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A POSSIBLE MODAL FORMULATION OF COMPREHENSION SCHEME

by JAN KRAJÍÈEK in Prague (Czechoslovakia) 1 )

§ O. Introduction

We will propase a set theory MST formalized in modallogic and we will try to show
that its consequences are relatively powerful in relation to its simple axiomatization.
The result was announced in [10].

The naive comprehension scheme

(CA) 3'11 \t't(t E 'II = q;(t»,

where q; is any property, is a very elegant principle. This principle, or better its sub-
stance, describes the naive set-universe. Unfortunately, in the most customary for-
malization, where any formula of the set-theoreticallanguage is accepted as a property,
(CA) is inconsistent. As it is well-known the contradiction can be proved e.g. by fol-
lowing RUSSELL'S argument. Thus various approaches try to formulate a set-theory
which would be mathematically powerful and consistent. They replace (CA) by a list
of weaker axioms guaranteeing the existence of some sets (e.g. ZF) or restrict it (e.g.
NF). But, at the same time, they lose important features of (CA): homogeneity, sim-
plicity and elegance or a certain intuitive picture.

In ZF, for example, we have axioms which suggest how to make new sets from
already formed sets, and we ha ve enough of them that the described set-universe is
sufficiently complex to be mathematically rich. An underlying universal idea of the
ZF-axioms is the so called "size doctrine". This principle together with the axiom of
foundation gives us a sufficiently clear intuitive picture about the ZF -universe. But
the homogeneity of assumptions is lost and nothing guides us in choosing of new axioms
from a variety of mutually incomparable possibilities.

A different approach is formalized by QUINE'S NF. Here (CA) is applied only to
the "stratified" formulas. The source of this modification lies in the type theory.
It is syntactical rather than semantical; thus there is not a clear picture about the
described universe. Serious difficulties arise when one tries to deve,lop mathematics
in NF. The theory must be supported by additional axioms to be sufficiently strong
(see [7]).

We hope that the features of (CA) justify the program of studying modificationsof (CA). '

We will describe a set theory MST which is a formalization of our modification of
(CA) using a modallogic. We alBa show that MST covers some nontrivial mathematics,
in particular it contains PEANO'S arithmetic. A partial consistency result is proved in
Chapter 8. Some new partial consistency results together with some results concern-
ing mathematics in MST were obtained after finishing this pa per. They are partly
reported in [11] and partly in preparation.

1) We thank P. PuDLÁK for many discussions and valuable remarks. His assistance was essential
to our work.



462 J. KRAJiÈEK

In the literature we found afew systems closely connected to MST (see [1], [2], [3],
[5], [6] and [8]). These connections wi11 be discussed in detail in Chapter 8. FEFERMAN'S
paper [4] contains a general discussion of various approaches to some foundational
problems. It also offers a wide relevant bibliography.

(i)

or

for

§ 1. The formal theory MST
We begin this Chapter with a motivati~n in terms of knowledge. However, it should

be understand only like a heuristic. We think that a serious epistemic interpretation
of the following theory is possible but is not needed for the present paper. Our goal
bere is to propose a set-theory based on some modal reformulation of (CA) to which
we were lead by the following considerations.

Let us imagine the following situation: There exists a set-universe which is the
object of our consideration. The only atomic predicates are "to be equal" and "to
be an element of". Each atomic sentence and hence each sentence is trne or false in
the set-universe.. Our wish is to recogllize the truth, i.e. the sentences trne in the set-
universe. So some trne sentences are known to us. StilI others could become known,
i.e. are in principle knowable.

For formalizing the modal operator "to be knowable" we extend the UStlal classical
set- theoretical language by adopting a new unary logical connective O which should
be an epistemic modality. Thus our language (the modal set-theoreticallanguage) is
the modal predicate calculus with identity (see [9]) with a binary predicate e as the

only non-logical symbol.
1.1. When we decide to try to understand the set-universe we\ can already take the

fact of looking for the knowledge as a part of the knowledge. Put otherwise, we may
accept assumptions which manifest the principles and the correctness of our knowl.
edge. Hence the following two axiom schemes and one deduction role should be ac-

cepted:
(i) DfP -+ fP

(ò) D(fP -+ 1p) -+ (DfP -+ D1p) J

fP

T-axioms,

,-) Di Necessitation role (N-role).

This (it will be specified later) extension of the classical predicate calculus is called T
in [9].

1.2. The main idea of MST is that (CA) does not refer to the whole Set-universe but
only to its knownable part, to our "universe of discourse". That means: it seems to
us from the point of view of our knowledge that the set-universe behaves as if (CA)
were sound.

In the chosen language this modification of (CA) (Modal (CA) or shortly (MCA»
can be described as follows:

(MCA) For any formula f{>(t, a1 , . . ., ak) of the modal set-theoretical language with
free variables among t, a1 , . . ., ak the universal closure of the following for-
mula holds:

3Y'v't(Of{>(t,al'.. .,ak):= Otey)& (Olf{>(t,al'.. .,ak):= Ot~y».
The al's are called parameters and wil1 be omitted further.

liii)
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1.3. 80 far we have not accepted any concrete "theory of knowledge", any non-
logical epistemic assumptions. The second principle of M8T is of this kind. As usual
011' abbreviates ,O,tp. The principle is

(LP) Ox = y -+ Ox = y.

There are other (in T) equivalent formulations of (LPi

(i) Dx = Y v Dx =t= y

or
(ti) (x = Y -. Dx = y) & (x 9= y -. Dx 9= y).

We leave aside the question whether (LP) has logical or empirical character.

(LP) is a kind of a finitistic assumption. There are alBa close connections to
LEIBNIZ's principle "No two monads are exactly alike" from his theory of monads
(see [13]). This may be formalized as (>x = y -. x = y (where (>x = y simulates
indistinguishability) or equivalently x 9= y -. Dx 9= y. Thus LEIBNIZ'S principle coin-
cides with the second conjunct of (ti). Surely, the first is a trivial consequence of
the substitution properties of identity. Hence the name (LP) seems to be justified
for this axiom.

We remark that (LP) is alBa discussed in [9]; the first conjunct of (ti) is caIled (LI)
and the second (LNI) there.

1.4. Let us summarize the definitions. The language of the formal theory MST, the
modal set-theoretical language, contains the classical propositional connectives -', &,
v, -., =, the quantifiers 3, V, and the new unary (modal) connective D. Variables
x, y,..., Xo, Xl'...' a, b,... ranges over individuals. There are only two binary
predicates: = (identity) and e (membership). Formulas of the modal set-theore-
tical language are aIl formulas built up in this language. In particular, formulas
may contain free variables. Axioms and rules of the modal predicate calculus
T are:
(i) the substitution-instances of aIl classical propositional tautologies for aIl

formulas,
(ò) the substitution-instances of the Bchemes (and their variants replacing .x, y by

other variables)

a) cp = Vxcp, provided x is not free in cp,

b) Vxcp(x) -. cp(y),
provided x does not occur in cp in the scope of a quantifier 3y or Vy,

c) Vx(cp -. 1/') -. (Vxcp -. VX1jJ), for aIl formulas cp,1/',

(iii) the substitution-instances of the schemes

and D«p -+ 1p) -+ (D<p -+ D1pI(TJ -+ (TJ

the axioms (and their variants using other variables)

!;y = z: -+x=v = X, (x = y) = (y = X). (x = y &

(XO = Xl & Yo = Yl) -+ (XO e Yo = Xl e Yl
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(v) the inference rules

(i)

(ti)

(iii)

(iv)

(v)
84 I

for aIl formulas fp, 1jJ.

The only non-logical assumptions of MST are (MCA) and (LP).

Let us explicitly stress that the N-rule is generaIlyapplicable (in contrast to theories
of [2] and [3]). In particular, aIl instances of (MCA) are "knowable". This gives to
the whole system features of a "logical calculus".

Instead of writing MST f- rp we wiIl shortly write f-rp. In the next Chapters various
results will be proveï in extended underlYing logical systems over T. These
extensions wiIl be explicitly stressed by A f- fp, which denotes the deducibility of rp
in MST + A.

We wiIl use freely various results about modallogics which are proved in [9]. When
we talk about equivalent formulas we always suppose that this equivalence can be
established in (possibly extended) logic T.

§ 2. Russell's paradox

2.1. Let us discuss RUSSELL'S paradox formany. Applying (MCA) to RUSSELL'S for-
mula t ~ t we obtain

f-3y Vt((Ot ~ t ;:: Ot e y) & (Ot e t ;:: Ot ~ y))

and hence

1-3y(Dyey = DY~y).

Now surely

1-((Dyey ~ yey)& (DY~y ~ y~y))

and the only escape from the contradiction gives

1-3Y((Dy e y = Dy ~ y) & <)y e y & <)y ~ y).

Fortunately, this situation does not lead to inconsistency because Dy e y v Dy ~ Y is
not a theorem of T.

We even profit by this trivial but important corollary:

2.2. Corollary. i'-3y«)ye y & <)y ~ y).

2.3. In the Russian translation of l7] ESENIN-VOLPIN derived RUSSELL'S paradox
in intuitionistic logic. li we try his derivation for MST it fails, because a scheme anal-
ogical to (q:I ~ Iq:I) ~ Iq:I, on which it is based, i.e. (Dq:I ~ D'q:I)~ D,q:I, is not

provable in T. (It is, in fact, equivalent to Dq:I v D,q:I.)
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Another dangerous modification of RuSSELL 's paradox is that of CURRY (see [7]),
It goes in this way: Let 1/' be any sentence. Take the set y = {t I tEt -+ 1/'}. In par-

ticular for y

yey =: (yey -+ 1/')

and 1/' follows. The reader could calculate himself that this argument also fails for MST.

§ 3. A possible strengthening 01 the underlying logic

There is Barely a wide spectrum of modal logics wruch may come to our attention
if we consider possible extensions of the underlying logic of M8T. Consult, for example,
the book [9].

Let us list a few of the most obvious aXiom schemes:

(i) 84: Olp -. OOIp,
(li) 85: OOIp -. Olp,

(lii) B: OOIp -. Ip,

(iv) BF: \fxOIp(x) -. O\fxlp(x),

(v) 03xlp(x) -. 3xOIp(x).

84 and 85 are known as LEWIS'S systems. Axiom B is calIed BROUWER'S axiom be-
cause of its relations to intuitionism (see [9], p. 58). BF is known as BARCAN'S formula.
The axiom (v) is also discussed in [9], p. 144.

The converses of alI axioms except Bare easily provable in T.

The problem of evidence for these assumptions is difficult. 8urely, a necessary
mathematical condition for adjoining any of them to M8T is the consistency of the
extended theory. Now we prove some limitations in trus direction.

3.1. Lemma. M8T + 85 is inconsi8tent.

Proof. First observe that, silice T + 85 f- T + 84, T + 85 f- OOIp -. OOIp. Now
'let us apply (MCA-) to the RusselI-like formula Ot t t:

f-3yVt((OOt t t == oe E y) & (OOt E t == Ot ty»
and thus

(A) f-3Y((DDy I/; Y = DY e Y) & (DOyey = Dy I/; y».

8ince ODIp -. DDIp is equivalent to DO Ip v D-,DIp, we ha ve (by the above ob-
servation)
(B) 85 f- 'v'Y(DDyl/;y& DOyey).

Trivially we also ha ve

f-'v'y(DDyl/;y =. Dyey) -. -'DDyl/;y
\and hence, from (A), (B), 85 f- 3Y(DOY e y & Dy I/; y) and so

85 f- 3Y(-'Dyl/;y& Dy I/; y).

We are done.

By [9] T + 84 + B = T + 85 and thus the former system Ís ÍnconsÍstent too.

30 Z~hr. f. math. Logik
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3.2. The assumption (v) looks like a kind of a constructivistic principle. We feel it
is inadequate and, in fact,

Lemma. MST + (v) is inconsÍ8tent.

Proof. We will use only the second conjunct of the statement (A) derived in the
previous proof. Hence we begin with

f-3y(DIDYty == Dyty).

It .follows, using alBa N-rule,

f-D3Y((OIDY t y == DY t y) & IDY ~ y).
Now

(v) fo 3y(O(O-'Oy If: y = Oy If: y) & D-,Oy If: y& -,Dy If: y)

and thus The
(we
in t
T-+

(v) fo 3Y(DY f/; Y & -, Dy f/; y)

We are done.

Observe that we proveï, in fact, slightly more: both the schemes

3y O'v't(Ot E Y = Oq;(t» and 3y O'v't(Ot ~ Y = O,q;(t»)

are inconsistent (use q;(t) = ,Ot E t) to get the first one).

We mention an interesting remark dne to P. PUDLÁK:

Remark. (LP) + (v) + 3x, y(x =+= y) f- <>q; -+ qq; and thus this system trivializes
the operator O.

Proof. Abbreviate the above system by 8.. Certainly

8 f- 3x, yl(x = y -+ q;) & (x =+= y -+ ,q;}),

thus by N -role and (v)

8 f- 3x, y((Ox = y -+ Oq;) & (Ox =+= y -+ O,q;)).
Using (LP) we obtain 8 f- 3x, y(:s = y -+ Oq;) & (x =+= y -+ O,q;)) and so

8 f- <>q; -+ Oq;.
Using this remark and the ordinary RUSSELL'S argument we get another proof of

the inconsistency of M8T + (v).

.Let us now discuss some advantages of the other mentioned axioms.

3.3. Axiom 84 seems sound with 1.1 and we do not see a contradiction in adopt-
ing it. lt has the following interesting consequence: lf we define a string of " O
before a formula to be "a modality", then in T we have an infinite number of distinct
modalities, e.g. Oq;, OOq;, OOOq;, . . ., but in 84 there are only a finite number of
nonequivalent modalities.

~

3.4. We do not see that B is sound with 1.1 but we also do not see that it is contra-
dictory with M8T. Adopting B has the following technical advantage: lmagine that
we want to construct (by (MCA») a set y of t's which satisfy q;. lnstead of applying
(MCA) to q; apply it to Oq;. Hence we obtain:

f-3y 'v't((Ot E Y = OOq;(t)) & (Ot ~ y = O,Oq;(t)).
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Srnce trivially Ot ~ 'li -. t ~ 'li we conclude, by contraposition, from the second conjuhct

f-3'l1 Vt((Ot e 'li == OO<p(t)) & (Ot ~ 'li == 0-, O<p(t)) & (t e 'li -. OO<p(t)))

ld heQce

B I- 3yYt«(Otey = OOIp(t)) & (Ot~y = OIOIp(t)) & (tey -+ Ip(t))).

Thus in the presence of B each "class" {t I Ip(t)} caD be approximated in the sense
of the formula above by a set.

3.5. BA-RCAN's formula may be seen as saying that we know the range of the set-
universe, or better that the accessible part of the set-universe reflects all possible
properties of individuals. This is suggested by an equivalent formulation of BF:

<)3xlp(x) -+ 3x<)lp(x).

The system T + S4 + BF has the following important metamathematical consequence
(we learned an inessentially weaker form of it in [14]): Denote by 1-1 the derivability
in the logic T + S4 + BF and by 1-2 the derivability from {Olp I Ip is an axiom of

T + S4 + BF} in the logic T + S4 + BF without the use of N-rule. Then we have:

Lemm a. lpi' . . ., Ipk 1-1 'Ip ijj Olpl' . . ., Olpk 1-2 'Ip.

Proof. Srnce (by T) Olp, 1-2 Ip,. (i = 1, . . ., k) it is sufficient to show that the set
of 1-2-consequences of the Olp•s is closed under O, i.e. if Olpl'.", Olpk 1-2 IX,

then Olpl' . . ., Olpk 1-2 OIX too. This is done by induction on the lenght of the proof
of IX.

3.6. Let us finish this Chapter with a short remark. The character of the problems
connected with reasonable extensions of the underlying logic of MST is also (and,
maybe, mainly) philosophical. The paragraph 1.1 is our only mentioned criterion for
these questions. The present short experience with MST indicates that S4 + BF is
the "right" extension of MST. A number of important results of the next Chapters
are proveï under these assumptions. A successful attack on these problems would
probably require developing a metatheory for MST, especially some model theory.
Because, for the time being, we have only partial results concerning the consistency
of MST, there is much that has to be done.

§ 4. O-decidable formulas anddecidable sets

In this Chapter we begin todevelop MST.

4.1. Metadefinition. We call a forrnula <p O-decidable iff O<p v O-'<p holds.

We will frequently use other equivalent conditions (cf. 1.4):

(i) -'O<p -+. O-'<p,

(ii) <)<p -+ O<p,

(iii) «p -+ O<p) & (-'<p -+ O-'<p).

Note that if <p is decidable (i.e. I-<p or I--,<p) then it is alBa O-decidable but the con-
verse is not generally trne.

4.2. We abbreviate the forrnula O<pvO-'<p by '1>«p). We begin with a sirnple
result.

30*
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Lemma. f-('1)«p) & '1)(1j!)) -+ ['1)(,<p) & '1)«p & 1j!)] and

(i)

(ii)

BF f- ClJ(rp) -+ [ClJ('v'xrp) & ClJ(3xrp)]

The axiom (LP) implies the following

4.3. Corollaty. Let q; be a lormula built up without use 01 O, V, 3, E. Then I-t;t)(q;)

4.4. Definition. We call a set y decidable (D(y) in symbols) iff

Vt(Ot e y v Ot ~ y)
holds.

The rest of this Chapter is devoted to proving that the domain of decidable sets is
rich and behaves reasonably.

4.Ï. Theorem. f-~(cp) -+ 3y 'v't((t e Y = cp(t)) & D(y)).

Proof. We have

f-~(cp) -+ 'v't(cp(t) = Ocp(t)} & ('CP(t} = OICP(t})

and using (MCA) we are done.

4.6. Corollary.

(i) f-3y 'v't(t f/: y),
(ii) 1-3y 'v't(t e y),

(iii) f-3y 'v't(t e y = (t = al v . . . v t = ak.)),

(iv) f-3Y'v't(tey= (t+a1&...&t+ak.)).
ldoreover D(y} in each oase.

Proof. Consider the provably O-decidable (see 4.3) formulas t + t, t = I,
t = a1 v.. .vt = ak. and t + a.l &.. .&t + ak.'

4.7. Theorem.

(i) f-(D(a) & D(b)) -+ 3y 'v't((t e y = (t e a & t e b)) & D(y)) ,
(ii) f-(D(a) & D(b)) -+ 3Y'v't((t e y = (t e a v t e b)) & D(y)),

(iii) I-D(a)-+3Y'v'~((tey=tf/:a)&D(y)),
(iv) f-D(a) -+ 3Y'v't((tey = (teavt = c)) & D(y)).

Proof. Observe that decidability of a implies the O-decidability of t e a. Using 4.5
we are done.

Note that, already now, we can conclude that MST interprets some nontrivial mathe-
matics: From 4.6 and 4.7 it follows that MST interprets a weak fragment of set theory
based on axioms

(i) 3y 'v't(t f/: y) ,
(ii) 3Y'v't(tey= (texvt = z)).

lt is sufficient to consider the domain of decidable sets. On the other side it is
known (see [12]) that this theory globally interprets arithmetic with bounded in-
duction liJn.
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4.8. Theorem.

(i) RF f- [.D(a) & Vb(b E a -+ D(b»] -+ 3c Vt(t E C = 3b(b E a & t E b»,
(ii) RF f- D(a) -+ 3c Vt(D(t) -+ (t E C = t ~ a»,

where t ~ a abbreviates Vs(s E t -+ S E a),

(iii) RF f- (~(Ip(x, t) & D(a» -+ 3c Vt(t E C = 3x(x E a & Ip(x, t»).

Moreover, c is decidable in (i) and (òi).

Proof. (i) Write 1JI for D(a) & Vb(b E a -+ D(b» and Ip(t) for 3b(b E a & t E b). Observe

f-VJ -fo tp(t) = Dtp(t),

f-VJ -fo (Itp(t) = Vb(D(b) -fo (b ~ a v t ~ b»))
and

I-D(a) & D(b) -+ ((b~avt~b);: (Db~av Dt~b))
Thus

f-tp -+ (-"P(t) = 'v'b(b e a -+ (Db ~ a v Ot ~ b»)
and 80

1-1/' -+ IqJ(t) = 'v'b(Ob ~ a v Ot ~ b)

This gives BF I- 'Ip -+ Itp(t) = O,tp(t) and by 4.5 we are done.

(ii) It is enough to calculate: BF I- (D(x) & D(a») -+ 'I}(x ~ a) by which we are
done.

(lii) Again it is sufficient to prove that the formula 3x(x E a & Ip(x, t» is O-decid-
able. But this is immediate from the assumptions.

4.9. We write Suc(x, y) as an abbreviation for Vt(t E Y == (t E x v t = x». Concern-
ing axioms of infinity we observe, that the universal set v (which exists) satisfies
(x EV & Suc(x, y» -+ Y E v. However, more plausible versions of axiom of infinity will
be proveï in the next Chapters.

In this Chapter we proveï the existence of union (Ua), intersection (a ('I b), etc. on
some appropriate domain. Thus it might be easier to write e.g. ip(x V {x}) instead of
3y(Suc(x, y) & Ip(y», i.e. to introduce definable terms. Unfortunately, in view of result
3.2, this is not generally possible and one must be very carefull when usmg terms in

arguments.
This alBa shows that extensionality loses some of its importance in MST.

§ 5. Extensionality
MST implies some restrictions to introducing definable terms (see 3.2 and 4.9).

Hence extensionality lpses one of its ustlal application.

Many concepts and results using extensionality can be interpreted without it (see
also [3] and [4]).

We did not adopt it and, in fact, MST disproves it.

5.1. Theorem. f-3x, y(Vt{t EX == t E 'Ii) & x :!: in
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~.U
fror
the

is

(i)

Proof. Define the formula q;(t) with parameters a, b, c as follows:

q;(t) = (t = a & c e c) v (t = b & c fj: c).

Clearly f-a=t= b ~ (q;(a) = cec) & (q;(b) = cfj:c), so by N-rule and (LP)

(A) f-a * b ~ (Dq;(a) = Dc e c) & (Dq;(b) = Dc fj: c).

A1so f-q;(t) ~ (t = a v t = b), and again by N-rule and (LP)

(B) f-Oq;(t) ~ (t = a v t = b).

Now, by (MCA)

f-3y Vt((Dq;(t) = Dt e y) & (O I q;(t) = Dt fj: y) & (t e y ~ Oq;(t)))

(the last conjunct follows from the second one). By (B) we have

f-3Y'v't((Dq;(t) == Dtey) & (Dlq;(t) == Dtfj:y) & (tey~ (t = avt = b)).

Thus "this y" is an at most two-element set and so, by 4.6 (iii) and extensionality,
it is decidable. Hence we have '

ext f- 3Y'v't((Dq;(t) == t e y) & (D,q;(t) == t fj: y),

from which follows

ext f- Dq;(II) v Dlq;(t).

This, together with (A), gives

ext f- a * b ~ (Dc e c v Dc fj: c).

Srnce f-3a, b(a =t= b) (e.g. the empty set and the universal set are different), we have

ext f- Dc e c v Dc fj: c.

This contradicts 2.1.

Let us remark that in this proof we applied (MCA) only to nonmodal formulas, i.e.
those without O (see § 8).

ó.2. Various other modifications of extensionality may be considered. For example:

(i) 'v't(Dtex == Dtey) ~ x = y,
(ii) 'v't((Dt e x == Dt e y) & (Dt fj: x == 011 fj: y)) ~ x = y,
(iò) D'v't(t e x == tÉ y) ~ x = Y
(this formulation was suggested by P. PUDLÁK),

(iv) 'v't(t e x == I e '!I) & D(x) & D(y) ~ x = y.
lt is simple to observe that (i) ~ (ò) ~ (ili), and that BF implies (òi) ~ {iv).

In § 8 we sketch a proof of partial con~istency result concerning a slight variant of
(ò), (òi) and (iv).

Concerning (i) we have the following result:

Lemma. MST disproves (i).

Proof. By (MCA)

f-3Y'v't((Dtey == Drer) & (Dtfj:y == Drfj:r)).
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li we choose for the parameter r RUSSELL'S set from § 2, we obtain

(A) 1-3yVt(,Ot E Y & ,Ot ~ y).

Hence if we choose for x and y from (i) a decidable empty set (see 4.6 (i)) and "the y
from (A) ", respectively, we conclude

(i) I- 3yVt(Ot E Y & Ot ~ y & D(y».

This is a contradiction.

Although some of the above modifications of extensionality are interesting (and
useml) we shall not assume extensionality at all.

§ 6. Srna}} sets

lmagine that we are looking on the set-universum from outside of it. The result
4.6 (iò) implies that for all finite collections of seta from the set-universe (i.e. finite
from outside of the set-universe) there exists a decidable set in the set-universe with
the same extension (i.e. with the same members). Hence the following should char-
acterize "finite sets":

(Vy ~ x) D(y).
Unfortunately, the proof of 5.1 implies that there cannot be a set x satisfying the
formula above and having more than one element.

However, this suggests to characterize finite seta as those whose all subcollections
(e.g. those represented by some formula) are "simple" in the sense of O. Since (MCA)
is our principle which enables us to represent (in a particular way) a collection of seta
defined by some formula by a set, we are lead to the following definition which should
substitute a notion of finiteness:

6.1. Definition. x is small (S(x) in symbols) iff

(i) Vy 3z(D(z) & Vt(t e z == (t e x & Ot e y»)
and

(ii) D(x)

t of

We require small sets to be decidable srnce decidable sets are easily handled. We do
not consider this definition as a definitive approximation of "finiteness" in MST; the
notion of "smallness" is introduced mostly for the purposes of § 7.

6.2. Lemma. For any formula rp(t) we have

f-S(a) -. 3b 'v't(D(b) & (t e b = (Drp(t) & t e a))).

Proof. By (MCA), f-3c 'v't(Drp(t) = Dt e c} and by smallness of a we are done.

6.3. Lemma.

(i) f-b ~ a & S(a) & D(b) -. S(b),
(ii) f-S(a) & S(b) -. 3c(S(c) & 'v't(t e c = (t e a v t e b))),

(òi) f-S(a) & S{b) -. 3c(S(c) & 'v't(t e c = (t e a & t e b»)),

(iv) f-S(a) -. 3c(S(c) & 'v't(t e c = (t e a v t = d))).

Proof. Easilyby4.7.
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§ 7. Arithmetic

In this Chapter we develop PEANO'S arithmetic PA in M8T augmented by 84 and BF.

7.1. We begin with the familiar von NEUMANN'S definition: x is an ordinal number
(On(x) in symbols) iff

(i) x is transitive

and

(ò) x is strictly well-ordered by E.

For ordinal numbers we wilI also use the letters lX, 1>', . . .
7.2. "Natural" candidates for natural numbers are perhaps smalI ordinal numbers.

Since it is not evident why there could not be a limit smalI ordinal number we shalI
use this definition: lX is a natural number (N(lX) in symbols) Uf

(i) On (lX) ,

(ii) 8(lX) ,
(iii) \1'1>'(1>' E lX ~ 8(1>'»,

(iv) lX is strictly welI-ordered by E-l. "~ \)

(x E-l y is obviously defined by Y EX). ,;.;;",

7.3. Lemma.

(i) Any decidable empty set is a natural number.

(ò) For any natural number lX there exists a natural number I>' which is its s'/tccessor
(see 4.9).

(òi) Any element 01 a natural number is a natural number.

(iv) II lX E I>' are natural numbers, then there exists a natural number y which is a suc-
cessor 01 lX and satislies y E I>' or y = 1>'.

Precise formulations are obvious. Remark that without extensionality e.g. succes-
sors are not uniquely given.

Proof. (i) is trivial, (ii) use 6.3 (iv), (iii) use (iii) of 7.2. For (iv) choose y to be the
minimal element of "I>' \ (lX v {lX})" or the I>' itself.

7.4. Metadefinition. A formula q;(t) is calIed a cut in N iff

(i) q;(t) ~ N(t) ,

(ii) "lX decidable empty" ~ q;(lX) ,

(iii) q;(lX) & SUC(lX, 1>') & N(I>') ~ q;(I>').

A cut q;(t) is calIed nontrivial U, moreover, the folIowing holds:

(iv) 31>'(N(I>') & -,q;(I>')).

Remark that any cut q;(t) in N satisfies (for I>' a natural number):

(v) (\1'lX E P) q;(lX) ~ qJ(P)

(any nonempty P has an maximal element whose successor is I>' itself).
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7.5. Lemma. No formula Dcp(t) is a nontrivial cut in N.

Proof. We shall argue inforltlally. 8uppose that Dcp(t) is a nontrivial cut in N.
80 there exists a natural number IX which does not satisfy Dcp. Let us fix any such a
number IX. 8ince empty natural numbers satisfy Dcp, IX is not empty. By 6.2 there
exists b ~ IX, such that Vt(t E b == (t E IX & Dcp(t))). This b is not empty (since min IX
satisfies Dcp) and hence it has a maximal element, saJ, p. By 7.3 (iv) there are two
possibilities: IX is II- successor of P or there exists y E IX which is a successor of p. In
both cases we immediately come into contradiction with the choice of IX and p.

7.6. Lemma. 84 + BF I- DN(t) == N(t).

Proo•.. In a view of 7.5 it is enough to prove that DN(t) is a cut in N. Clearly
I-DN(t) -+ N(t). Also

I-Vx("x decidable empty" -+ Nlx)),

hence, by N -role,

I-Vx(D "x decidable empty" -+ ON(x)).
8ince 84 + BF I- "x decidable empty" -+ D "x decidable empty", we have

84 + BF I- Vx("x decidable empty" -+ DN(x)).

lt remains to prove

DN(IX) & SUC(IX, P) & N({>') -+ DN(P).

Clearly I-N(IX) & SUC(IX, P) & D(P) -+ N(P), hence

I-DN(IX) & DSUC(IX, P) & DD(P) -+ DN(P).

8ince I- N(IX) -+ D(IX) and
84 + BF I- D(IX) & D(P) -+ (DD(P) & (SUC(IX, P) -+ DSUC(IX, P»),

we may conclude

84 + BF I- DN(IX) & SUC(IX, P) & N(P) -+ DN(P).
7.7. Theorem (lnduction). 84 + BF implies that there are no nontrivial cuts in N.

Proof. 8uppose that cp(t) is a cut in N. Define the formula 1p(t) by

1p(t) == N(t) & (Vs E t) (((Vf" E s) <p(r)) -+ cp(s)) -+ (Vs E t) cp(s).

1p(t) says that induction holds up to t.

Now we claim:
,

84 + BF I- "D1p{t) is a cut in N".

For this we need:

(i) I-D1p(t) -+ N(t),

(ti) 84 + BF I- "IX decidable empty" .,.. D1p(IX),

(tii) S4 + BF I- D1p(IX) & SUC(IX, P) & N(P) -+ D1p(P).

(i) is trivial, (ti) is easy by 7.6 and (iii) is proved analogically to the proof of the cor-
responding part in 7.6. From the claim, using 7.5, it follows

84 + BF I- 1p(t) == N(t).
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By 7.4 (v) w~ have

r"tp is a cut in N" ~ (1jI(t) ~ (Vset) tp(s),

hence we o btained

84 + BF r "tp is a cut in N" ~ Vttp(t).

7.8. Now we sketch how to introduce the arithmetical structure on N. At first we
need to define =N and ~N. We define, for example, "tX ~NfJ" iff "there exists a
smaIl1-1 mapping of tX into fJ" and "tX =NfJ" iff "(tX ~NfJ&fJ ~NtX)" ("mapping"
wiIl be defined obviously). Now, using induction, one proves the .usual properties of
= N and ~ N. Having this we define in some reasonable way the addition. For ex-
ample: "tX + fJ = y" iff "there exist smaIl sequence so, . . ., sp such that 80 = lX,
S,,+l = s" + 1 (1) + 1 abbreviates the successor of 1)) and sp = y" ("sequence" will
be defined as usual). 80 we easilly prove tX + O = tX and (tX + fJ) + 1 = tX+ (fJ + 1).
Then, using induction, we prove that "+" is defined for each two natural numbers.
The same can be done with multiplication and induction will guarantee the wanted
arithmetical properties of "+" and ". ". Observe t~at induction also implies that
this can be done uniquely. Moreover, because 7.7 holds fór aIl (not only "arithmetical ")
formulas, the domain of natural numbers forms a standard model (i.e. without cuts)
of PA in M8T. On the other side there remains the problem whether N defines a set.

FinaIly remark that by using the modification 5.2 (iv) of extensionality we may
considerably simplify a structure of N; in particular, x =N Y and x ~N Y are x = Y
and (x = Y v X E y), respectively.

§ 8. Partial eonsisteney result '

In this Chapter we will construct (in ZF) a Kripke-style model for considerable
fragment of MST.

8.1. Let M be a fixed infinite set.

Defipition. A world over M (shortly world) is an ordered pair w = (w+, w-) such
that:

~

(i) w+, w- ~ M2 and (ii) w+ ("\ w- = 0.

The set of worlds is denoted by W. The set W is partially ordered by

W1 ~ W2 iff wi ~ wi & wl ~ w:2:.

8.2. For each world WEW we define a Kripke structure Kw = (IKwl, ~w' Fw) by
(i) IKwl = {w' E W I w ~ w'},
(ii) ~w = IKwI2,

(iii) for W1 E IKwl and a, b E M:

a) wIFwaEb iff (a,b)Ewi,
b) wIFwa = b iff a = b,

c) Fw is in obviously way extended to all sentences.

For a formula !p with some free variables we define: W1 Fw!P iff W1 Fw IP, where IP is
the universal closure of !po
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8.3. Let § 1 be the set of all formulas of the modal set-theoreticallanguage with
just one free variable t and with parameters from M. Let A: § 1 -+ M be a fixed
mapping for which IpA = 1/'A iff Ip = -, . . . -, 1/' or 1/' = -, . . . -, Ip.

2n times 2n times
8.4. Now we define a sequeJlce, of worlds {w«} (C\: an ordinal) by

Wo = (O, O),

.) w« = (U ,

(i)

(ii1

1\
~

w';, U wjj) Cif IX a limit)P<~ 'P<~ r

(iii) W:+1 = W: v {(a, rp(t) A) I (a, rp(t) A) ~ w; & W~ I=w. Drp(a)},

W;+l = w;v {(a, rp(t) A) I (a, rp(t) A) ~ w:& w~ I=w. D,rp(a)}.

lt is simple to realize that this definition is correct, i.e. it defines a sequence of worlds.
Also is immediate that the sequence {w~} is monotonous in W (~ ~ p -+ w~ ~ wp).
Thus, surely, there exists g such that we = we+l (in fact (Vn ~ g) w" = we)' Let us
fix any such g.

8.5. Definition. We call a formula rp monotonic iff

(VWl' W2 E W) (Wl ~ W2 -+ (Wl I=wl Drp -+ W2 I=w2 Drp)).

Let mF be the set of monotonic formulas, mF 1 = mF (\ :#i" 1 .
Lemma. Let rp(t) E m:#i" l' C E M and w E IKwel. Then

(i) W I=w~ Dc E rp A -+ Drp(c);

(ò) w I=we Dc ~ (,rp)A -+ Drp(c) ,

(iò) w I=w~D,•P(c) -+ Dc E (,rp)A,

(iv) W I=we D,rp(c) -+ Dc ~ rpA.

Proof. We will write "-" instead of "iH" and C'=>" instead of "if . . . then . . .".

(i) W I=we Dc E rpA - W~ I=we Dc E rpA - (c, rpA) E wt => (3~ ~ g) w" I=w. Drp(c). By mo-

notonicity of ff, we I=w~ Drp(c).
(ii) w I=we Dc ~ (,rp) A - we I=we Dc ~ (,rp) A - (c, (, ff) A) Ewi => (3~ ~ g) w" I=w. Drp(c).

By monotonicity of rp w~, I=we Drp(c).

(òi) w I=we D,rp(c) - we I=w~ D,rp(c). Observe, that monotonicity of rp implies

,(3~ ~ g) w" I=w. Drp(c). Thus (c, (,rp)A) ~ wi and, by definition, (c, (,rp)A) E
E Wt+l = wt. 80 we I=we Dc E (,rp)A.

(iv) Again' (see (iii)) ,(3~ ~ g) w" I=w. Drp(c), hence (c, rpA) ~ wt and, by definition,
(c, rpA) E Wi+l = wi. 80 w~ I=we Dc ~ rpA.

8.6. Lemma. m:#i" contains alt nonmodal formulas.

Proof. Easily from definition of satisfaction.

8.7. We define a theory U with following axioms:

(i) the logical axioms T + 84 + 85 + BF (and N-rule too),

(ò) (LP),

(iii) 3y DVt((Dt E Y = Drp(t)) & (Dt ~ Y = D,rp(t»), for nonmodal ffl-

\

,
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Our main consistency result is

Theorem. U is oonsistent.

Proof. We wiIl prove that KWE is a model for U, i.e. for each w e IKw~1
This is nontrivial only for the axioms of (iii). By 8.5 (using 8.6) we have

w I=w~ 'v't((Ot e gll\ -I- Ogl(t)) & (D, Igl(t) -I- Ot e (, Igl)I\))
and

wl=w~U.

w Fw~\it((Ot~ (..cp)" -. O.cp(t)) & (O.cp(t) -. Ot~cp")).

Thus, since cp" = (..cp)",

we Fw~ O\it((Ot e cp" = Ocp(t) & (Ot ~ cp" = O.cp(t»)

and, using 84, we obtain

w Fwe 3yO Vt((Ot e y = Ocp(t») & (Ot ~ y = O.cp(t))).

8.8. Corollary. M8T witk instances 01 (MCA) only lor nonmodal lormulas is CDn-
sistent witk 84 + BF + 85.

8.9. Let us eketch how to modify the construction above to obta.in a model for the
theory from 8.8 together with some modification of extensionality. The variant of
5.2 (ii) we mentioned is the following:

(ii') \it((Ot ex = Ot e y) & (Ot ~ x = Ot ~ y» & 3t(Ot e x v Ot ~ x) -. x = y.

Observe that BF implies: (ii') -. (iv) ((iv) refers to 5.2).

The suitable modification of the construction to obtain also a model of (ò') is the
following: Let us call a pair of sets < {t I (t, a) e w+}, {t I (t, a) e w-}) a type realized
by a in w. Instead of "completing" the types of cp"'s in any step of the construction
consider the set X of types ({tIWFKwOcp(t)},{tlwFKwO"f(t)}), cpef#:""l, and
construct the next world w' in such a way, that each nonempty (i.e. different from
(O, O») type from X is realized in w' by exactly ODe element. This implies that (ii') is
trne in all Kw 's. Precise formulation of this construction needs some more definitions
and technical ~esults and we omit it.

Let us finish this Chapter with remark that a construction similar to ours (using
fixed-point of some sequence of structures) was used already by FEFERMAN.

§ 9. Related systems

In the literature we found a few systems closely connected to MST. We shall discuss

them in this Chapter.

9.1. The systems which we found are those of FITCH [5], [6], of GILMORE [8] and
of FEFERMAN [I], [2], [3]. Since the systems of FITCH and of GILMORE are covered by
those of FEFERMAN (see [2], p. 78 and p. 86) we shall be concerned only with the lat~
ter one.

9.2. FEFERMAN'S systems differ in formalization in all three references and it is not
easy to compare them. We think that the system of [3] reflects sufficiently the ideas
of both [1] and [2]. Also its formalization is nearest to that of MST. Thus we sbal!
describe FEFERMAN'S ideas and compare them with MST using [3].
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(1) Ip ~ DIp, Ip atomic,

(ii) lip ~ D,Ip, Ip atomic of 2(~),

(iii) tijy == O,t17Y.

For any theory Z we write Z 1-* Ip iff for some 'Pl, . . ., 'Pk E Z, ('Pl & . . . & 'Pk) ~ Ip

is derivable in the described logic.

The final extension S a• S has the logic described above (with derivability 1-*) and
the axioms of S ~ together with

(D) I (trJY & tijy) (disjointness)

and

(O) For each formula Ip of 2(17, ij, ~) with free variables among t, a, (i ~ n):

Val, . . o, a" 3y Vb((trJy == DIp(t» & (tijy == O I (f!(t))) (comnrehenRion \
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Lemma.

(i) S*I-*({JiffTII-2({J, (ii)
where 1-2 denotes derivability in TI, T2 (soo 3.5),

MST* f- Ip itt T2f-2 Ip,

(AI) t1]Y 4 Ot1]Y,

(A2) tøjy -+ Otøjy,
(A3) tijy = O-,t1]Y.

The axioms of S* are (D) and (O) (restricted to Y*). The derivability from S* means
the same as in S, namely S* 1-* rp iff for some "1'1' . . ., "I'k E S* (i.e. (D) + some in-
stances of (O) the formula ("1'1 & . . . & "I'k) -+ rp is derivable (in the usual sense) in
the above described logic of S* alone. We remark again that the I-*-consequences of
S* are not closed under N -role.

9.6. We denote by MST* the theory MST + S4 + BF. Using an idea of 3.5 we are
able to construct two theories TI and T2 with classical derivability concept and with
the same theorems as S* and MST*. The direct comparing of TI, T2 will be possible
and thus, in fact, the comparing of S*, MST* too.

Th(}ory TI: The language of TI is Y* and the axioms are

(i) T + O(T + S4 + BF),
(ii) ( O(LP),

(iii) O(AI), D(A2), O(A3),

(iv) (D), (O).

Theory T2: The language of T2 is the modal set-theoretical language and the
aXloms are

(i) T + O(T + S4 + BF),

(ii) O(LP),

(iii) O (MOA).

The derivability concept of both TI and T2 is the same, the classical (see 3.5). We
state a result analogical to 3.5 without any proof:
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9.7. Using O(Al) and 0(A3) we can reformulate (C) as foilows:

(C') 31/'v't((Dt1]1/ == O•P(t)) & (O 1 t1]1/ == Ol•P(t))).

Thus (C') is identical with (MCA). This suggests two things:

a) try to interpret T2 in TI by interpreting E as 1],

b) try to interpret TI in T2 by interpreting x1]1/ as Ox E 1/ and xfj1/ as Ox 4: 1/.

However, both fails.

9.8. a) fails because there is no chance to prove O(C') in TI. A question surely arises
whether O(MCA) is necessary for developing T2, or equivalently, whether the logic
of S* is not sufficient for MST. The question is artificial since the logic of MST arose
from the idea of modification of (CA). Rowever, the answer is, as we shail see, no;
the lack of N -role for MST would have lead to essential difficulties.

9.9. b) looks more satisfactorily: the described interpretation is correct for whole TI
except 0(A3). This suggests the third possibility:

c) try to interpret 1] as E and to use 0(A3) as "definition" of fj (i.e., to interpret xfj1/

as Ox 4: 1/).

This c) leads to a correct interpretation of TI without O (AI) in T 2 .
9.8 and 9.9 show that there is not a simple way to interpret one of TI, T2 in

another.

9.10. We finish this Chapter by sketching how ustlal mathematical objects are intro-
duced into S (for details see [3]). The natural numbers are not finite ordinals but term~
O, O', O", . . . A function from a to b is not some subset of the cartesian product a x b,
but it is a function in the sense of ~. Also a x b itself is not the set of ustlal ordered
pairs but of terms <u, v) such that u1]a and V1Jb. It is an open question whether natural
numbers form an object N. However, this is easily shown to be consistent with S. li
we try to define the natural numbers as finite ordinals then S wiil not prove induc-
tion in the whole generality-this is caused by the lack. of N-rule (soo [2], p. 107). This
answers the question of 9.~.
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