assumption on complexity classes which apparently has not
been ruled out.

In the sequel we assume that 1; M, C and a satisfy the assumptions of
Theorem 2.1. By these assumptions Con~n/l) is a coNTIME(2"k) predicate, for
some k ~ m, m, k constants.

Proposition 2.5. lf T proves that coNTIME(2"k) ~ NTIME(2"1 for some k, t < W,
and Mp ConT, then there is no model Kp T such that M ta = K ta, M t2at ~ K and
Kp ,Con~am).

Proof The assumption implies that Con~xm) caD be expressed in T as an NP
tformula A(2X). But for such a formula we have

Mp A(2al) implies Kp A(2at)
twhenever Mta=Kta and Mt2a ~K. O

ff coNTIME(2"k) ~ NTIME(2"t) is true, we caD add it to To as an axiom and thus
we obtain a theory for which the bound cannot be improved. Under a different
assumption the bound can be improved.

Proposition 2.6. lf T proves that Llo~NP then there exists a model K of T such that
aEK and

(i) Mta=Kta,
(ii) Kp, Con~log(a)C).

Proof Take CI' c2 ~log(a) nonstandard such that CI. C2 ~c. Apply Theorem 2.1 to
CI and log(a)C2. Thus we obtain a model Kp T such that

(i) M tlog(a)C2 = K tlog(a)C2,

(ii) Mt21og(af2~K,
(iii) Kp ,ConT(log(a)Cl"C2) hence Kp ,Con~log(a)C).
The condition (ii) implies that

MpA(a) implies KpA(a), if A(x) is NP,

KpB(a) implies MpB(a), if B(x) is coNP.

The assumption Llo~NP implies that each Llo-formula C(y) caD be expressed as
both an NP formula and a coNP formula. Thus

Th(Mta)= Th(Kta).

Since M ~ a and K ~ a share a common initial segment of a nonstandard length they
have the same standard system

SSy(M ~a)=SSy(K ~a).
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It rollows by a well-known theorem (see e.g., [6]) that since they are recursively
saturated, they are isomorphic. Thus we can identify these initial segments or M

and K. O

Observe that the assumption NP = coNP implies the assumptions or Proposi-
tions 2.5 and 2.6.

It is natural to pase the rollowing question: is it possible to improve the bound
to a proor or contradiction in K in Theorem 2.1 ir the requirement M t2a ~ K is

dropped?
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