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Abstract. For any countable nonstandard model M of a sufficiently strong
fragment of arithmetic 7, and any nonstandard numbers a, ce M, Ml=c=<a,
there is a model K of T which agrees with M up to a and such thatin K thereisa
proof of contradiction in T with Godel number <2,

Introduction

For any M a model of arithmetic and a € M, M [a will denote the structure with the
universe {i€ M{M|=i<a}, and with operations inherited from M. Thus + and -
are only partial functions in M [a.

The general question that we study here is this: For which functions f(x) the
structure M [a uniquely determines the structure M| f(a)?

“Determines” means “up to elementary equivalence” or equivalently as all
M a are recursively saturated “up to isomorphism”.

It is easily seen that M|a determines M |a*, for any k<w. Paris and
Dimitracopoulos [3] showed that M a does not determine M [2°. Namely, they
proved that for any countable nonstandard model M of PA and any ae M
nonstandard, there is K a model of PA such that aeK, M[a=Klqa, but
M[22° % K12?°, Thus either M [a does not determine M [2* or M |2% does not
determine M[22°,

Later Hajek [3] found one 4, formula @(x) such that for any ae M as above,
thereis K,ae K, K [a=M aand K|= #(22*)and M= 19(2%) or K= 19(22%) and
M= &(2%%). He has also shown that for any ae M as above, there is K such that
acK, Mla=K[a and

KE3d <2 Prfp(d,0=1). ‘
Recently Solovay (unpublished manuscript) showed that there is a K such that
even Kl=3d <22 Prfy,\(d,0=1).
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The main result of this papei' shows that for any nonstandard number ce M [a
there is a model K which agrees with M up to g and

Kl=3d <2 Prfy,(d,0=1).

This improves the results of Hajek [2] and Solovay (unpublished manuscript).
The result is derived from the bounds to the length of proofs of “finitistic
consistency statements” in Pudlak [4, 5], which were initiated by Smorynski [7].
It should be stressed that here we have talked about the Gddel numbers of the
proofs. Later we shall use also the length of proofs which means that the bounds
will be less by one exponential.

These questions are closely connected with some problems in complexity
theory (see [3]). Paris and Dimitracopoulos [3] proved for instance that if M [a
determines M [a'°®® then PH # PSPACE. We shall prove two statements of this
kind.

1. Preliminaries and Definitions

The proof of our result is based on an estimate proved in [4]. We shall recall this
estimate and also some other definitions and facts.

We shall identify syntactical expressions with 0—1 sequences or the positive
integers which these sequences define in dyadic notation. Thus the length, denoted
by |...|, of an expression is the number of bits. Proofs are sequence of formulas (not
trees). The n-th numeral, denoted by n, is the term defined inductively by 0=0,1 =1

and, for n=>1,
2n=(1+1)n, 2n+i1=(1+1)-n)+1

Thus [n|=0(logn). All logarithms are to the base 2. The relation
T2 A

denotes that there is a proof d of 4 in theory T with the length |d| <m. For a fixed
recursive axiomatization of T this relation is recursive. However such information
is not sufficient for deriving any bounds. Therefore we shall assume more: that T as
a set of axioms is in NP. Then T} A can be decided in nondeterministic time
p(m, |A]) for some polynomial p. Given an NP axiomatization of T, let Con(a) be
the “natural” formalization of:

not T2 (0=1).

(For a more precise meaning of “natural” see [4].) Cony denotes YxCony(x).

We shall fix a sufficiently strong fragment of arithmetic T;, and consider only
theories T'in the language of arithmetic L which contain T;. It is convenient to take
I4,+Exp as T (ie, Peano arithmetic with induction restricted to bounded
formulas plus an axiom saying that exponentiation is a total function), because in
this theory the formalization of syntax is easy. However we could use a weaker
theory. The exponentiation x” is usually not included in the language of arithmetic.
In order to simplify the exposition we shall include it in our language L, thus
L={0,1, +,-, <,x*}.
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Lemma 1.1. Thereexistsa polynorriial p(x) such that for any true statement A of the
form n=m, n¥m, n+m=k, n+m=*k, n-m=k, n-m+k, n<m, n£m, n"=k or
n"+k,

’I‘Ol p(l4) A

Proof. It is easily seen that the usual polynomial time algorithms for computing
with integers in binary notation can be transformed into such proofs. [

Lemma 1.2, For every NP axiomatized theory T, TyC T there exists ¢ >0, k < w such
that T, proves the formalization of the following statement:

“For any n, m, if there is no proof of contradiction in T with
length <n™* then

(%) not THE==Cony(n™).”

Proof. Theorem 3.6 0of [4] and Lemma 1.1 above give (*) under the assumption that
T is consistent. The proof actually shows that if a proof of Con,(n®)in T of length
<n®*™ is given (and if ¢ is small) then a proof of a contradiction in T can be
constructed from it. (This is quite similar to the proof of the second incompleteness
theorem.) It is a matter of a routine computation to show that such a proof of a
contradiction has length polynomial in n™. The metatheory that we need here is
very weak: we need the Diagonalization Lemma and elementary transformations
of proofs. Hence this proof can be formalized in T,. []

Further we shall use the following notation. Given a model M we identify its
elements with their names. For be M, Diag(M [b) is the set of sentences of the form
e=fiexfe+f=ge+f+g e - f=ge f+gesfeff,e/=g ande g fore,
f, g£b, which are true in M |b; Th(M [b) are all sentences in the language of
arithmetic which are true in M [b and where the operations are treated as ternary
relations.

2. The Results

Theorem 2.1. Let T2 T, be a recursively axiomatizable theory, let Con(x) be a
Jormalization of the consistency of T up to the length x corresponding to some NP-
numeration of the axioms of T. Let M be a nonstandard countable model of T and c, a,
nonstandard elements of M, Ml=c Za. Then there exists a countable model K of T
such that ae K and

() Mla=Kla,
(i) M[2°¢K,
(iii) KE="1Cong(af).

Recall that —1Con(a) implies 3d <2%, Prf;(d,0=1).

Proof. Fix M, a, c satisfying the assumptions of the theorem. If M= —1Con{(a") for
some k < w then we can put K = M. So we can assume the opposite. Then choosing
¢ possibly smaller we can meet the assumption of Lemma 1.2: in M there is no
proof of contradiction in T with length <a°*, for suitable k. <.
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Let L(2°) be the language L augmented with all ee M [2° An L(2%) formula A
can be turned into an M formal formula in the language L by translating each e as
the e-th numeral. This translation will be denoted by t#(4). Observe that for each
(standard) formula of L(2°%), |t(4)| <k - a, for some k <w; the same is true for the
translations of (standard) proofs.

Define an L(2°) theory S by

S:={A4eL(2°)| M= TI ¢(A), for some k<w}+ —1Con(a’).
Clearly TCS.
Claim 1. DiagM(2%)CS.
This is an immediate corollary of Lerhma 1.1.

Claim 2. S is consistent.

Proof of the claim. Suppose it is not. Then there is a proof d of
T+A;+...4+ A,FCong(a),
where
(*) ME[TH (4,), .u4,)],
for some k < w. If we replace the constants in d by the corresponding numerals, we
obtain an M-proof of
T+t(A)+ +4A,)-Conya9)
of length <7 a for some £ <. Combining this M-proof with the M-proofs of
HA,), ..., t(A4,) of (*) we obtain
ME[TH= Cong(a)],

for some m <. But by Lemma 1.2 we have

M [ TH= Cong(a]

which is a contradiction, since

MEa"<a*¢c
We shall use the Omitting Type Theorem [1] to construct the required model K.
Let 7(x) be the type in L(2¢) defined by

(x):={x<a}+{x+elee M|a}.

Claim 3. § locally omits type 7(x).
Proof of the claim: Assume that for some L{2%) formula A(x):

SHA(x)»x<a,

SHA(x)-»x+e, for e=<a.
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By the same argument as in Claim 2, we have

ME[TH tA(x)—>x=<d],
(*+) ME[THE= t(A(x)>x+¢], for e=a,

where k, ko, ky, ..., k, <w. Using induction in M we can take minimal ge M such
that (*x*) holds with k, replaced by g for all e < a. Since all k,, e < a, are standard, g is
standard too (by underspill). Now we can combine the a+ 2 shortest proofs of
t(A(x))—>x<a and t(A(x))>x+e in M and we obtain

ME[THE= {HA(x) > (xSarx+0A ... Ax+a)]
for some m <. On the other hand we have also
M|=[T|"—‘—|(x§g/\x=l=(_)/\ . AXEg)],
for some ¢ <w, thus for some r<w,

ME[TH=-T1HA()],

ie., Vx—1A(x)eS. Hence S+ 3xA(x) is inconsistent. This proves the claim.

Now by the Omitting Type Theorem there exists a model K= S which omits
1(x). Since Diag(M [27)C S we can embed M [2* into K and all the properties of K
are clearly satisfied. [

Remark. Observe that Theorem 2.1 implies that, in fact, we can have M [2°“CK, for
allk < wsimultaneously. To get thisapply thetheoremto ¢, and a* instead of cand q,
for some nonstandard c,, ¢, s.t. ¢, - ¢, <c.

The following theorem is a strengthening of a statement proved by Solovay
(unpublished manuscript). He proved this result with the assumptions 22" <q and
c=a-log(a)”'. Recall that IZ; is the fragment of Peano arithmetic PA obtained
by restricting the schema of induction to X; formulas.

Theorem 2.2. Let M be a countable nonstandard model of PA, let r, ¢, a be
nonstandard elements of M, M=r, c <a, and suppose M|=Conyy,. Then there exists
a model K of PA such that aeK and

(i) Mla=Kla,
(i) M[2°CK, )
(iii) K= 1Cony; (%), (i.e., Kl=3d <2%Prf;5(d,0=1)), and K}=Con,y,__ !.‘3 ‘
We need the following lemmas.

Lemma 2.3. There exists ¢>0 such that for all k,i>1 and n=k, i, it is not true that

12; P Conu,-(llk) .

Proof-sketch. Theorem 3.6 of [4] does not say that there is a single ¢ >0 for all 1%,
However in [5] the proof of this theorem was analyzed more closely. It was shown
there (Lemma 2.1) that a lower bound to the length of proof of Cony(n) in T is a
linear function of f ~'(n) where f(n) is any polynomial time computable function
such that

(%) T A implies TH®[TH 4].
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Thus it is sufficient to show that there is a uniform polynomial bound to (*) for
T=12,i=0,1,.... This can be done easily, for example using the techniques of

(51. 0O
Lemma 2.4. There exists k< such that for all i=0
1%,y }Lz)k Conys,.

Proof. The fact that IZ; , ; proves Con,y, is well-known. Since we need such a proof
with polynomial length we have to analyze it in more detail. First recall that there
exists a finite set of axioms P~ such that each IZ; can be axiomatized by P~ plus a
single instance of the induction for Z; formulas. This instance of induction is the
induction for a universal Z; formula. A universal X, formula can be obtained from a
universal X, formula @(x, y) by defining

@,-(X, y)E 321V22' . 'QZiQO(x’ <ya <Zla <Zz, >>>)s

where <...,...) is the usual pairing function. @ is 4, over I1X, and @, are X, for
i=1. All this is provable in IX';. Moreover we can show in 12, that in a Gentzen
style system the induction axiom can be replaced by the induction rule for @(x, y)
and that free-cuts can be eliminated from the proofs. If we have such a free-cut-free
proof of a contradiction, then all formulas in it are substitution instances of
subformulas of P~ and @,. Hence using the definition of the value of arithmetical
terms (available in 1Z,) we can write a formula Sat(x, y) such that

(i) it has length polynomial in i,

(i) the Tarski conditions for satisfiability for substitution instances of
subformulas of P~ and @, can be proved by a proof of length polynomial in i,

(iii) Sat;is Z,.

Condition (ii) implies that Sat; preserves logical rules; condition (iii) implies that
Sat; preserves the induction rule since we assume 1%, ;.

Now let a free-cut-free proof d be given and suppose that it uses only induction
rule for ®;. The statement that a sequent in the proof is true for every interpretation
of free variables is expressed by a IT; . , formula. Since I, , proves III;, , we can
use the induction on the depth of the proof to show that every sequent is true.

The proof of Conyy, in IZ; . ; described above will have three main parts. The
first part is the transition form the usual system IZ; into the free-cut-free system
with the induction rule only for ®,. This can be done in IX, for all i at once, i.e.,
x—0, is a function definable in 1>, and IX, proves the sentence “for all x,
—1Cony;,_ implies that there is a free-cut-free proof of 0=1 with induction rule
applied to @, only”. Thus this part has a constant length. The second part consists
of the proof that Sat, (for this particular i) preserves the rules; it has polynomial
length by (i) and (ii). The third part is the proof that all the sequents in d are true.
This part is uniform for all i in the sense that only the formula Sat; is changing in it.

As Sat; has polynomial length this part has also polynomial length. []

Proof of Theorem2.2. The proof is almost identical with the proof of
Theorem 2.1, thus we state only the differences. In the proof we use 12, instead of T
Hence we define:

S:={A4e L2 M=[IZ,}£ (A4)], for some k<w}+ —1Cony; (a°).
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Since r is nonstandard, PA € S. By the formalization of Lemma 2.4 in PA and since
r<a we have also Con,; , €S. The consistency of S is proved using the
formalization of Lemma 2.3. We needed this stronger lemma in order to obtain ¢
standard also for r nonstandard. The rest of the proof does not require any
comments. []

We are not able to show that the bound to the length of the proof of
contradiction in K in Theorem 2.1 is optimal. However we shall prove that it is
optimal under an assumption on complexity classes which apparently has not
been ruled out.

In the sequel we assume that T, M, ¢ and < satisfy the assumptions of
Theorem 2.1. By these assumptions Cong(n") is a coNTIME(2™) predicate, for
some k=m, m, k constants.

Proposition 2.5. If T proves that coNTIME(2"”)gNTIME(2"‘) for some k, £ <,
and M= Cony, then there is no model K= T such that Mla=K [a, M |2*CK and
K —Conga™).

Proof. The agsumption implies that Con{x™) can be expressed in T as an NP
formula A(2*). But for such a formula we have

MEA(2”) implies Kk A(2%)
whenever Ma=Ka and M|2CK. [
If coNTIME(2")C NTIME(2™) is true, we can add it to T, as an axiom and thus

we obtain a theory for which the bound cannot be improved. Under a different
assumption the bound can be improved.

Proposition 2.6. If T proves that A, CNP then there exists a model K of T such that
aeK and

(1) Mfa=Kla,

(i) K= —1Cony{log(a)).
Proof. Take c,, ¢, log(a) nonstandard such that ¢, - ¢, <c. Apply Theorem 2.1 to
¢, and log(a)‘. Thus we obtain a model K|=T such that

(i) Mlog(a)”=KTlog(a),

(i) M[2"s@"CK,

(i) Kl= 1Cony(log(a)* °?) hence K= —1Cony{log(a)").

The condition (ii) implies that

M|=A(a) implies Kl A(a), if A(x)is NP,
K|=B(a) implies ME=B(a), if B(x)is coNP.
The assumption 4,C NP implies that each 4,-formula C(y) can be expressed as
both an NP formula and a coNP formula. Thus
Th(Ma)=ThK |a).

Since M [a and K |a share a common initial segment of a nonstandard length they
have the same standard system

SSy(M la)=SSy(K [a).
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It follows by a well-known theorem (see e.g., [6]) that since they are recursively
saturated, they are isomorphic. Thus we can identify these initial segments of M
and K. O

Observe that the assumption NP =coNP implies the assumptions of Proposi-
tions 2.5 and 2.6.

It is natural to pose the following question: is it possible to improve the bound
to a proof of contradiction in K in Theorem 2.1 if the requirement M [2°CK is
dropped?
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