EXPONENTIATION AND SECOND-ORDER BOUNDED ARITHMETIC

Jan KRAJÍČEK*

Department of Mathematics, University of Illinois, 1409 West Green Street, Urbana, IL 61801, USA

Communicated by A. Nerode Received 30 January 1989; revised June 1989

(1) $V_2^i \vdash A(a)$ iff for some term $t: S_2^i \vdash 2^{t(a)} \text{ exists} \rightarrow A(a)^{i}$, a bounded first-order formula, $i \ge 1$.

(2) V_2^i (resp. V_2) is not Π_1^b -conservative over S_2^i (resp. over S_2).

(3) Any model of V_2 not satisfying Exp satisfies the collection scheme $B\Sigma_1^0$.

(4) V_3^1 is not Π_1^b -conservative over S_2 .

Second-order bounded arithmetic V_2 and its fragments V_2^i were introduced in [1]. Here we investigate the relation of these systems to the first-order systems S_2 and S_2^i augmented by a limited use of exponentiation. The main connection is the following: For A(a) a first-order bounded formula, V_2^i proves A(a) iff S_2^i proves

" $2^{t(a)}$ exists $\rightarrow A(a)$ " for some term t(a).

From this we entail that V_2^i is not Π_1^b -conservative over S_2^i .

The connection between second-order systems and exponentiation is proved by a model-theoretic argument. This argument can be used to show that a model of V_2 not satisfying Exp must satisfy $B\Sigma_1^0$. This contributes to the question from [6] whether there is a model of $I\Delta_0 + \neg Exp$ not satisfying $B\Sigma_1^0$.

Finally we define a very weak provability notion for S_2 devised for a construction of a consistency statement which would separate S_2 and V_2^1 . We do not succeed; however, the provability notion can be used to separate S_2 and $V_2^1 + f$ is total", for any reasonably defined non-decreasing function f which eventually majorizes all $2^{|x|^k}$ ($k < \omega$). In particular, V_3^1 is not Π_1^b -conservative over S_2 .

I would like to thank G. Takeuti for some valuable comments and suggestions about the manuscript of this paper.

^{*} On leave from: Mathematical Institute, Czechoslovak Academy of Sciences, Zintá 25, 115 67 Praha-1, Czechoslovakia.

^{0168-0072/90/\$03.50 © 1990 -} Elsevier Science Publishers B.V. (North-Holland)

1. Preliminaries

For the definition of S_2 , V_2 and their fragments see [1]—we assume knowledge of that paper.

$$L_2 = \{0, 1, s, +, \cdot, \lfloor x/2 \rfloor, |x|, x \# y, \leq =\}$$

is the language of S_2 . L_1 denotes the language L_2 without the function symbol #, i.e. $L_1 = L_2 \setminus \{\#\}$.

 S_1 is a theory axiomatized by those axioms and rules of S_2 which do not contain #. In other words, S_1 -proofs are S_2 -proofs consisting only of L_1 -formulas.

Definition 1.1. Let $A(\bar{a})$ be a bounded L_1 -formula all whose free variables are among \bar{a} . By induction on the logical complexity of A we define an L_1 -term $V_A(\bar{a})$:

- (i) $A(\bar{a})$ is an atomic formula of the form $t_1(\bar{a}) = t_2(\bar{a})$ or $t_1(\bar{a}) \le t_2(\bar{a})$. Put: $V_4(\bar{a}) := t_1(\bar{a}) + t_2(\bar{a})$.
- (ii) $A(\bar{a})$ is of the form $\neg B(\bar{a})$. Put:

 $V_A(\bar{a}):=V_B(\bar{a}).$

(iii) $A(\bar{a})$ is of the form $B(\bar{a}) \wedge C(\bar{a})$, $B(\bar{a}) \vee C(\bar{a})$ or $B(\bar{a}) \supset C(\bar{a})$. Put: $V_A(\bar{a}) := V_B(\bar{a}) + V_C(\bar{a})$.

(iv) $A(\bar{a})$ is of the form $\exists x \leq t(\bar{a}) B(x, \bar{a})$ or $\forall x \leq t(a) B(x, \bar{a})$. Put:

$$V_A(\bar{a}) := V_B(x/t(\bar{a}), \bar{a}).$$

The intention of the definition is that in order to evaluate the truth value of $A(\bar{a})$ one has to compute only numbers $\leq V_A(\bar{a})$. The following is essentially a presentation of results of [2, 4].

Assume $A(\bar{a})$ has the form

$$\forall x_1 \leq t_1(\bar{a}) \exists y_1 \leq s_1(\bar{a}, x_1) \cdots \forall x_k \leq t_k(\bar{a}, x_1, \dots, x_{k-1}, y_1, \dots, y_{k-1}) \exists y_k \leq s_k(\bar{a}, x_1, \dots, x_k, y_1, \dots, y_{k-1}) B(\bar{a}, \bar{x}, \bar{y}),$$

B quantifier free. Then $A(\bar{a})$ is true iff there exist Skolem functions $f_1(\bar{a}, x_1), \ldots, f_k(\bar{a}, x_1, \ldots, x_k)$ such that:

(a) for $y_i := f_i(\bar{a}, x_1, \dots, x_i)$ there holds:

if $x_1 \le t_1(\bar{a})$ then y_1 is defined and $y_1 \le s_1(\bar{a}, x_1)$, if $x_2 \le t_2(\bar{a}, x_1, y_1)$ then y_2 is defined and $y_2 \le s_2(\bar{a}, x_1, x_2, y_1)$,

if $x_k \le t_k(\bar{a}, x_1, ..., x_{k-1}, y_1, ..., y_{k-1})$ then y_k is defined and $y_k \le s_k(\bar{a}, x_1, ..., x_k, y_1, ..., y_{k-1})$,

and

(b) $B(\bar{a}, \bar{x}, y_i/f_i)$ is true.

By (a) all these functions assume values $\leq V_A(\bar{a})$. Thus the k-tuple (f_1, \ldots, f_k) can be coded $\leq 2^{V_A(\bar{a})^{2k}}$, in the sense of [4].

Thus $A(\bar{a})$ is true iff " $\exists f_1, \ldots, f_k \leq 2^{V_A(\bar{a})^{2k}}, f_1, \ldots, f_k$ are functions and (a), (b) above are satisfied".

As L_1 -terms can be evaluated in S_2^1 , there is a Δ_1^b (w.r.t. S_2^1) definition of truth for open L_1 -formulas. In formula "..." above there is hidden universal quantification over x_j 's and existential quantification over y_j 's coming from (a) above. But as $x_j, y_j \leq V_A(\bar{a}), x_j, y_j \leq |2^{V_A(\bar{a})^{2k}}|$ so these quantifiers are sharply bounded. Thus the formula "..." above is Σ_1^b in S_2^1 in parameter $2^{V_A(\bar{a})^{2k}}$. As the same holds for $\neg A$, formula "..." is Δ_1^b in S_2^1 .

Let us summarize the discussion in a lemma. For details of the truth definition see [2, 4, 7].

Lemma 1.2. There exists a formula TR(x, y, z) which is $\Delta_1^b w.r.t. S_2^1$ and is such that S_2^1 proves:

"if $e \ge 2^{V_A(\bar{a})^{2k}}$ then TR(A, $\langle \bar{a} \rangle$, e) satisfies Tarski's truth conditions".

More precisely, "..." reads as follows:

"if V_A and k are defined from A as above and $e \ge 2^{V_A(\bar{a})^{2k}}$ then: if $A = \neg B$ then $\operatorname{TR}(A, \langle \bar{a} \rangle, e) \equiv \neg \operatorname{TR}(B, \langle \bar{a} \rangle, e),$ if $A = B \land C$ then $\operatorname{TR}(A, \langle \bar{a} \rangle, e) \equiv \operatorname{TR}(B, \langle \bar{a} \rangle, e) \land \operatorname{TR}(C, \langle \bar{a} \rangle, e),$ if $A = (\exists x \le t(a) B(x, \bar{a}))$ then $\operatorname{TR}(A, \langle \bar{a} \rangle, e)$ $\equiv \exists x \le \operatorname{val}(t(\bar{a}))\operatorname{TR}(B, \langle x, \bar{a} \rangle, e)$ ".

2. V_2^i and exponentiation

Consider first case i = 1. We define a theory $S_2^1 + 1$ -Exp which is a special case of theories considered in [3].

Definition 2.1. For a formula $A(\bar{a})$,

d is an $S_2^1 + 1$ -Exp-proof of $A(\bar{a})$ (denoted $d: S_2^1 + 1$ -Exp $\vdash A(\bar{a})$)

iff

d is an S_2^1 -proof of a sequent of the form: $t(\bar{a}) < |c| \rightarrow A(\bar{a})$,

c a free variable not occurring in t or A.

Definition 2.2. $\mathfrak{M} = (\mathfrak{M}_1, \mathfrak{M}_2)$ is a 1-fold model of S_2^1 iff (i) $\mathfrak{M}_1 \models S_2^1, \mathfrak{M}_2 \models S_2^1$,

(ii) $\mathfrak{M}_1 \subseteq_{\mathbf{e}} \mathfrak{M}_2$, (iii) $2^{\mathfrak{M}_1} \subseteq \mathfrak{M}_2$ (i.e. $\forall m \in \mathfrak{M}_1 \exists n \in \mathfrak{M}_2 \mathfrak{M}_2 \models m < |n|$). A 1-fold model \mathfrak{M} is large 1-fold if there holds moreover:

(iv) $\exists c \in \mathfrak{M}_2 \ \forall m \in \mathfrak{M}_1 \ \exists n \in \mathfrak{M}_2 \ \mathfrak{M}_2 \models m < |n| \ \& n < c.$

Lemma 2.3. Let $A(\bar{a})$ be a bounded formula. Then (i), (ii) and (iii) are equivalent.

- (i) $S_2^1 + 1 Exp \vdash A(\bar{a})$.
- (ii) For any 1-fold model $\mathfrak{M} = (\mathfrak{M}_1, \mathfrak{M}_2)$ of $S_2^1, \mathfrak{M}_1 \models \forall \bar{x} A(\bar{x})$.
- (iii) For any large 1-fold model $\mathfrak{M} = (\mathfrak{M}_1, \mathfrak{M}_2), \mathfrak{M}_1 \models \forall \bar{x} A(\bar{x}).$

Proof. (i) \Rightarrow (ii). Assume $S_2^1 + 1$ -Exp $\vdash A(\bar{a})$, i.e.

 $S_2^1 \vdash t(\bar{a}) < |c| \rightarrow A(\bar{a}).$

As $\mathfrak{M}_2 \models S_2^1$,

$$\mathfrak{M}_2 \models t(\bar{a}) < |c| \to A(\bar{a}).$$

By $2^{\mathfrak{M}_1} \subseteq \mathfrak{M}_2$ we have for any $\overline{m} \subseteq \mathfrak{M}$ an element $n \in \mathfrak{M}_2$ such that

 $\mathfrak{M}_2 \models t(\bar{m}) < |n|.$

Thus for all $\bar{m} \subseteq \mathfrak{M}$, $\mathfrak{M}_2 \models A(\bar{m})$. As $\mathfrak{M}_1 \subseteq_{\mathfrak{e}} \mathfrak{M}_2$,

 $\mathfrak{M}_1 \models \forall \bar{x} A(\bar{x}).$

Not (i) \Rightarrow not (iii). Assume that for any term $t(\bar{a})$, $S_2^1 + t(\bar{a}) < |c| + \neg A(\bar{a})$ is consistent. By compactness, the theory (with \bar{a} , c as constants)

 $S_2^1 + \neg A(\bar{a}) + \{t(\bar{a}) < |c| \mid t \text{ a term}\}$

is consistent. Let \mathfrak{M}_2 be a model of this theory, $\overline{a}, c \subseteq \mathfrak{M}_2$. Define

 $\mathfrak{M}_1 = \{ m \in \mathfrak{M}_2 \mid \text{for some term } t, \mathfrak{M}_2 \models m \leq t(\bar{a}) \}.$

Then the pair $(\mathfrak{M}_1, \mathfrak{M}_2)$ contradicts (iii). As (ii) \Rightarrow (iii) is trivial, we are done. \Box

Let $\Sigma_{\infty}^{0,b}$ denote the class $\bigcup_i \Sigma_i^b$, the class of first-order bounded formulas. $\Sigma_{\infty}^{0,b}$ is a proper subclass of $\Sigma_0^{1,b}$, the class of bounded second-order formulas without second-order quantifiers, cf. [1].

Lemma 2.4. Let $A(\bar{a})$ be a $\Sigma^{0,b}_{\infty}$ -formula. Then

 $S_2^1 + 1$ -Exp $\vdash A(\bar{a})$ iff $V_2^1 \vdash A(\bar{a})$.

Proof. Recall that V_2^1 is (fully) conservative over \tilde{V}_2^1 (a version of V_2^1 without second-order function variables), cf. [1].

(1) Assume $V_2^1 \not\vdash A(\bar{a})$, i.e. $\tilde{V}_2^1 \not\vdash A(\bar{a})$. Thus there is a model $(\mathfrak{M}, \mathfrak{X})$ such that for some $\bar{m} \subseteq \mathfrak{M}$:

 $(\mathfrak{M},\mathfrak{X}) \models \tilde{V}_2^1 + \neg A(\bar{m}).$

Claim. There is a model \mathfrak{M}^1 of S_2^1 such that $\mathfrak{M} \subseteq_{\mathbf{e}} \mathfrak{M}^1$ and $2^{\mathfrak{M}} \subseteq \mathfrak{M}^1$.

Proof of Claim. The idea—developed in [7]—is to use pairs of the form (a, α) , $a \in \mathfrak{M}, \alpha \in \mathfrak{X}$, to code numbers with value $\sum_{i < a, i \in \alpha} 2^i$. We shall use only pairs (a, α) with α bounded, i.e. $u \in \alpha$ implies $u \leq v$ for some v and all u.

In [7] it was shown that there are $\Delta_1^{1,b}$ -definable relations $R_{=}((a_1, \alpha_1), (a_2, \alpha_2)), R_{\leq}((a_1, \alpha_1), (a_2, \alpha_2))$ and for any f a function symbol of L_2 , $F_f((a_1, \alpha_1), \ldots, (a_{n+1}, \alpha_{n+1}))$, where n is the arity of f, such that if $R_{=}$ resp. R_{\leq} interprets " $(a_1, \alpha_1) = (a_2, \alpha_2)$ " resp. " $(a_1, \alpha_1) \leq (a_2, \alpha_2)$ " and F_f interprets " $f((a_1, \alpha_1), \ldots, (a_n, \alpha_n)) = (a_{n+1}, \alpha_{n+1})$ " then \mathring{U}_2^1 proves the translation of BASIC and of the equality axioms.

As we deal only with pairs (a, α) such that α is bounded we need only bounded $\Delta_1^{1,b}$ -CA and not full $\Delta_1^{1,b}$ -CA of \mathring{U}_2^1 . Any instance of bounded $\Delta_1^{1,b}$ -CA:

$$\exists \sigma \, \forall x < a \, x \in \sigma \equiv A(x),$$

can be proved by $\Sigma_1^{1,b}$ -IND on *a*, i.e. in V_2^1 . Thus we can prove the translation of the basic properties of function and relation symbols of L_2 , as well as the translations of axioms of BASIC and of equality axioms, in V_2^1 .

In this translation the original numbers of \mathfrak{M} are best represented as pairs $(|m|, \alpha_m)$ where $\alpha_m = \{i_0 < \cdots < i_k\}$ such that $m = 2^{i_0} + \cdots + 2^{i_k}$.

Let \mathfrak{M}^1 be the structure $\mathfrak{M} \times \mathfrak{X}/R_{=}$ with relation \leq and functions $f \in L_2$ interpreted according to R_{\leq} and F_f . We claim that $\mathfrak{M} \subseteq_{e} \mathfrak{M}^1$ (i.e. \mathfrak{M} is isomorphic to an initial segment of $\mathfrak{M}^1, 2^{\mathfrak{M}} \subseteq \mathfrak{M}^1$ and $\mathfrak{M}^1 \models S_2^1$).

For $\mathfrak{M} \subseteq_{e} \mathfrak{M}^{1}$ it is essentially only needed to prove:

$$(b, \beta) R_{\leq}(|a|, \alpha_a) \Rightarrow \exists c \leq a (b, \beta) R_{=}(|c|, \alpha_c)$$

and

$$F_f((|a_1|, \alpha_{a_1}), \ldots, (|a_{n+1}|, \alpha_{a_{n+1}})) \Rightarrow f(a_1, \ldots, a_n) = a_{n+1}$$

This is proved by induction ($\Delta_1^{1,b}$ -IND) on *a* resp. on $a_1 + \cdots + a_{n+1}$.

Condition $2^{\mathfrak{M}} \subseteq \mathfrak{M}^1$ is easy as the pair $(a + 1, \{a\})$ represents a number greater than " $2^{(|a|, \alpha_a)}$ ". This is proved by induction $(\Delta_1^{1,b}$ -IND) on *a* using the formula:

$$F_+((b+1, \{b\}), (b+1, \{b\}), (b+2, \{b+1\})).$$

To see that $\mathfrak{M}^1 \models S_2^1$ take a Σ_1^b -formula $A(a, \bar{b})$. We construct a translation of the formula A into a $\Sigma_1^{1,b}$ -formula

$$A^*((a, \alpha), (b, \beta))$$

- . . .

such that for (m, μ) and (n_i, η_i) from \mathfrak{M}^1 ,

$$\mathfrak{M}^{\iota} \models A((m, \mu), (n_1, \eta_i)) \quad \text{iff} \quad (\mathfrak{M}, \mathfrak{X}) \models A^*((m, \mu), (\overline{n_i, \eta_i})).$$

Translate functions and relations according to $R_{=}$, R_{\leq} and F_{f} 's. Translation * commutes with propositional connectives. Quantifiers are translated as follows:

(a)
$$(\exists x \leq t(a_1, \ldots) B(x, a_1, \ldots))^*$$

= $\exists x \leq t^1(a_1, \ldots) \exists \sigma ``t((a_1, \alpha_1), \ldots) \geq (x, \sigma) `` \land B_1^*$

where term t^1 is chosen such that

$$b \leq t(\bar{a}) \rightarrow |b| \leq t^{1}(|a_{1}|, \ldots),$$
(b) $(\forall x \leq |t(a_{1}, \ldots)| B(x, \bar{a}))^{*}$
 $= \forall x \leq t^{1}(\bar{a}) \exists \sigma "(|x|, \sigma) = x" \land B^{*}((|x|, \sigma)),$
(c) $(\exists x \leq |t(\bar{a})| B(x, \bar{a}))^{*}$
 $= \exists x \leq t^{1}(\bar{a}) \exists \sigma "(|x|, \sigma) = x" \land B^{*}((|x|, \sigma))$

where t^1 in (b), (c) has the same properties as in (a).

To show that the translation in (b), (c) is correct one needs:

 $\forall x \exists \sigma ``(|x|, \sigma) = x ".$

This is proved by $\Sigma_1^{1,b}$ -PIND on x.

We may assume that A is in a prenex form (as it is sufficient to verify PIND only for prenex formulas). A^* is then a $\Sigma_1^{1,b}$ -formula.

Assume:

$$\mathfrak{M}^1 \models A(0, (\overline{n, \eta})) \land \forall x A(\lfloor x/2 \rfloor, (n, \eta)) \rightarrow A(x, (n, \eta)).$$

Then (let us forget the parameters $(\overline{n, \eta})$)

$$(\mathfrak{M},\mathfrak{X})\models A^*((1,\{0\}))\land \forall (x,\sigma)A^*(\lfloor ``(x,\sigma)/2"\rfloor)\to A^*((x,\sigma)).$$

Assume also:

(*) $(\mathfrak{M}, \mathfrak{X}) \models \neg A^*((k, \kappa)),$

for some $(k, \kappa) \in \mathfrak{M}^1$. As

$$``[(x, \kappa)/2] = (x - 1, \kappa) \lor (x, \kappa) = (x - 1, \kappa)'' \text{ and } ``(1, \kappa) = (1, \{0\})'',$$

the formula above implies:

$$(\mathfrak{M},\mathfrak{X})\models A^*((1,\kappa))\wedge\forall x\leqslant k\,A^*((x,\kappa))\rightarrow A^*((x+1,\kappa)).$$

Thus, by $\Sigma_1^{1,b}$ -IND in $(\mathfrak{M}, \mathfrak{X})$, we have:

 $(\mathfrak{M},\mathfrak{X})\models A^*((k,\kappa)),$

contradicting (*). So

$$(\mathfrak{M},\mathfrak{X}) \models \forall x \ \forall \sigma A^*((x,\sigma)), \quad \text{i.e.} \quad \mathfrak{M}^1 \models \forall x \ A(x).$$

This proves the claim. (Let us remark that a different translation of bounded formulas was used in [7].) The claim together with Lemma 2.3 implies:

 $S_2^1 + 1$ -Exp $\nvDash A(\bar{a})$.

(2) Assume now $S_2^1 + 1$ -Exp $\not\vdash A(\bar{a})$. By Lemma 2.3 there is a large -fold model of S_2^1 , $\mathfrak{M} = (\mathfrak{M}_1, \mathfrak{M}_2)$, such that for some $\bar{m} \subseteq \mathfrak{M}_1$,

 $\mathfrak{M}_1 \models \neg A(\bar{m}).$

266

Let $c \in \mathfrak{M}_2$ witness condition (iv) of Definition 2.2, i.e. $2^{\mathfrak{M}_1} < c$. Take $\mathfrak{X} = \{ \alpha \subseteq \mathfrak{M}_1 \mid \alpha \text{ is coded (in } \mathfrak{M}_2) \leq c \}.$

Claim. $(\mathfrak{M}_1, \mathfrak{X}) \models V_2^1$.

Let B be a second-order bounded formula. Translate B into B^{**} , a $\Sigma_{\infty}^{0,b}$ -formula with parameter c, as follows:

(a) First-order relations and functions are left unchanged.

(b) $x \in \sigma$ is translated as "x is an element of the set coded by σ ", "..." is a $\Sigma^{0,b}_{\infty}$ -formula, cf. [2],

(c) ** commutes with Boolean connectives,

(d)
$$(\forall x \leq t B(x))^{**} = \forall x \leq |c| (x \leq t \rightarrow B(x))^{**},$$

 $(\exists x \leq t B(x))^{**} = \exists x \leq |c| (x \leq t \land B(t))^{**},$

(e)
$$(\exists \sigma B(\sigma))^{**} = \exists \sigma \leq c \ (B(\sigma))^{**},$$

 $(\forall \sigma B(\sigma))^{**} = \forall \sigma \leq c \ (B(\sigma))^{**}.$

Now let A be a $\Sigma_1^{1,b}$ -formula. So A^{**} is a Σ_1^{b} -formula. Assume:

 $(\mathfrak{M}_1, \mathfrak{X}) \models A(0) \land \forall x A((x)) \rightarrow A((x+1)).$

Thus for all $u \in 2^{\mathfrak{M}_1}$,

$$\mathfrak{M}_{2} \models A^{**}(0) \land (A^{**}(|u|) \to A^{**}(|u|+1)).$$

That is, for all $u \in 2^{\mathfrak{M}_1}$,

$$\mathfrak{M}_2 \models A^{**}(0) \land (A^{**}(\lfloor u/2 \rfloor \rfloor) \to A^{**}(\lfloor u \rfloor)).$$

As A^{**} is Σ_1^b and $\mathfrak{M}_2 \models S_2^l$, we have for all $u \in 2^{\mathfrak{M}_1}$:

 $\mathfrak{M}_2 \models A^{**}(|u|).$

But this implies:

$$(\mathfrak{M}_1,\mathfrak{X}) \models \forall x A(x), \quad \text{i.e.} \quad (\mathfrak{M}_1,\mathfrak{X}) \models S_2(\alpha) + \Sigma_1^{1,b}\text{-IND}.$$

It remains to show that

 $(\mathfrak{M}_1, \mathfrak{X}) \models \Sigma_0^{1,b}$ -CA.

This reduces to show that for any Σ_0^b -formula A(a) (with parameters in \mathfrak{M}_2): there is $d \in \mathfrak{M}_2$, $\mathfrak{M}_2 \models d \le c$ such that

 $\mathfrak{M}_2 \models \forall x \leq |c|, A(x) \equiv "x$ is an element of the set coded by d".

This is proved by PIND on *a* in the following Σ_1^{b} -formula:

 $\exists d \leq c \ \forall x \leq |a| \ A(x) \equiv ``x \in d"'.$

This completes the proof of the claim.

From the claim it follows that $V_2^1 \not\models A(\bar{a})$. This proves the lemma. \Box

In the same way the following theorem is proved $(S_2^i + 1 - \text{Exp})$ is defined completely analogically with Definition 2.1).

Theorem 2.5. Let $i \ge 1$ and let $A(\bar{a})$ be a first-order formula without any occurrence of a second-order variable, i.e. a $\Sigma_{\infty}^{0,b}$ -formula. Then

 $V_2^i \vdash A(\bar{a})$ iff $S_2^i + 1$ -Exp $\vdash A(\bar{a})$.

Corollary 2.6. For all $i, j \ge j$

if $S_2^i = S_2^j$ then $V_2^i \equiv V_2^j$.

Corollary 2.7. For $i \ge 1$, V_2^i is not Π_1^b -conservative over S_2^i . Also V_2 is not Π_1^b -conservative over S_2 .

Proof. Theory $S_2^i + \text{Exp}$ is equal to the theory $I\Delta_0 + \text{Exp}$ of [5]. There it was shown that $I\Delta_0 + \text{Exp}$ proves certain consistency statements (i.e. Π_1^b -formulas) unprovable in $I\Delta_0 + \Omega_1$, which is equivalent to S_2 . Hence in particular, $S_2^i + \text{Exp}$ is not Π_1^b -conservative over S_2^i which immediately implies that neither is $S_2^i + 1$ -Exp. This entails the corollary. \Box

Corollary 2.7 extends a result from [7] where it was shown that \mathring{V}_2^1 is not conservative over S_2^1 .

Corollary 2.8. For $i \ge 1$,

 $V_2^i \equiv V_2^i(BD).$

Proof. In the construction of \mathfrak{M}^1 in the proof of Lemma 2.4, only the assumption $\mathfrak{M} \models V_2^1(BD)$ is actually used. \Box

Let $\sqrt{S_2^i}$ denote a theory arising from S_2^i by replacing Σ_i^b -PIND by the rule:

$$\frac{A(\lfloor \sqrt{a} \rfloor), \Gamma \to \Delta, A(a)}{A(0), \Gamma \to \Delta, A(t)}$$

 $\left(\sqrt{S_2^i}\right)$ implies the soundness of the following rule which may be called Σ_i^b -LLIND:

$$\frac{A(a), \Gamma \to \Delta, A(a+1)}{A(0), \Gamma \to \Delta, A(\|a\|)}$$

Then analogically with the first part of the proof of Lemma 2.4 we have (recall $U_2^1 \vdash \Delta_1^{1,b}$ -IND, cf. [1]):

$$U_2^i$$
 + bounded $\Delta_1^{1,b}$ -CA $\vdash \sqrt{S_2^i}$ + 1-Exp.

Another way to generalize the method of this section is to consider higherorder extensions of S_2 (based on induction and appropriate comprehension axioms for variables of higher orders). Then similarly the bounded first-order consequences of the (k + 1)-th order extension are characterized as $S_2 + k$ -Exp. (That is, $S_2 + k$ -Exp+ A(a) iff

$$S_2 \vdash t(a) < |c_1|, c_1 < |c_2|, \ldots, c_{k-1} < |c_k| \rightarrow A(a).$$

The characterization of bounded first-order consequences of fragments of such theories is more complicated and needs further weakenings of the induction rule in the line of LIND, LLIND,

3. Another corollary to the construction

In connection with the problem of existence of end-extensions to models of $I\Delta_0$ the question whether there is a model of $I\Delta_0$ satisfying neither Exp nor $B\Sigma_1^0$ was posed in [6]. (Exp is a Π_2^0 -formula $\forall x \exists y x = |y|$.) A modest contribution to this problem is the next theorem.

Theorem 3.1. Let $\mathcal{M} = (\mathfrak{M}, \mathfrak{X})$ be a model of V_2 not satisfying Exp, *i.e.*

 $\mathcal{M} \models V_2 + \neg Exp$

Then $\mathfrak{M} \models \mathbf{B} \Sigma_1^0$.

Proof. Take model \mathfrak{M}^1 of S_2 (extending \mathfrak{M}) constructed from $(\mathfrak{M}, \mathfrak{X})$ in the proof of Lemma 2.4. Thus $\mathfrak{M} \subseteq_{\mathbf{e}} \mathfrak{M}^1$ and $2^{\mathfrak{M}} \subseteq \mathfrak{M}^1$.

From the assumption $\mathfrak{M}\models \neg Exp$ it follows that \mathfrak{M}^1 is a proper end-extension of \mathfrak{M} . It follows easily that $\mathfrak{M}\models B\Sigma_1^0$, cf. [6]. \Box

4. A restricted provability notion

Definition 4.1. (1) *D* is a restricted S_2 -proof of *A* (denoted $D: S_2 \vdash_{\mathbf{R}} A$) iff the following conditions hold: *D* is a 5-tuple $D = \langle d, \bar{w}, \bar{v}, \overline{d'}, \overline{d''} \rangle$, and:

(i) d is an S_1 -proof of a sequent of the form:

$$2 \le c_0, |a_0| \le |c_0|, \dots, |a_n| \le |c_0|, |c_0| |c_0| \le |c_1|,$$
$$|c_1| |c_0| \le |c_2|, \dots, |c_{j-1}| |c_0| \le |c_j| \to A,$$

where c_0, \ldots, c_j do not occur in A. In particular, A is an L_1 -formula.

(ii) All formulas in d are bounded and in prenex form.

(iii) If $\bar{a} = (a_0, \ldots, a_n)$ and $\bar{c} = (c_0, \ldots, c_j)$ are all parameters of d (i.e. free variables of the end sequent) and $\bar{b} = (b_0, \ldots, b_k)$ are all other free variables occurring in d then it holds $(l, m \le k)$:

(a) the sequents of d where b_i occurs form a connected subtree of d,

(b) if the elimination rule of b_l is below the elimination rule of b_m then l < m,

(c) the elimination rate of b_l is either $\forall \leq :$ right, $\exists \leq :$ left or PIND.

(iv) $\bar{w} = \langle w_0(\bar{a}, \bar{c}), \ldots, w_k(\bar{a}, \bar{c}) \rangle$ is a sequence of L_1 -terms such that for $l \leq k$ it holds: if the elimination rule of b_l has the form:

$$\frac{A(|b_l/2|), \Gamma \to \Delta, A(b_l)}{A(0), \Gamma \to \Delta, A(t_l(\bar{a}, \bar{c}, b_0), b_{l-1}))}$$

or

$$\frac{b_l \leq t_l(\bar{a}, \, \bar{c}, \, b_0, \, \dots, \, b_{l-1}), \, A(b_l), \, \Gamma \rightarrow \Delta}{\exists x \leq t_l(\bar{a}, \, \bar{c}, \, b_0, \, \dots, \, b_{l-1}) \, A(x), \, \Gamma \rightarrow \Delta}$$

or

$$\frac{b_l \leq t_l(\bar{a}, \bar{c}, b_0, \dots, b_{l-1}), \Gamma \rightarrow \Delta, A(b_l)}{\Gamma \rightarrow \Delta, \forall x \leq t_l(\bar{a}, \bar{c}, b_0, \overline{b_{l-1}}) A(x)}$$

then

$$(*)_{l} \qquad w_{l}(\bar{a}, \bar{c}) \geq t_{l}(\bar{a}, \bar{c}, b_{0}/w_{0}, \ldots, b_{l-1}/w_{l-1}).$$

(v) $\overline{d'} = \langle d'_0, \ldots, d'_k \rangle$ is a sequence of proofs such that d'_i is a quantifier-free and induction-free S_1 -proof of $(*)_i$.

(vi) \bar{v} is a sequence of L_1 -terms such that if a formula $B(\bar{a}, \bar{b}, \bar{c}, \bar{x})$ (with $\bar{a}, \bar{b}, \bar{c}, \bar{x}$ variables free in B) which occurs as a subformula in d (we consider B associated with its occurrence), then the sequence \bar{v} contains the L_1 -term $V_B(\bar{a}, \bar{b}, \bar{c}, \bar{x})$ defined in Section 1.

(vii) For $A(\bar{a}, \bar{b}, \bar{c})$ a formula of the form

$$Q_{1}x_{1} \leq t_{1}(\bar{a}, \bar{b}, \bar{c}) Q_{2}x_{2} \leq t_{2}(\bar{a}, \bar{b}, \bar{c}, x_{1}), \dots, Q_{r}x_{r} \leq t_{r}(\bar{a}, \bar{b}, \bar{c}, x_{1}, \dots, x_{r-1}) C(\bar{a}, \bar{b}, \bar{c}, \bar{x}),$$

C quantifier free which occurs in d, \bar{v} contains terms $P_{A,i}(\bar{a}, \bar{c})$ (i = 1, ..., r) and a term $q_A(\bar{a}, \bar{c})$ such that the following holds:

$$(**)_{A,1} \qquad P_{A,1}(\bar{a}, \bar{c}) \ge t_1(\bar{a}, b_l/w_l, \bar{c}), (**)_{A,2} \qquad P_{A,2}(\bar{a}, \bar{c}) \ge t_2(\bar{a}, b_l/w_l, \bar{c}, x_1/P_{A,1}), \vdots \\ (**)_{A,r} \qquad P_{A,r}(\bar{a}, \bar{c}) \ge t_r(\bar{a}, b_l/w_l, \bar{c}, x_1/P_{A,1}, \dots, x_{r-1}/P_{A,r-1}) and$$

and

 $(***)_A \qquad q_A(\bar{a}, \, \bar{c}) \geq V_C(\bar{a}, \, b_l/w_l, \, \bar{c}, \, x_j/P_{A,j}).$

(viii) $\overline{d''}$ is a sequence of quantifier-free and induction-free S_1 -proofs and for all A occurring in d and $i \leq$ the quantifier complexity of A, $\overline{d''}$ contains proofs $d''_{A,i}$ of $(**)_{A,i}$ and d''_A of $(***)_A$.

(2) The number *j* in (i) (= the number of formulas of the form $|c_{i-1}| |c_0| \le |c_i|$ in the antecedent of the end-sequent of *d*) is called *the dimension* of *D* and denoted dim(*D*).

(3) A restricted S_2 -proof D is called *strictly restricted* if it holds:

$$\dim(D) \leq \|D\|.$$

We denote by $D: S_2 \vdash_{SR} A$ the formula

" $D: S_2 \vdash_{\mathbf{R}} A$ and D is strictly restricted".

This provability notion is motivated by [3, 7]. Recall that by [2, 3, 5] the formula " $D: S_2 \vdash_{SR} A$ " can be chosen as L_1 -formula, Δ_1^b w.r.t. S_2^1 . We also assume that the formula is in a prenex form.

Lemma 4.2. For any bounded L_1 -formula it holds.

 $S_2 \vdash A$ iff $S_2 \vdash_{SR} A$.

Proof. The 'if' part is true as S_2 proves sequents of the form

 $\rightarrow \exists x | c_{i-1} | | c_0 | \leq x.$

The 'only if' part follows essentially by cut-elimination and a compactness argument, cf. [3, 7]. Recall that PIND can be proved only from its instances for prenex formulas.

The following two lemmas are usual probability conditions needed for the proof of Gödel's theorem.

Lemma 4.3. $S_2^1 \vdash (D: S_2 \vdash_{SR} B) \rightarrow \exists D_1 \leq t(D)[(D_1: S_2 \vdash_{SR} (D: S_2 \vdash_{SR} B))]$ for some fixed L_2 -term t.

Proof. Argue in S_2^1 . As $D: S_2 \vdash_{SR} B$ is a true $(\Delta_1^b \cap L_1)$ -sentence there is an S_1 -proof d of it with length

 $|d| \leq |(D:S_2 \vdash_{\mathrm{SR}} B)|^{k'} \leq |D|^k$

for some fixed $k' \le k < \omega$ — cf. [5]. Moreover, all formulas in *d* are substitution instances of formulas with Gödel number $\le k''$, for some fixed $k'' < \omega$ (cf. [5]). Thus there exist terms \bar{w} , \bar{v} , instances of some standard iterations of terms, needed for the strictly restricted proof. (As *d* is an S₁-proof with empty antecedent, dim d = 0.) \Box

Lemma 4.4.

$$S_{2}^{1} \vdash [(D_{1}: S_{2} \vdash_{SR} A, \Gamma \rightarrow \Delta) \land (D_{2}: S_{2} \vdash_{SR} \Gamma' \rightarrow \Delta', A)] \rightarrow \\ \exists D_{3} \leq t(D_{1}, D_{2}) (D_{3}: S_{2} \vdash_{SR} \Gamma, \Gamma' \rightarrow \Delta, \Delta'),$$

for some fixed L_2 -term t.

Proof. Argue in S_2^1 . There exists an obvious restricted proof D_3 : join D_1 and D_2 by an application of cut-rule.

Clearly:

 $\dim D_3 \leq \dim D_1 + \dim D_2.$

Thus it is sufficient to add to D_3 some dummy inferences to get D_4 such that the

J. Krajíček

Gödel number of D_4 fulfills

 $2(D_1 \# D_2)^2 \leq D_4.$

So

$$||D_4|| \ge ||2(D_1 \# D_2)^2|| \ge |2|D_1 \# D_2||$$

$$\ge 1 + ||D_1 \# D_2|| \ge 1 + |1 + |D_1||D_2||$$

$$\ge 1 + (||D_1|| + ||D_2|| - 1) \ge ||D_1|| + ||D_2||$$

Hence

$$||D_4|| \ge ||D_1|| + ||D_2|| \ge \dim D_1 + \dim D_2 \ge \dim D_3 = \dim D_4$$

Thus D_4 is the required strictly restricted proof. \Box

5. V_2^1 versus S_2

In this section we investigate the problem whether V_2^1 is conservative over S_2 .

Definition 5.1. A dyadic numeral of n, denoted <u>n</u>, is defined:

 $\underline{0} := 0, \quad \underline{1} := 1, \quad \underline{2} := (1+1),$ $\underline{2n} := (\underline{2} \cdot \underline{n}) \text{ and } \underline{2n+1} := (\underline{2n}+1).$

In the following definition we assume that the formalization is based on dyadic numerals, i.e. Gödel numbers are represented by them. \underline{a} denotes a formalization of the dyadic numeral.

Definition 5.2. (a) SRPr(a, b) is an L_1 -formula formalizing:

 $``\exists D \leq a (D: S_2 \vdash_{SR} b)''.$

Moreover, SRPr is Δ_1^b w.r.t. S_2^1 and a natural formalization — in the sense of [1, 5, 7] — such that S_2^1 can prove Lemmas 4.3 and 4.4 for the formalization. Cf. [3].

(b) $SRCon(S_2)(a)$ is an L_1 -formula defined as

 $\operatorname{SRCon}(S_2)(a) := \neg \operatorname{SRPr}(a, \lceil 0 = 1 \rceil).$

Thus $\forall x \operatorname{SRCon}(S_2)(x)$ expresses: " S_2 is strictly restricted consistent".

Lemma 5.3. $S_2^1 + 1$ -Exp \vdash SRCon $(S_2)(a)$.

Proof. Assume $D: S_2 \vdash_{SR} 0 = 1$, i.e. $D = \langle d, \bar{w}, \bar{v}, \overline{d'}, \overline{d''} \rangle$, where d is an S_1 -proof of the sequent of the form:

$$2 \le c_0, |a_0| \le |c_0|, \dots, |a_n| \le |c_0|,$$
$$|c_0| |c_0| \le |c_1|, \dots, |c_{j-1}| |c_0| \le |c_j| \to 0 = 1.$$

By substituting 0 for all a_i in the whole d, and adding a few inferences, we can assume that the end-sequent of d has the form:

$$2 \leq c_0, |c_0| |c_0| \leq |c_1|, \ldots, |c_{j-1}| |c_0| \leq |c_j| \rightarrow 0 = 1.$$

Call it $S(\bar{c})$.

Let $\bar{b} = b_0, \ldots, b_k$ be all non-parametrical free variables of d.

By soundness of the rules, using terms \bar{w} guaranteeed by D, prove: "if $S(\bar{c})$ is not true, then there is an initial sequent $S_0(\bar{b}, \bar{c})$ and $b_l \leq w_l(\bar{c}), l = 0, ..., k$, such that $S_0(\bar{b}, \bar{c})$ is not true". As any initial sequent is true, so must be $S(\bar{c})$.

This argument can be formalized in S_2^1 using the truth definition of Lemma 1.2. Statement "..." is Σ_1^b and is proved by induction on the number of inferences in d. The only point is to have a number so large that the truth definition of Lemma 1.2 can be applied to all formulas in d. Proofs $\overline{d''}$ are used to verify that terms \overline{w} have been correctly chosen.

Terms in \bar{v} and proofs in $\overline{d''}$ are used for the proof that terms V_A 's are defined correctly. Also we have that

$$W_A(\bar{b}, \bar{c}) \leq q_A(\bar{c}) \quad \text{for } b_l \leq w_l(\bar{c}).$$

Thus q_A 's, being coded in D, satisfy

 $|q_A| \leq |D|$.

Also k of Lemma 1.2, i.e. the quantifier complexity of A, satisfies $k \leq |D|$. Thus the equality:

 $2^{q_A(\bar{c})^{2k}} \leq e$

from Lemma 1.2 follows from:

$$2^{q_A(\bar{c})^{2|D|}} \leq e.$$

(†)

As for any L_1 -form $t(\bar{c})$, $val(t(c), \bar{c}) \le max(2, \bar{c})^{|t|}$ we have

 $\operatorname{val}(q_A,\,\bar{c}) \leq \langle \bar{c} \rangle^{|q_A|}.$

So (†) follows from:

$$2^{\langle \bar{c} \rangle^{2|D|'}} \leq e.$$

Thus we have:

$$S_2^1 \vdash \langle \bar{c} \rangle^2 \# D \# D < |e| \rightarrow [(D:S_2 \vdash_{SR} 0 = 1) \supset TR(S(\bar{c}), \langle \bar{c} \rangle, e)]$$

Define $t_0 := \underline{2}, t_i := 2(t_{i-1} \cdot t_{i-1})$, for $i \leq j$. Then for $i \leq j$

$$\operatorname{val}(t_i) = 2^{(2^{i+1}-1)} \leq 2^{(2^{||D||+1}-1)} \leq s(D),$$

where s(x) is some term.

Thus t_i 's can be defined in S_2^1 and $\langle t_0, \ldots, t_j \rangle$ can be coded $\leq s(D)^{\|D\|}$. We now substitute in $S(\bar{c})$, t_i 's for c_i 's. Adding a few (quantifier free and induction free) inferences we get a strictly restricted proof D' of 0 = 1 with dim D' = 0. ($\dagger \dagger$)

implies, as $D' \leq D \cdot s(D)^{h \parallel D \parallel}$ for some $h < \omega$, that for some L_2 -term t(x) it holds:

$$S_{2}^{1} \vdash t(D) < |e| \rightarrow [(D: S_{2} \vdash_{SR} 0 = 1) \rightarrow TR(0 = 1, 0, e)],$$

i.e., using Lemma 1.2,

 $S_2^1 + 1$ -Exp $\vdash 0 = 1$.

This is a contradiction. \Box

Unfortunately we are not able to show that $S_2 \not\prec SRCon(S_2)(a)$. The lemmas in Section 4 are the usual probability conditions needed for the Gödel theorem but the obstacle to the standard proof is that the strictly restricted provability is not—provably in S_2 —closed under the substitution of numerals for free variables, i.e. S_2 cannot prove that $S_2 \vdash_{SR} A(a)$ implies $S_2 \vdash_{SR} A(\underline{n})$, for all *n*. Thus we have to use another construction giving a weaker result.

Consider a $\Sigma_1^{\rm b}$, #-free formula ϕ such that

 $S_1 \vdash \exists x \ \phi(x) \equiv (\exists d, d : S_2 \vdash_R \neg \phi(a)).$

By a standard argument (using Lemma 4.2) it follows:

 $S_2 \not\vdash \neg \phi(a).$

Let us look under which conditions V_2^1 could prove $\neg \phi(a)$. Assume $\mathcal{M} = (\mathfrak{M}, \mathfrak{X})$ is a model of V_2^1 and $\exists x \phi(x)$, i.e.

 $\mathscr{M} \models V_2^1 + \phi(m),$

for some $m \in \mathfrak{M}$.

By the definition of ϕ and by Parikh's theorem there is $d \in \mathfrak{M}$, such that:

 $\mathfrak{M} \models d \leq m^r \land (d : S_2 \vdash_{\mathsf{R}} \neg \phi(a)),$

for some fixed $r < \omega$.

The end-sequent of d has the form:

 $2 \leq c_0 |a| \leq |c_0|, \ldots, |c_{j-1}| |c_0| \leq |c_j| \rightarrow \neg \phi(a).$

Adding some inferences to d we easily get a proof d_1 of:

 $2 \leq \underline{m}, |\underline{m}| \leq |\underline{m}|, \ldots, |c_{j-1}| |\underline{m}| \leq |c_j| \rightarrow \neg \phi(\underline{m}).$

A code of such a proof d_1 will satisfy $d_1 \le m^{c_j j^2} (m^r \text{ for } d, m^{O(j)} \text{ for the end-sequent and this itself j-times for its derivation}). Thus to guarantee that <math>d_1$ exists we need the assumption $j \le |m|^l$, for some $l < \omega$. Then $d_1 \le t_1(m)$ can be assumed for some fixed term t_1 .

On the other side, as ϕ is Σ_1^b , $\phi(\underline{m})$ implies that there is a restricted proof d_2 of $\phi(\underline{m})$ (cf. the proof of Lemma 4.3). Again we may assume $d_2 \le t_2(m)$, t_2 some term. Moreover — by the proof of Lemma 4.3 — dim $d_2 = 0$.

Joining proofs d_1 and d_2 by the cut-rule gives a proof d_3 of:

$$2 \leq \underline{m}, |\underline{m}| \leq |\underline{m}|, \ldots, |c_{j-1}| |\underline{m}| \leq |c_j| \rightarrow .$$

Again $d_3 \leq t_3(m)$, for some fixed term t_3 (cf. Lemma 4.4) obtained from t_1 , t_2 .

Proof d_3 is not restricted as its end-sequent does not have the appropriate form. We construct from d_3 a restricted proof d_4 by cutting out formulas $2 \le \underline{m}$, $|\underline{m}| \le |\underline{m}|$ from the antecedent and replacing formulas $|\underline{m}| |\underline{m}| \le |c_1|$ and $|c_{i-1}| |\underline{m}| \le |c_i|$ there by cedents:

$$2 \le c_{-k}, |c_{-k}| |c_{-k}| \le |c_{-k+1}|, \dots, |c_{-1}| |c_{-k}| \le |c_{0}|,$$
$$|c_{0}| |c_{-k}| \le |c_{0}^{1}|, \dots, |c_{0}^{k-1}| |c_{-k}| \le |c_{1}|$$

and

$$2 \le c_{-k}, |c_{i-1}| |c_{-k}| \le |c_{i-1}^1|, |c_{i-1}^1| |c_{-k}| \le |c_{i-1}^2|, \quad , |c_{i-1}^{k-1}| |c_{-k}| \le |c_i|,$$

respectively, where k := ||m||.

This is done quite straightforwardly, the resulting restricted proof d_4 satisfies:

$$d_4 \leq d_3^{c \cdot j}, \qquad \dim d_4 = j \cdot ||m||$$

and its end-sequent has the form:

$$2 \le c_{-k}, \quad , |c_{i-1}^{l-1}| |c_{-k}| \le |c_{i-1}^{l}|, \quad , |c_{j-1}^{k-1}| |c_{-k}| \le |c_{j}| \to$$
 (†)

Now we would like to get a contradiction by taking the truth definition of Lemma 2.1 and as in the proof of Lemma 5.3 show that (†) is true for some c_i^{l} 's satisfying the antecedent.

The simplest choice for values of c_i^h s is obviously

$$c_{-k} := 2^{2^1} - 1, c_{-k+1} := 2^{2^2} - 1, \ldots, c_j := 2^{2^{(j+1)} ||m||+1)} - 1.$$

Hence the whole ((j+1) ||m|| + 1)-tuple would be coded below $u = 2^{2^{((j+1) \cdot ||m||+2)}}$. Having such u, the use of the truth definition entails the contradiction.

Let us summarize the discussion. We took a diagonal formula ϕ and from the assumption $\mathcal{M} \models \phi(\underline{m})$ we have derived a contradiction under the assumption:

$$\mathcal{M} \models 2^{2^{((\dim d+1) \cdot \|m\|+2)}} \text{ exists,}$$

where $d \le m'$ is the restricted proof of $\neg \phi(a)$ guaranteed by $\phi(m)$. Hence we have to put a suitable restriction on the dimension of proof d, say dim $d \le f(d)$. To have an analog of Lemma 4.2 valid we need that f(d) is non-decreasing and eventually greater than any $j < \omega$. To have an analog Lemma 4.3 valid, i.e.

$$((d:S_2\vdash_R B) \land \dim d \leq f(d))$$

$$\rightarrow \exists d_1, d_1:S_2\vdash_R [((\underline{d}:S_2\vdash_R \underline{B}) \land \dim \underline{d} \leq f(\underline{d}))],$$

we need that the relation $y \le f(x)$ is Σ_1^b and #-free definable in S_2^1 . An analog of Lemma 4.4 is used only for d_1 , d_2 where dim $d_2 = 0$ and so is always valid.

Furthermore, we used the assumption $j = \dim d \le |d|$ to guarantee the existence of proofs d_1, \ldots, d_4 . Thus the following assumptions on f(d) are sufficient to carry out the argument:

- (i) $S_2^1 \vdash f(d) \leq |d|$.
- (ii) The graph of f has a $\Sigma_1^{\rm b}$, #-free definition in $S_2^{\rm 1}$.
- (iii) $S_2^1 \vdash "f$ is non-decreasing".
- (iv) For all $j < \omega$, $S_2^1 \vdash \exists x \forall y > x j < f(y)$.

We can now state the theorem.

Theorem 5.4. Let f be a function satisfying the assumptions (i)–(iv) above, and define:

$$g(x) := 2^{2^{(\|x\| \cdot f(x))}}.$$

Then $V_2^1 + "g$ is total" is not Π_1^b -conservative over S_2 . In particular, V_3^1 is not Π_1^b -conservative over S_2 .

Proof (sketch). The assumptions (i)-(iv) posed on the function f(x) guarantee that we can carry out the argument above. In particular we need that

 $2^{2^{((\dim d+1)\cdot \|d\|+2)}}$ exists.

This follows from the assumption

 $g(d) = 2^{2^{f(d) \cdot \|d\|}}$ exists.

The particular case $g(x) \sim x \#_3 x$ is obtained for $f(x) \sim ||x||$

Observe that g(x) can be much slower than $x \#_3 x$; take e.g. $f(x) := \log_2^*(x)$.

References

- [1] S. Buss, Bounded Arithmetic (Bibliopolis, Naples, 1986).
- [2] H. Gaifman and C. Dimitracopoulos, Fragments of Peano's arithmetic and the MRDP theorem, in: Logic and Algorithmic, Monogr. 30 de L'Enseignement Mathématique, Geneve (1982) 187-206.
- [3] J. Krajíček, Π_1 -conservativeness in systems of Bounded Arithmetic, unpublished.
- [4] J. Paris and C. Dimitracopoulos, Truth definitions for Δ_0 formulae, in: Logic and Algorithmic, Monogr. 30 de L'Enseignement Mathématique, Geneve (1982) 317–330.
- [5] A. Wilkie and J. Paris, On the scheme of induction for bounded arithmetic formulas, Ann. Pure Appl. Logic 35(3) (1987) 261-302.
- [6] A. Wilkie and J. Paris, The end extension problem, Proc. Int. Congr. LMPS '87, Moscow.
- [7] G. Takeuti, Bounded arithmetic and truth definition, Ann. Pure Appl. Logic 39(1) (1988) 75-104.