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(1) Vit A(a) iff for some term £: S5+ *2°® exists— A(a)”’, a bounded first-order formula,
i=1.

(2) Vi, (tesp. V,) is not IT0-conservative over S (resp. over S,).

(3) Any model of V, not satisfying Exp satisfies the collection scheme BXY.

(4) V1 is not IT}-conservative over S,.

Second-order bounded arithmetic V, and its fragments V% were introduced in
[1]. Here we investigate the relation of these systems to the first-order systems S,
and S5 augmented by a limited use of exponentiation. The main connection is
the following: For A(a) a first-order bounded formula, V% proves A(a) iff S5
proves

“2¢@ exists— A(a)” for some term t(a).

From this we entail that V is not IT5-conservative over Sb.

The connection between second-order systems and exponentiation is proved by
a model-theoretic argument. This argument can be used to show that a model of
V, not satisfying Exp must satisfy BXY. This contributes to the question from [6]
whether there is a model of 1A, + " Exp not satisfying BX?.

Finally we define a very weak provability notion for S, devised for a
construction of a consistency statement which would separate S, and V3. We do
not succeed; however, the provability notion can be used to separate S, and
V1+“f is total”, for any reasonably defined non-decreasing function f which
eventually majorizes all 2" (k < ). In particular, V} is not ITS-conservative
over S,.
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1. Preliminaries

For the definition of S,, V, and their fragments see [1}—we assume knowledge
of that paper.

L,={0,1,s, +, -, |x/2], x|, x #y, <, =}

is the language of S,. L, denotes the language L, without the function symbol #,
i.e. Li=L,\{#}.

$, is a theory axiomatized by those axioms and rules of S, which do not contain
#. In other words, S;-proofs are S,-proofs consisting only of L,-formulas.

Definition 1.1. Let A(a) be a bounded L,-formula all whose free variables are
among 4. By induction on the logical complexity of A we define an L;-term
VA(ﬁ):
(i) A(a) is an atomic formula of the form #,(@) = #,(a@) or #,(a) < ¢,(@). Put:
Va(@):=1:(a) + t,(a).
(ii) A(@) is of the form —B(a). Put:
Va(@):=Va(a).
(iii) A(a) is of the form B(a) A C(a@), B(a) v C(a) or B(a) > C(a@). Put:
VA(ﬁ) = VB(a-) -+ VC(&)' h
(iv) A(a) is of the form Jx =<1t(a) B(x, a) or Vx < t(a) B(x, @). Put:
V(@) := Vg(x/t(a), a).

The intention of the definition is that in order to evaluate the truth value of
A(a) one has to compute only numbers <V,(a). The following is essentially a
presentation of results of [2, 4].

Assume A(a) has the form

Vx,<t,(@) 3y, <s:(@, x1) * - - VX <@, x4, + - o5 Xam1, Y15 - -+ 5 Y1)
3yk SSk(dx xl) LEERE ] xk) }’1, ey yk—l) B(&, f; _)-’);
B quantifier free. Then A(a@) is true iff there exist Skolem functions

f1@, x4), . - ., fi(@, x4, - . ., xx) such that:
(a) for y;:=f(a, x1, . . . , x;) there holds:

if x; <#,(a@) then y, is defined and y, <s,(a, x,),
if x, <t,(d, x;, y,) then y, is defined and y, <s,(d, x,, X2, 1),

if x.<t(d xy,...,%X-1,Y,- Y1) then y. is defined and vy. <
sk(d’ xl; LIRS ] xk; ylx s ey yk-l))

and
(b) B(a, %, y;/f) is true.



Exponentiation and second-order bounded arithmetic 263

By (a) all these functions assume values <V,(@). Thus the k-tuple (fi, ..., fi)
can be coded <2%*@”  in the sense of [4].

Thus A(a) is true iff “3f,, . . ., f <2"@" f ..., f. are functions and (a), (b)
above are satisfied”. :

As L,-terms can be evaluated in S;, there is a A} (w.r.t. S3) definition of truth
for open L,-formulas. In formula “...” above there is hidden universal quan-
tification over x;’s and existential quantlﬁcatlon over y;’s coming from (a) above.
But as x;, y; < VA(a) 5 ¥ < [2Y4@%| so these quantifiers are sharply bounded.
Thus the formula “.. .” above is 2% in S} in parameter 2¥4@*  As the same
holds for —A, formula “...” is A} in S3.

Let us summarize the discussion in a lemma. For details of the truth definition
see [2, 4, 7).

Lemma 1.2. There exists a formula TR(x, y, z) which is A} w.r.t. S5 and is such
that S} proves:

“if e = 22" then TR(A, {(a), e) satisfies Tarski’s truth conditions”.
More precisely, ““. . .” reads as follows:

“if Vs and k are defined from A as above and e = 2YA@ then:
if A="B then TR(A, (a), e)="TR(B, (a), e),
if A= B A C then TR(A, (@), e)=TR(B, (a), e) ATR(C, {a), €)
if A= (3x <t(a) B(x, @)) then TR(A, (a), e)
= Jx <val(¢(@))TR(B, {(x, a), e)”.

2. V% and exponentiation

Consider first case i = 1. We define a theory S + 1-Exp which is a special case
of theories considered in [3].

Definition 2.1. For a formula A(a),

d is an SL+ 1-Exp-proof of A(@)  (denoted d:S} + 1-Exp+ A(a))
iff

d is an S3-proof of a sequent of the form: #(a@) <|c|— A(a),

¢ a free variable not occurring in ¢ or A.

Definition 2.2. I = (M,, P,) is a 1-fold model of S; iff
(i) M, £S5, M, ES3,
(ll) EIRI Se %:
(iii) 2P <M, (i.e. Yme M, 3n e VL, DL, Em <|n).
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A 1-fold model I is large 1-fold if there holds moreover:
(iv) IceD,Vme M, AIn e DL, DEm <|n| &n <c.

Lemma 2.3. Let A(@) be a bounded formula. Then (i), (i) and (iii) are
equivalent.
(i) S3+ 1-Expt+A(a).
(ii) For any 1-fold model M= (M,, M,) of S3, W, FVE A(X).
(iii) For any large 1-fold model M = (M, J%,), M,k VX A(%).
Proof. (i) (ii). Assume S+ 1-Expt A(a@), i.e.
Sk (@) < |c|— A(a).
As TLESS,
I, F (@) < |c|—> A(a).
By 2% = I, we have for any i < I an element n € I, such that
M, Et(rn) <|n|.
Thus for all m =M, WM, £ A(r). As M; <. DL,
M, EVE A(E).

Not (i)=>not (iii). Assume that for any term #(a), 83+ t(a) <lc| +A@a) is
consistent. By compactness, the theory (with @, c as constants)

S1+A@a) + {t@) <|c| | t a term}
is consistent. Let I, be a model of this theory, @, c < I,. Define

M, = {m e W, | for some term ¢, P,k m <t(a)}.
Then the pair (M;, M,) contradicts (iii). As (i) > (iii) is trivial, we are done. 0

Let =%° denote the class |_; =°, the class of first-order bounded formulas. %"

is a proper subclass of =}, the class of bounded second-order formulas without
second-order quantifiers, cf. [1].
Lemma 2.4. Let A(a@) be a =%°-formula. Then

S+ 1-ExptrA(a) iff VikA(a).
Proof. Recall that V} is (fully) conservative over V} (a version of V; without
second-order function variables), cf. [1].

(1) Assume V3 ¥ A(a), i.e. V3¥A(@). Thus there is a model (I%, X) such that
for some m < M:

(M, X)E V3 +A(m).
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Claim. There is a model M" of S} such that M <. M* and 2™ = P

Proof of Claim. The idea—developed in [7}—is to use pairs of the form (a, a),
ael, aeX, to code numbers with value Yi<aica2. We shall use only pairs
(a, @) with & bounded, i.e. u € & implies u < v for some v and all u.

In [7] it was shown that there are Al’-definable relations
R_((a1, &), (a2, 3)), R<((ay, @), (as, a)) and for any f a function symbol of L,,
F((a, ay), . - ., (@us1, ®n+1)), Where n is the arity of [, such that if R_ resp. R
interprets “‘(a;, a;) = (a5, a,)” resp. “(a;, a;)<(a,, a,)” and FE interprets
“fllar, @), ..., (a,, @,)) = (@p41, ®ns1)” then U} proves the translation of
BASIC and of the equality axioms.

As we deal only with pairs (a, @) such that « is bounded we need only bounded
A}*-CA and not full A}*-CA of U, Any instance of bounded Al'*-CA:

AoVx<axeo=A(x),

can be proved by Z}*-IND on g, i.e. in V.. Thus we can prove the translation of
the basic properties of function and relation symbols of L,, as well as the
translations of axioms of BASIC and of equality axioms, in V1.
In this translation the original numbers of I are best represented as pairs
(Im|, a,,) where @,, = {iy<---<i,} such that m =2 + . . . 4 2k
Let IM' be the structure M x X/R_ with relation < and functions feL,
interpreted according to R. and F;. We claim that M . M! (i.e. M is isomorphic
to an initial segment of ', 2%  M' and W' £ S2).
For M . M it is essentially only needed to prove:
(6, B)R<(lal, &u) > 3c<a (b, )R- (c|, a.)
and ]
F}((lallr aa;)’ MR (lan+1|’ aa..-o-:)) $ f(al’ LIS} a,,) =ay 4.
This is proved by induction (A}*-IND) on a resp.ona;+---+a,,;.
Condition 2% = M is easy as the pair (a + 1, {a}) represents a number greater
than “2-%>"_ Thjs is proved by induction (A1*-IND) on a using the formula:

F((b+1,{b}), (b+1, {b}),(b+2, {b+ 1})).

To see that 'k S} take a Z%-formula A(a, 5). We construct a translation of the
formula A into a Z}*-formula

A*((a, @), (b, P))
such that for (m, u) and (n;, 5;) from 2,
MW EA(m, 1), (11, m)) i (W, X)EA*((m, 1), (5, 72).

Translate functions and relations according to R_, R. and E’s. Translation *
commutes with propositional connectives. Quantifiers are translated as follows:

(@ (@x=tay,...)Bx ay,...)*
= <tl(a;,...)Io“t((ay, @), ...) = (x, 0)” A B}
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where term ¢! is chosen such that
b=<t(@)— |bl<t'(Jail,...),
(b) (Vx<|t(ay,...)|B(x, a))*
=Vx <t%a@) 3o “(|x|, 0) =x" A B*((|x], 0)),
() (3@x=<Iu@)| B(x, a))*
=3x <t'(@) 3o “(Jx|, 0) =x" A B*((|x|, o))

where ¢! in (b), (c) has the same properties as in (a).
To show that the translation in (b), (c) is correct one needs:

Vx 30 “()x|, ) =x".

This is proved by =1**-PIND on x.

We may assume that A is in a prenex form (as it is sufficient to verify PIND
only for prenex formulas). A* is then a }*-formula.

Assume:

M EAQ, (7, ) A Vx A(lx/2], (n, m))—> A, (1, ).
Then (let us forget the parameters (n, 7))

(M, X)FA*((L, {0})) A V(x, 0) A*(|“(x, 0)/2”]) > A*((x, 0)).
Assume also:
(*) (e, X)FA*((k, K)),
for some (k, k) € M. As

“Ux, )2 =(x—1, k) v(x, k)=(x—1,x)” and “(1, x)=(1, {0})",
the formula above implies:

M, X)EA*((1, ) AVX <k A*((x, K))— A*((x + 1, K)).
Thus, by 21°-IND in (It, X), we have:

(I, X) EA*((k, X)),
contradicting (*). So

(M, X)EVx Vo A*((x, 0)), i.e. IM'EVxA(x).

This proves the claim. (Let us remark that a different translation of bounded
formulas was used in [7].) The claim together with Lemma 2.3 implies:

S+ 1-Exp ¥ A(a).
(2) Assume now S3+ 1-Exp ¥A(@). By Lemma 2.3 there is a large !-fold
model of S, M= (M,, P!,), such that for some m < M,,
M, EA(m).
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Let ¢ € M, witness condition (iv) of Definition 2.2, i.e. 2% < ¢,
Take X = {a M, | a is coded (in M,) <c).

Claim. (I, ¥)F VL.

267

Let B be a second-order bounded formula. Translate B into B** a 306

formula with parameter ¢, as follows:

(a) First-order relations and functions are left unchanged.

(b) x € o is translated as “x is an element of the set coded by o7, «.
Z%P-formula, cf. [2],

(c) ** commutes with Boolean connectives,

(d)  (Vx<tBx))**=Vx<|c|(x <t— B(x))**,
Ax <tBx))*=3x <|c| (x <t A B(t))**,
(€) (30B(0))**=3o<c (B(o))*,
(Vo B(0))** = Vo <c (B(a))**,
Now let A be a Z}*-formula. So A** is a Z%-formula. Assume:
0y, )EA0) A Vx A((x))— A((x + 1)).
Thus for all u € 2%,
Dok A*(0) A (A**(lu])—> A**(Ju] + 1)).
That is, for all u € 2%,
D EA**(0) A (A**(| u/2]1)— A**(Ju)).
As A** is 3% and P, £ S2, we have for all u e 2%
Dk A**(Jul).
But this implies:
@, X)EVX AQr), ie. (T, £)ESy(a)+ ZLO-IND.
It remains to show that

(M1, %) £ ZL-CA.

”»

is a

This reduces to show that for any Z§-formula A(a) (with parameters in M,):

there is d € I, M, Ed < ¢ such that
P, EVx <|c|, A(x) =“x is an element of the set coded by d”.
This is proved by PIND on a in the following Z%-formula:
dd<scVx<ja|lAx)=“xed”.

This completes the proof of the claim.
From the claim it follows that V; ¥ A(@). This proves the lemma. [
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In the same way the following theorem is proved (S5+ 1-Exp is defined
completely analogically with Definition 2.1).

Theorem 2.5. Let i=1 and let A(a@) be a first-order formula without any
occurrence of a second-order variable, i.e. a 3%°-formula. Then

VirA@@) iff S,+1-ExptA(a).

Corollary 2.6. Forall i, j=
ifS5==55 then V2 = V’

Corollary 2.7. For i=1, V4 is not ITi-conservative over Si. Also V, is not
IT8-conservative over S,.

Proof. Theory 3+ Exp is equal to the theory 1A, + Exp of [5]. There it was
shown that 1A, + Exp proves certain consistency statements (i.e. IT:-formulas)
unprovable in 1A, + £2,, which is equivalent to S,. Hence in particular, S% + Exp
is not IT}-conservative over S) which immediately implies that neither is
S5+ 1-Exp. This entails the corollary. [

Corollary 2.7 extends a result from [7] where it was shown that V1 is not
conservative over S3.

Corollary 2.8, Fori=1,
Vs 25, “(BD).

Proof. In the construction of IR’ in the proof of Lemma 2.4, only the assumption
M EVYBD) is actually used. [

Let VS, denote a theory arising from S’ by replacing 3P-PIND by the rule:

A(lVal), - A, A(a)
A(0), T— A, A(r)

(\/—72 implies the soundness of the following rule which may be called =°-LLIND:

A(a), - A, A(a+1)
A(0), T'— A, A(llall)

Then analogically with the first part of the proof of Lemma 2.4 we have (recall
Ui+ AYP-IND, cf. [1]):

U + bounded A}*-CA VS5 + 1-Exp.
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Another way to generalize the method of this section is to consider higher-
order extensions of S, (based on induction and appropriate comprehension
axioms for variables of higher orders). Then similarly the bounded first-order
consequences of the (k + 1)-th order extension are characterized as S, + k-Exp.
(That is, S, + k-ExpF A(a) iff

Stt@)<l|cil, er<leal, . . ., crmy <|ck| = A(a).)

The characterization of bounded first-order consequences of fragments of such
theories is more complicated and needs further weakenings of the induction rule
in the line of LIND, LLIND. . ...

3. Another corollary to the construction

In connection with the problem of existence of end-extensions to models of 1A,
the question whether there is a model of IA, satisfying neither Exp nor BX] was
posed in [6]. (Exp is a IT3-formula Vx 3y x = |y|.) A modest contribution to this
problem is the next theorem.

Theorem 3.1. Let M= (M, X) be a model of V, not satisfying Exp, i.e.
MEV, +Exp.
Then MEBS.

Proof. Take model ' of S, (extending M) constructed from (M, X) in the proof
of Lemma 2.4. Thus M <. PM* and 2% c P

From the assumption % F—Exp it follows that %' is a proper end-extension of
. It follows easily that MEBIY, cf. [6]. O

4. A restricted provability notion

Definition 4.1. (1) D is a restricted S,-proof of A (denoted D:SZ‘I-R A) iff the
following conditions hold: D is a 5-tuple D = (d, w, ©,d’, d"), and:
(i) d is an S;-proof of a sequent of the form:

2$C0, |a0| = |CO|: ey |an' = |CO|) |Co| |CO| = |C1|,
il leol < leal, - . -, |cj—1] leo| < lel— A,

where ¢y, . . ., ¢; do not occur in A. In particular, A is an L,-formula.

(ii) All formulas in d are bounded and in prenex form.

(iii)) If a=(ao, ..., a,) and ¢=(co, . . ., ¢;) are all parameters of d (i.e. free
variables of the end sequent) and b = (b,, . .., b;) are all other free variables
occurring in d then it holds (I, m <k):

(a) the sequents of d where b, occurs form a connected subtree of d,



270 J. Krajicek

(b) if the elimination rule of b, is below the elimination rule of b,, then
I<m,
(c) the elimination rate of b, is either V < :right, 3 < :left or PIND.
(iv) w=(wo(a, ), ..., w(a¢)) is a sequence of L,-terms such that for /< k
it holds: if the elimination rule of b, has the form:

_ A(lb,/21), T— A, A(b)
A(O)) F_) A: A(tl(d) E; bO: » bl—l))

or
b[ = f[((i, (:, b“, R b[—l ]. A(h[), ]’——0 A
dx=¢(a, ¢, by, ..., b_)A(x), I'= A
or
by=tla,c by, ..., b)), = A A(b)
I'- A Vx<tla.é. ba. b YA
then
(%) wi(@, €)= 4(a, ¢, bo/wy, . . ., by_i/w,_y).

(v) d'=(dj, ...,d}) is a sequence of proofs such that d; is a quantifier-free
and induction-free S;-proof of (x),.

(vi) v is a sequence of L;-terms such that if a formula B@a, b, ¢, x) (with
a, b, ¢, % variables free in B) which occurs as a subformula in d (we consider B
associated with its occurrence), then the sequence ¥ contains the L,-term
Vs(a, b, ¢, ) defined in Section 1.

(vii) For A(d, b, ¢) a formula of the form

lelstl(dy 51 6) Q2x2st2(a-: 5: E) xl), IR}
errstr(a-, b; E: Xisee s xr—l) C(d; b’ E} i)y

C quantifier free which occurs in d, © contains terms P, (a, ¢) (i=1, ..., r) and
a term g,(a, ¢) such that the following holds:

(%) 4,1 P4 (@, €)= t,(a, b)/w, ©),

(*¥*)4,2 P, (@, €) =t,(a, by/w,, ¢, x,/P, 1),

(**)A,r PA,r(a-, E) = tr(a_) bl/wlr 61 xl/PA,lr e ey xr—l/PA,r—l)
and

(#x) 4 44(a, €)= Vc(@, bi/w,, ¢, x;/Pa ).

(viii) d” is a sequence of quantifier-free and induction-free S;-proofs and for
all A occurring in d and i< the quantifier complexity of A, d” contains proofs d’, ;
of (**), ; and d of (¥%*),.

(2) The number jin (i) (= the number of formulas of the form |¢;_,| |co| < |c;| in the
antecedent of the end-sequent of d) is called the dimension of D and denoted dim(D).

(3) A restricted S,-proof D is called strictly restricted if it holds:

dim(D) =< {|D|I.
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We denote by D : S, Fsg A the formula
“D:S, Fr A and D is strictly restricted”.

This provability notion is motivated by [3, 7]. Recall that by [2, 3, 5] the
formula “D:S,Fsg A” can be chosen as L,-formula, A? w.r.t. Si. We also
assume that the formula is in a prenex form.

Lemma 4.2. For any bounded L,-formula it holds.
SFA iff S FksrA.

Proof. The ‘if’ part is true as S, proves sequents of the form
—3x [¢;-q] [co| = x.

The ‘only if’ part follows essentially by cut-elimination and a compactness
argument, cf. [3, 7]. Recall that PIND can be proved only from its instances for
prenex formulas. 0O

The following two lemmas are usual probability conditions needed for the
proof of Godel’s theorem.

Lemma 4.3. S3+F(D:8tsg B)— 3AD, <t(D)[(D,: S, +sp (D : S, Fsg B))] for some
fixed L,-term t.

Proof. Argue in S3. As D:S+sr B is a true (AYN L,)-sentence there is an
S;-proof d of it with length
|d|<|(D:S,+se B) <|D|*

for some fixed k’ < k < w — cf. [5]. Moreover, all formulas in d are substitution
instances of formulas with Gédel number <k”, for some fixed k" < (cf. [5]).
Thus there exist terms w, ¥, instances of some standard iterations of terms,
needed for the strictly restricted proof. (As d is an S;-proof with empty
antecedent, dimd =0.) O

Lemma 4.4.
S3H[(Dy:S:bsr A, T'—> A) A (Dy: Sy kg I — A, A)] >
ADs;<t(Dy, D,) (D3:S, b I, I'' — A, A"),
for some fixed L,-term t.
Proof. Argue in S3. There exists an obvious restricted proof Dj: join D, and D,

by an application of cut-rule.
Clearly:

dim D3 = dim Dl + dim Dz‘

Thus it is sufficient to add to D, some dummy inferences to get D, such that the
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Godel number of D, fulfills

2(D,# D2)2 = D,.
So
ID4ll = 112(D1 # D2)2|| = |2 | D, # D5 |
=1+ ||Dy#D,|| =1+ |1+ |Dy| |Dsf |
=1+ (|IDyl +11D2l — 1) = || Dyl| + || D2l
Hence

1D4ll = ||D41}| + || D,]| = dim D; + dim D, = dim D; = dim D,.
Thus D, is the required strictly restricted proof. [

5. V1 versus $,
In this section we investigate the problem whether V} is conservative over S,

Definition 5.1. A dyadic numeral of n, denoted n, is defined:
0:=0, 1:=1, 2:=(1+1),
2n:=@2-'n) and 2n+1:=(2n+1).

In the following definition we assume that the formalization is based on dyadic
numerals, i.e. Godel numbers are represented by them. a denotes a formalization
of the dyadic numeral.

Definition 5.2. (a) SRPr(a, b) is an L,-formula formalizing:
“ID<a(D:S;Fsp b)”.

Moreover, SRPr is A} w.r.t. S; and a natural formalization—in the sense
of [1,5, 7] —such that S} can prove Lemmas 4.3 and 4.4 for the formalization.
Cft. [3].

(b) SRCon(S;)(a) is an L,-formula defined as

SRCon(S,)(a) :=SRPr(a, [0=11).

Thus Vx SRCon(S,)(x) expresses: “S, is strictly restricted consistent”.
Lemma 5.3. S} + 1-Exp  SRCon(S,)(a).

Proof. Assume D:S,Fsx0=1, i.e. D=(d, w, 5,d’,d"), where d is an S;-proof
of the sequent of the form:

zscm IaOI = |COI’ c ey Ianl = IC0|,

lcol [eol <leil, - - . 5 I€j—al lcol < |¢;| = 0=1.
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By substituting 0 for all a; in the whole d, and adding a few inferences, we can
assume that the end-sequent of d has the form:

2=cq, [col Icol =lcal, - - -, I€j-al Icol <l¢|—0=1.
Call it S(¢).
Let b=b,, ..., b, be all non-parametrical free variables of d.

By soundness of the rules, using terms w guaranteeed by D, prove: “if S(¢) is
not true, then there is an initial sequent Sy(b, ¢) and b, <w(¢), /=0, ..., k, such
that So(b, €) is not true”. As any initial sequent is true, so must be S(¢).

This argument can be formalized in S} using the truth definition of Lemma 1.2.
Statement “. . .” is X% and is proved by induction on the number of inferences in
d. The only point is to have a number so large that the truth definition of Lemma
1.2 can be applied to all formulas in d. Proofs d” are used to verify that terms w
have been correctly chosen.

Terms in © and proofs in d” are used for the proof that terms V,’s are defined
correctly. Also we have that

VA(b-, E) = qA(E) for bl = WI(E).
Thus g,’s, being coded in D, satisfy
lgal <ID]|.

Also k of Lemma 1.2, i.e. the quantifier complexity of A, satisfies k < |D|. Thus
the equality:

294 < ¢
from Lemma 1.2 follows from:

294@P < o ()
As for any L,-form #(¢), val(t(c), ¢) < max(2, ¢)" we have

val(qa, €)= (¢)"4,
So (1) follows from:

2 < g
Thus we have:

SIH(EY*# D # D <le|—>[(D:8 Fsg 0=1) > TR(S(?), (&), e)]
Define ¢t,:=2, t; :=2(t;_, - t;_4), for i<j. Then for i <j

val(t) =2@¢" -0 < 20" D < 5(D),

where s(x) is some term.

Thus ¢;’s can be defined in S5 and (¢, . . . , ;) can be coded <s(D)""". We now
substitute in S(¢), ¢’s for ¢;’s. Adding a few (quantifier free and induction free)
inferences we get a strictly restricted proof D’ of 0=1 with dim D' =0. (+%)
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implies, as D' < D - s(D)""P" for some h < w, that for some L,-term ¢(x) it holds:
SLFHD) < le|=[(D: 8, Fsg 0=1)—>TR(0=1,0, )],

i.e., using Lemma 1.2,
SL+1-ExptF0=1.

This is a contradiction. O

Unfortunately we are not able to show that S, ¥ SRCon(S,)(a). The lemmas in
Section 4 are the usual probability conditions needed for the Godel theorem but
the obstacle to the standard proof is that the strictly restricted provability is
not— provably in S,—closed under the substitution of numerals for free
variables, i.e. S, cannot prove that S, lsg A(a) implies S, Fsg A(n), for all n. Thus
we have to use another construction giving a weaker result.

Consider a X%, #-free formula ¢ such that

S;F3Ix ¢(x)=(3d, d: S, Fr¢(a)).
By a standard argument (using Lemma 4.2) it follows:

S, ¥7¢(a).
Let us look under which conditions V3 could prove 1¢(a). Assume M = (M, X) is
a model of V} and 3x ¢(x), i.e.

MEV3+ p(m),

for some m € IN.
By the definition of ¢ and by Parikh’s theorem there is d € IR, such that:

Med=m" A (d:SFr¢(a)),
for some fixed r < w.
The end-sequent of d has the form:
2=colal=<|col, - - -, I¢j-1l ol = |cj| = 19p(a).
Adding some inferences to d we easily get a proof d, of:
2=m, Im|<|m|, ..., ¢l Im| < || = p(m).

A code of such a proof d, will satisfy d,<m”(m’ for d, m®? for the
end-sequent and this itself j-times for its derivation). Thus to guarantee that d,
exists we need the assumption j < |m|’, for some / < w. Then d,=<t,(m) can be
assumed for some fixed term ¢,.

On the other side, as ¢ is 2%, ¢(m) implies that there is a restricted proof d, of
¢(m) (cf. the proof of Lemma 4.3). Again we may assume d, <1t,(m), t, some
term. Moreover — by the proof of Lemma 4.3 —dim d, = 0.
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Joining proofs d, and d, by the cut-rule gives a proof d; of:
2<sm, Im|<|m|, ..., || Im| < |c]|—.

Again d; <t;(m), for some fixed term ¢; (cf. Lemma 4.4) obtained from #,, ¢,.

Proof d, is not restricted as its end-sequent does not have the appropriate form.
We construct from d; a restricted proof d, by cutting out formulas 2<m, |m| <
jm| from the antecedent and replacing formulas |m| |m| <|c,| and |¢;—| |m| <|c}|
there by cedents:

2<sc_y, leil le—il < lc—ksals - - - 5 le—a] le—i] < |col,
lcol le—kl <l€dl, - - -, le§ 7 le=kl < el
and
2y, il le—il < lcizily leizal le—el < fetol, ek ekl <|eil,

respectively, where k := ||m||.
This is done quite straightforwardly, the resulting restricted proof d, satisfies:

dy<ds’,  dimd,=j-||m|,
and its end-sequent has the form:

2= Cks » |C£:{| Ic—kl = |C£—1|) ’ |C;c—_11| Ic—kl = ch|_> (T)
Now we would like to get a contradiction by taking the truth definition of
Lemma 2.1 and as in the proof of Lemma 5.3 show that (1) is true for some c’s
satisfying the antecedent.
The simplest choice for values of c’s is obviously

1 2 (G+Dfimll+1)
=22 —1,c441:=2"—1,. .., ¢:=22""""0 g,

Hence the whole ((j + 1) ||m|| + 1)-tuple would be coded below u = 22"
Having such u, the use of the truth definition entails the contradiction.

Let us summarize the discussion. We took a diagonal formula ¢ and from the
assumption M F ¢(m) we have derived a contradiction under the assumption:

((dim d+1)-||mij+2) .
ME2ZTTT exists,

where d <m’ is the restricted proof of —¢(a) guaranteed by ¢(m). Hence we
have to put a suitable restriction on the dimension of proof d, say dim d < f(d).
To have an analog of Lemma 4.2 valid we need that f(d) is non-decreasing and
eventually greater than any j < w. To have an analog Lemma 4.3 valid, i.e.

((d:8,Fg B) A dimd < f(d))
—3d,, d,: 8+ [((d:S:+r B) Adimd <f(d))],

we need that the relation y <f(x) is =} and #-free definable in S3. An analog of
Lemma 4.4 is used only for d;, d, where dim d, =0 and so is always valid.
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Furthermore, we used the assumption j =dim d < |d| to guarantee the exist-
ence of proofs d,, . . ., d4. Thus the following assumptions on f(d) are sufficient
to carry out the argument:

(i) S:Hf(d)<|[d|.

(ii) The graph of f has a X%, #-free definition in S3.
(iii) SiF*“fis non-decreasing”.
(iv) For all j <w, S3F3x Vy >xj<f(y).

We can now state the theorem.

Theorem 5.4, Let f be a function satisfying the assumptions (i)—(iv) above, and
define:

o 20l
g(x):=2 :
Then Vi+ “g is total” is not II}-conservative over S,. In particular, V} is not
IT%-conservative over S,.

Proof (sketch). The assumptions (i)—(iv) posed on the function f(x) guarantee
that we can carry out the argument above. In particular we need that

((di d+1)-||d||+2) .
22 exists.

This follows from the assumption
g(d)=27""" exists.

The particular case g(x) ~ x #, x is obtained for f(x) ~ ||x|| O

Observe that g(x) can be much slower than x #; x; take e.g. f(x) :=log>(x).
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