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§ 0. Introduction

We will propose a set theory MST formalized in modal logic and we will try to show
that its consequences are relatively powerful in relation to its simple axiomatization.
The result was announced in [10].

The naive comprehension scheme

(CA) 3FyVitey = o)),

where ¢ is any property, is a very elegant principle. This principle, or better its sub-
stance, describes the naive set-universe. Unfortunately, in the most customary for-
malization, where any formula of the set-theoretical language is accepted as a property,
(CA) is inconsistent. As it is well-known the contradiction can be proved e.g. by fol-
lowing RussELL’s argument. Thus various approaches try to formulate a set-theory
which would be mathematically powerful and consistent. They replace (CA) by a list
of weaker axioms guaranteeing the existence of some sets (e.g. ZF) or restrict it (e.g.
NF). But, at the same time, they lose important features of (CA): homogeneity, sim-
plicity and elegance or a certain intuitive picture.

In ZF, for example, we have axioms which suggest how to make new sets from
already formed sets, and we have enough of them that the described set-universe is
sufficiently complex to be mathematically rich. An underlying universal idea of the
ZF-axioms is the so called “size doctrine”. This principle together with the axiom of
foundation gives us a sufficiently clear intuitive picture about the ZF-universe. But
the homogeneity of assumptions is lost and nothing guides us in choosing of new axioms
from a variety of mutually incomparable possibilities.

A different approach is formalized by Quing’s NF. Here (CA) is applied only to
the ‘‘stratified”” formulas. The source of this modification lies in the type theory.
It is syntactical rather than semantical; thus there is not a clear picture about the
described universe. Serious difficulties arise when one tries to develop mathematics
in NF. The theory must be supported by additional axioms to be sufficiently strong
(see [7]).

We hope that the features of (CA) justify the program of studying modifications
of (CA).

We will describe a set theory MST which is a formalization of our modification of
(CA) using a modal logic. We also show that MST covers some nontrivial mathematies,
in particular it contains PEANO’s arithmetic. A partial consistency result is proved in
Chapter 8. Some new partial consistency results together with some results concern-
ing mathematics in MST were obtained after finishing this paper. They are partly
reported in [11] and partly in preparation.

1) We thank P. PupLAK for many discussions and valuable remarks. His assistance was essential
to. our work.
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In the literature we found a few systems closely connected to MST (see [1], [2], [3],
[5], [6] and [8]). These connections will be discussed in detail in Chapter 8. FEFERMAN’s
paper [4] contains a general discussion of various approaches to some foundational
problems. It also offers-a wide relevant bibliography.

§ 1. The formal theory MST

We begin this Chapter with a motivation in terms of knowledge. However, it should
be understand only like a heuristic. We think that a serious epistemic interpretation
of the following theory is possible but is not needed for the present paper. Our goal
here is to propose a set-theory based on some modal reformulation of (CA) to which
we were lead by the following considerations.

Let us imagine the following situation: There exists a set universe which is the
object of our consideration. The only atomic predicates are “‘to be equal” and “to
be an element of”’. Each atomic sentence and hence each sentence is true or false in
the set-universe.- Our wish is to recognize the truth, i.e. the sentences true in the set-
universe. So some true sentences are known to us. Still others could become known,
i.e. are in principle knowable,

For formalizing the modal operator “to be knowable” we extend the usual classical
set-theoretical language by adopting a new unary logical connective ] which should
be an epistemic modality. Thus our language (the modal set-theoretical language) is
the modal predicate calculus with identity (see [9]) with a binary predicate € as the
only non-logical symbol.

1.1. When we decide to try to understand the set-universe we can already take the
fact of looking for the knowledge as a part of the knowledge. Put otherwise, we may
accept assumptions which manifest the principles and the correctness of our knowl-
edge. Hence the following two axiom schemes and one deduction rule should be ac-
cepted:

(i) Og-¢ 1
(ii) O(g — v) » (O - Ov) J

Py

(iii) —— Necessitation rule (N-rule).
(iid) O ( )

T-axioms,

This (it will be specified later) extension of the classical predicate calculus is called T
in [9].

1.2. The main idea of MST is that (CA) does not refer to the whole set-universe but
only to its knownable part, to our ‘“‘universe of discourse”. That means: it seems to
us from the point of view of our knowledge that the set-universe behaves as if (CA)

were sound.
In the chosen language this modification of (CA) (Modal (CA) or shortly (MCA))
can be described as follows:

(MCA) For any formula ¢(¢,a,, ..., a,) of the modal set-theoretical language with
free variables among ¢, a,, . . ., @, the universal closure of the following for-
mula holds: ‘

WV(Oet.ay, ..., a) =tey) & (O@l ar,...,a)=t¢y).
The a,’s are called parameters and will be omitted further. '

®

or

for
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1.3. So far we have not accepted any concrete “‘theory of knowledge”, any non-
logical epistemic assumptions. The second principle of MST is of this kind. As usual
O ¢ abbreviates —1I[]J—1¢. The principle is

(LP) Cr=y->Ox=y.
There are other (in T) equivalent formulations of (LP;
() Oc=yvOxr+y
or
(1) @=y->Dr=y&@E+y->0z+y):
We leave aside the question whether (LP) has logical or empirical character.

(LP) is a kind of a finitistic assumption. There are also close connections to
LEmsNiz's principle “No two monads are exactly alike’ from his theory of monads
(see {13]). This may be formalized as Oz = y -« = y (where Oz = y simulates
indistinguishability) or equivalently # % y — [0« % y. Thus LErsniz’s principle coin-
cides with the second conjunct of (ii). Surely, the first is a trivial consequence of
the substitution properties of identity. Hence the name (LP) seems to be justified
for this axiom.

We remark that (LP) is also discussed in [9]; the first conjunct of (ii) is called (LI)
and the second (LNI) there.

1.4. Let us summarize the definitions. The language of the formal theory MST, the
modal set-theoretical language, contains the classical propositional connectives 1, &,
v, —, =, the quantifiers 3, ¥, and the new unary (modal) connective [J. Variables
X, Yy s Xgs Xys ..., b, ... ranges over individuals. There are only two binary
predicates: = (identity) and € (membership). Formulas of the modal set-theore-
tical language are all formulas built up in this language. In particular, formulas
may contain free variables. Axioms and rules of the modal predicate calculus
T are:

(i) the substitution-instances of all classical propositional .tautologies for all
formulas,

(ii) the substitution-instances of the schemes (and their variants replacing .z, y by
other variables)

a) @ = Vzg, provided z is not free in ¢,

b)  Vap(@) - ¢(y), :
provided x does not occur in ¢ in the scope of a quantifier 3y or Vy,

c) Va(p — p) = (Vzp — Yap), for all formulas ¢, y,
(iti) the substitution-instances of the schemes
g~ and Olp —» )= (Op - Oy
the axioms (and their variants using other variables)
r=2, @=y)=(y=2), @=ydy=z »z=

o =2, & Yo = Y1) = (X0 €Yo = ¥, €Y,
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(v) the inference rules

G g — 7}‘

modus ponens
"

i . : . .
— (and its variants using other variables than z),

generalization
'?J‘f/

necessitation (N-rule) — .
Ll

for all formulas @, y.
The only non-logical assumptions of MST are (MCA) and (LP).

Let us explicitly stress that the N-rule is generally applicable (in contrast to theories
of [2] and {3]). In particular, all instances of (MCA) are “knowable”. This gives to
the whole system features of a ““logical calculus”.

Instead of writing MST | ¢ we will shortly write Fg. In the next Chapters various
results will be proved in extended underlying logical systems over T. These
extensions will be explicitly stressed by A | ¢, which denotes the deducibility of ¢
in MST + A.

We will use freely various results about modal logics which are proved in [9]. When
we talk about equivalent formulas we always suppose that this equivalence can be
established in (possibly extended) logic T.

§ 2. Russell’s paradox

2.1. Let us discuss Russery’s paradox formally. Applying (MCA) to RussgLr’s for-
mula ¢ ¢ ¢t we obtain :

FyVi(Ot ¢t = Dtey) & (Otet = Ot ¢ y))
and hence

Fy(Oyey = Oy éy)-
Now surely

HDyey > yey) & Oy éy > yéy)
and the only escape from the contradiction gives

Fy(Oyey=Oyéy) & Cyey & Oy ¢y).
Fortunately, this situation does not lead to inconsistency because [y & yvOyéyis
not a theorem of T.
We even profit by this trivial but important corollary:

2.2. Corollary. FIy(Cyey & Oy éy).

2.3. In the Russian translation of [7] EsENIN-VoLriN derived RUSSELL’S paradox
in intuitionistic logic. If we try his derivation for MST it fails, because a scheme anal-
ogical to (p > T1¢) - 1@, on which it is based, i.e. ((Jp - [1—1¢) - O, is not
provable in T. (It is, in fact, equivalent to (g v [J1¢.) ‘

(i)
(ii)
(iii)
(iv)
(v)
S4
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Another dangerous modification of RUSSELL’s paradox is that of CurrY (see [7]).
It goes in this way: Let g be any sentence. Take the set y={t|tet - p}. In par
ticular for y

yey=(yey—~v)
and y follows. The reader could calculate himself that this argument also fails for MST,

§ 3. A possible strengthening of the underlying logic

There is surely a wide spectrum of modal logics which may come to our attention
if we consider possible extensions of the underlying logic of MST. Consult, for example,
the book [9].

Let us list a few of the most obvious axiom schemes:
@) 84: O - 0OOe, A
(i) 86: SO¢ - O,

i) B: O0¢ - ¢,
(iv) BF: VazOe(x) > OVae(),
(v) O3ze(x) » Jz(e(x).

S4 and S5 are known as LEwIs’s systems. Axiom B is called BROUWER’s axiom be-
cause of its relations to intuitionism (see [9], p- 58). BF is known as BaRcan’s formula.
The axiom (v) is also discussed in [9], p. 144.

The converses of all axioms except B are easily provable in T.

The problem of evidence for these assumptions is difficult. Surely, a necessary
mathematical condition for adjoining any of them to MST is the consistency of the
extended theory. Now we prove some limitations in this direction.

3.1. Lemma. MST + S5 is inconsistent.

Proof. First observe that, since T + S5+ T + S4, T + S5+ O¢ - OO¢. Now
let us apply (MCA) to the Russell-like formula [ ¢ ¢:

Fly Vi[OOt ¢t = Dtey) & (O0tet = Ot ¢ y))
and thus
(A) Fy(OOy éy = Oyey) & (OCyey = Oy éy).

Since ¢¢ — [O[¢ is equivalent to O0¢ v O 0O¢, we have (by the above ob-
servation) .

(B) S5FVy(OOy ¢y & OOy ey).

Trivially we also have
YOOy ¢y =Oyey) —» OOy ¢y

and hence, from (A), (B), 85 F 3900y e y & Cly ¢ y) and so
S6F3y(MOy¢y& Oy éy).

We are done.

By [8] T+ 84 + B =T + S5 and thus the former system is inconsistent too.
30  Ztschr. f. math. Logik
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3.2. The assumption (v) looks like a kind of a constructivistic principle. We feel it
is inadequate and, in fact,

Lemma. MST + (v) s inconsistent.

Proof. We will use only the second conjunct of the statement (A) derived in the
previous proof. Hence we begin with ‘

Fy(O 0y ¢y =0y ¢y).

It follows, using also N-rule,

FO3y(O Oy éy = Oy éy) & 0y ¢y)-
Now

(M) FWOOOyéy=0yéy) &S00y ¢y & 0y ¢y)
and thus
(M +FIyOy¢y& 0y ¢y)
We are done.
Observe that we proved, in fact; slightly more: both the schemes
OviOtey = Oe@)) and Iy OVIOE ¢y = Oe(l)
are inconsistent (use @(t) = 1[0t €t) to get the first one).
We mention an interesting remark due to P. PUDLAK:
Remark. (LP) + (v) + 3z, y(x %+ y) F O¢ —» (g and thus this system trivializes
the operator [].
Proof. Abbreviate the above system by 8. Certainly
Stz yle=y-> )& =+ y - Mgl
thus by N-rule and (v)

Stz y(Ox =y > 0¢) & (O + y - O719))-
Using (LP) we obtain S |- Az, y((x = y » (o) & (# £ y > O 1¢)) and so

St og - Op.

Using this remark and the ordinary RUSSELL’s argument we get another proof of
the inconsistency of MST + (v).

Let us now discuss some advantages of the other mentioned axioms.

3.3. Axiom S4 seems sound with 1.1 and we do not see a contradiction in adopt-
ing it. It has the following interesting consequence: If we define a string of —, ]
before a formula to be “a modality ”’, then in T we have an infinite number of distinct
modalities, e.g. (I, OO, CIOOe; . - ., but in S4 there are only a finite number of
nonequivalent modalities. \

3.4. We do not see that B is sound with 1.1 but we also do not see that it is contra-
dictory with MST. Adopting B has the following technical advantage: Imagine that
we want to construct (by (MCA)) a set y of #’s which satisfy ¢. Instead of applying
(MCA) to @ apply it to [le. Hence we obtain:

Fay Vi((Ot e y = OO@(E) & (Ot ¢y = O Oe))-

The
(we
in t
T 4
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Since trivially (]t ¢ y — ¢ ¢ y we conclude, by contraposition, from the second conjunct

FyVH(Otey = ODlp®) & (Ot ¢y = O 0pt) & ey - oTe()
id hence

BF3yvi(Dtey = O0¢(t) & (Dt ¢y = O 0e) & (e y — ¢(t))).

Thus in the preseﬁce of B each “class” {t| ¢(t)} can be approximated in the sense
of the formula above by a set.

3.5. Barcan’s formula may be seen as saying that we know the range of the set-
universe, or better that the accessible part of the set-universe reflects all possible
properties of individuals. This is suggested by an equivalent formulation of BF':

Qdxp(r) - IJxde(x).
The system T + S4 + BF has the following important metamathematical consequence
(we learned an inessentially weaker form of it in [14]): Denote by I, the derivability
in the logic T + 84 + BF and by |, the derivability from {[J¢|¢ is an axiom of
T + 84 + BF} in the logic T + S4 + BF without the use of N-rule. Then we have:
Lemma. ¢;,..., ¢ty iff Oprse .., Ogc ks p.
Proof. Since (by T) [jcp, Fo@ (6 =1,...,k) it is sufficient to show that the set

of F,-consequences of the Og,’s is closed under [}, ie. if Oess ..., O Fi
then ey, ..., O k> O« too. This is done by induction on the lenght of the proof
of . ‘

3.6. Let us finish this Chapter with a short remark. The character of the problems
connected with reasonable extensions of the underlying logic of MST is also (and,
maybe, mainly) philosophical. The paragraph 1.1 is our only mentioned criterion for
these questions. The present short experience with MST indicates that S4 + BF is
the “right” extension of MST. A number of important results of the next Chapters
are proved under these assumptions. A successful attack on these problems would
probably require developing a metatheory for MST, especially some model theory.
Because, for the time being, we have only partial results concerning the consistency
of MST, there is much that has to be done.

§ 4. [J-decidable formulas and decidable sets

In this Chapter we begin to develop MST.
4.1. Metadefinition. We call a formuls @ [1-decidable iff [Je v (319 holds.
We will frequently use other equivalent conditions (cf. 1.4):

@ . Oe-0O7e,

(ii) O - Oy,

(iii) (p > 0O¢) & (g > Og).

Note that if @ is decidable (i.e. Fg or F—1¢) then it is also [J-decidable but the con-
verse is not generally true.

4.2. We abbreviate the formula [Jgv[]—-¢ by D(p). We begin with a simple
result. '

30%
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Lemma. H®(p) & Eb(tp)) > [D(e) & Dip & )] and
BF | D(¢) - [D(Vap) & D(xe)] @)

The axiom (LP) implies the following
4.3. Corollaty. Let ¢ be a formula built up without use of [1,V, 3, €. Then FD(g)
4.4. Definition. We call a set y decidable (D(y) in symbols) iff
Vi{Oteyv Ot ¢y)
holds.

The rest of this Chapter is devoted to provnlg tha,t the domain of decidable sets is
rich and behaves rea,sonably -

4.5, Theorem. +D(p) - Iy VE({(t e y = (1)) & D(y)).
Proof. We have
FD(g) — VH(g(t) = () & (Ngl) = O19@) o

and using (MCA) we are done.

4.6, Corollary.
(1) F3y Vi ¢ y),
(ii) Fy Vit e y),
(iii) Fyvitey={t=a,v...viI=a)),
(iv) FlyVitey =t +a, & ... &t £ a)).
Moreover D(y) in each case.

Proof. Consider the provably [J-decidable (see 4.3) formulas ¢ ¢, & = ¢,
t=a,v...vit=ag,andt+a, &... &t + q,.

4.7. Theorem.
(i) F(D(a) & D(b)) - yVi(tey = (tea &tebd)) & D(y)),
(ii) F(D(a) & D)) —» yVt(tey = (teaviebd)) & D(y)),
(i)  +D(@) - IyVi(tey =t ¢a) & D)),
(iv) FD(@) - Iy Vi(tey = (tea vt = c)) & D(y)).

Proof. Observe that decidability of a implies the []-decidability of ¢ € a. Using 45
we are done.

Note that, already now, we can conclude that MST interprets some nontrivial mathe-
matics: From 4.6 and 4.7 it follows that MST interprets a weak fragment of set theory
based on axioms

) Jy Vit ¢ y),
(i) yViley = (texvi =z)).

It is sufficient to consider the domain of decidable sets. On the other side it is
known (see [12]) that this theory globally interprets arithmetic with bounded in-
duction 14,..
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4.8. Theorem.
(i) BF I [D(a) & Vb(bea — D())] - 3cVi(tec = Ibbea & ted)),
(ii) BF I D(a) —» 3cVi(D(t) = (tec =t S a)),
where t S a abbreviates Vs(sel — s€a),
(iii) BF | (D(p(x, 1)) & D(a)) — IeVitec = Jx(r e a & p(x, 1))
Moreover, ¢ is decidable in (i) and (iii).
Proof. (i) Write y for D(a) & VYb(b € a — .D(b)) and ¢(t) for (b € a & ¢ € b). Observe
by = () = Oglt), '
Fyp > (Tgp(t) = VB(D(B) » (b¢avigd))

and

FD(@) & D) — (bé¢avit¢d) =(3bé¢av [t é¢d)
Thus

Fp = (Dp(t) = Ybbea — ([(Jb¢av Ot ¢ b))
and so

Fp - "p@t) = VO(Obéav Ot éd)
This gives BF I y —» —1¢(t) = O01¢(t) and by 4.5 we are done.
(ii) It is enough to calculate: BF F (D(z) & D(a)) - ©(x < a) by which we are
done.
(iii) Again it is sufficient to prove that the formula Jz(x € a & @(z, t)) is []-decid-
able. But this is immediate from the assumptions.

4.9. We write Suc(x, y) as an abbreviation for Vi(t ey = (t e x v = x)). Concern-
ing axioms of infinity we observe, that the universal set v (which exists) satisfies
(x € v & Suc(x, y)) - y € v. However, more plausible versions of axiom of infinity will
be proved in the next Chapters.

In this Chapter we proved the existence of union (|Je), intersection (a N b), etc. on
some appropriate domain. Thus it might be easier to write e.g. g(z U {z}) instead of
Jy(Suc(z, y) & p(y)), i.e. to introduce definable terms. Unfortunately, in view of result
3.2, this is not generally possible and one must be very carefull when using terms in
arguments.

This also shows that extensionality loses some of its importance in MST.

§ b. Extensionality

MST implies some restrictions to introducing definable terms (see 3.2 and 4.9).
Hence extensionality loses one of its usual application.

Many concepts and results using extensionality can be interpreted without it (see
also [3] and [4]).

We did not adopt it and, in fact, MST disproves it.
b.1. Theorem. Fiz, y(Vitex = tew) &x = n
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Proof. Define the formula ¢(f) with parameters a, b, ¢ as follows:

ey =(t=a&cec)v(i=b&cde).

Clearly Fa + b — (p(a) = cec) & (p(b) = ¢ ¢c), so by N-rule and (LP)

(A)  Fa+b - (Ople) = Coeo) & (Og®) = De¢o).

Also Fo(t) > (¢t = a vt = b), and again by N-rule and (LP)

(B) FO(t) > t=avit=0>).

Now, by (MCA)
FlyVi((Oe®t) = Otey) & (Oe@) = t¢y) & ey — So))

(the last conjunct follows from the second one). By (B) we have ‘
Fy Ve(p(t) = Dt ey) & (O-pt) = Ot éy) & (tey > E =avi =b)).

Thus “this y” is an at most two-element set and so, by 4. 6 (iif) and extensionality,
it is decidable. Hence we have

ext Iy Vi(Oe(t) = tey) & (O¢t) =t¢y),
from which follows
ext F Oe() v Oe(#).
This, together with (A), gives
extla+b— (Ocecv[Icéc).
Since I-3a, b(a # b) (e.g. the empty set and the universal set are different), we have
extFdececvcée. |
This contradicts 2.1.

Let us remark that in this proof we applied (MCA) only to nonmodal formulas, i.e.
those without [ (see § 8).

5.2. Various other modifications of extensionality may be considered. For example:
(i) Vii(Otex=tey) >z =y,
@)  Vi(Oiex=[tey) & (Ot¢z=0i¢y) >z =y,
(iid) Ovitex=tey) sz =y
(this formulation was suggested by P. PupL4k),
(iv) Vitex =bey) & Dx)& Dy) >z =y.
It is simple to observe that (i) — (i) — (iii), and that BF implies (iii) — {iv).

In § 8 we sketch a proof of partial consistency result concerning a slight variant of
(ii), (iii) and (iv).

Concerning (i) we have the following result:
Lemma. MST disproves (i).
Proof. By (MCA)

FyVi((Otey=0Orer) & (Otd¢y = Orér).

€.V

fror
the

is

(1)
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If we choose for the parameter r RUssELL’s set from § 2, we obtain
(A) FlyVi(Ctey & 70Ot ¢ y).
Hence if we choose for 2 and y from (i) a decidable empty set (see 4.6 (i)) and “the y
from (A)”, respectively, we conclude
(i) Iy Vi(ote y & Oty & Diy)).
This is a contradiction.

Although some of the above modifications of extensionality are interesting (and
useful) we shall not assume extensionality at all.

§ 6. Small sets

Imagine that we are looking on the set-universum from outside of it. The result
4.6 (iii) implies that for all finite collections of sets from the set-universe (i.e. finite
from outside of the set-universe) there exists a decidable set in the set-universe with
the same extension (i.e. with the same members). Hence the following should char-
acterize ‘‘finite sets’:

(Vy = 2) D(y).
Unfortunately, the proof of 5.1 implies that there cannot be a set z satlsfymg the
formula above and having more than one element.

However, this suggests to characterize finite sets as those whose all subcollections
(e.g. those represented by some formula) are “simple’ in the sense of []. Since (MCA)
is our principle which enables us to represent (in a.particular way) a collection of sets
defined by some formula by a set, we are lead to the following definition which should
substitute a notion of finiteness:

6.1. Definition. x is small (S(x) in symbols) iff

(i) VyIe(D(z) & Vitez = tex & [Jtey)))
and
(ii) D(x)

We require small sets to be decidable since decidable sets are easily handled. We do
not consider this definition as a definitive approximation of “finiteness” in MST; the
notion of ‘“‘smallness” is introduced mostly for the purposes of § 7.

6.2. Lemma. For any formula ¢(t) we have
FS(a) - 3bVHD((D) & (teb = (Oe(t) & tea))).
Proof. By (MCA), F3c Vi([e(f) = [t € ¢} and by smallness of a we are done.
6.3. Lemma.
(1) kb < a & S(a) & D(b) — S(b),

(i) FS(a) & 8(B) —» 3c(S(c) & Vi(tec = (tea vieb)),

(iii) FS(a) & S(b) — J¢(8(c) & Vi(tec = (tea & teb))),
(iv) F8(@) —» 3c(S(c) & Vitec = (teavi = d))).
Proof. Easily by 4.7.
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§ 7. Arithmetic
In this Chapter we develop PEANO’s arithmetic PA in MST augmented by S4 and BF.

7.1. We begin with the familiar von NEuMANN’s definition: z is an ordinal number
(On(z) in symbols) iff

(i) =z is transitive
and
(ii)  is strictly well-ordered by e.
For ordinal numbers we will also use the letters «, B, ...
7.2. “Natural” candidates for natural numbers are perhaps small ordinal numbers.

Since it is not evident why there could not be a limit small ordinal number we shall
use this definition: « is a natural number (N(x) in symbols) iff

(i) On(x),

(i) S(x),

(@) VA(Bex— S(B), | |
(iv) o is strictly well-ordered by e-1. . DRV
(x e y is obviously defined by y € x). S

7.3. Lemma.
(i) Any decidable empty set s a natural number.

i) For any natural number x there exists a natural number 8 which is its successor
Y
(see 4.9).

(iil)) Any element of a natural number is a natural number.

(iv) If o € B are natural numbers, then there exists a natural number y which is a suc-
cessor of o and satisfies y € or y = f.

Precise formulations are obvious. Remark that without extensionality e.g. succes-
sors are not uniquely given.

Proof. (i) is trivial, (ii) use 6.3 (iv), (iii) use (iii) of 7.2. For (iv) choose ¥ to be the
minimal element of “f\ (x U {«})” or the 8 itself.

'7.4. Metadefinition. A formula o(t) is called a cuf in N iff
(i) @(t) - N(#),
(ii) “« decidable empty” — @(x),
(i) 9(x) & Suc(x, ) & N(B) - ¢(B).
A cut @(t) is called nontrivial if, moreover, the following holds:

(iv) BB & 19())-

Remark that any cut ¢(f) in N satisfies (for  a natural number):

(v) (Vo € ) plox) — @(B)

(any nonempty f has an maximal element whose successor is g itself).
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7.6. Lemma. No formula [Jo(t) is a nontrivial cut in N.

Proof. We shall argue informally. Suppose that [Jeg(t) is a nontrivial cut in N.
So there exists a natural number & which does not satisfy [Jg. Let us fix any such a
number «. Since empty natural numbers satisfy [Jg, & is not empty. By 6.2 there
exists b € «, such that Vi(te b = (t € x & (Je(t))). This b is not empty (since min «
satisfies [Jg) and hence it has a maximal element, say, §. By 7.3 (iv) there are two
possibilities: « is a successor of 8 or there exists y € x which is a successor of §. In
both cases we immediately come into contradiction with the choice of x and f.

7.6. Lemma. S4 + BF F [JN(t) = N(t).

Proof. In a view of 7.5 it is enough to prove that [IN(t) is a cut in N. Clear]y
FOIN(E) — N(t). Also

FVz(“x decidable empty” — Nlx)),
hence, by N-rule,
Fvz([J “z decidable empty” — IN(x)).
Since S4 + BF | “x decidable empty” — [] “z decidable empty”, we have
S4 + BF | Vx(‘“‘z decidable empty” — [IN(z)).
It remains to prove
CI(6) & Su, ) & N(B) » VD).
Clea.rly FN(x) & Suc(x, B) & D(B) — N(B), hence
FON(%) & OSuc(x, f) & C1D(B) - ON ().
Since FN(x) — D(x) and
S4 + BF b D(x) & D(B) - ([OD(B) & (Suc(x, ) — OSuc(x, ),
we may conclude
S4 + BF | [(ON(x) & Suc(x, B) & N(B) - OAN(B).
7.7. Theorem (Induction). 84 + BF implies that there are no nontrivial cuts in N.
Proof. Suppose that @(t) is a cut in N. Define the formula y(f) by
p(t) = N(t) & (Vs € ) (((Vr € 8) p(r)) — @(8)) — (Vs ) p(s).
w(t) says that induction holds up to &.
Now we claim:
S4 + BF I “[Jy(t) is a cut in N”.
For this we need:
M Ol - NO),
(ii) S4 4+ BF } “a decidable empty” - [Jp(x),
(iii) S4 + BF F Oylx) & Suc(x, B) & N(f) — Op(B).

(i) is trivial, (ii) is easy by 7.6 and (iii) is proved analogically to the proof of the cor-
responding part in 7.6. From the claim, using 7.5, it follows

S4 + BF F ¢(t) = N(#).

‘
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By 7.4'(v) we have
l Fpis a cut in N” — (p(t) > (Vset) ¢(s),
hence we obtained
S4 + BF I “pis acut in N” — Vig(t).

7.8. Now we sketch how to introduce the arithmetical structure on N. At first we
need to define =, and <,. We define, for example, “x <y f” iff “there exists a
small 1—1 mapping of « into §” and “a =5 87 iff “(« Sy &P Sy x)” (“mapping”
will be defined obviously). Now, using induction, one proves the usual properties of
=y and <. Having this we define in some reasonable way the addition. For ex-
ample: “a + f =y” iff “there exist small sequence s, ..., s such that s, = «,
8441 = 8, + 1 (7 + 1 abbreviates the successor of 7) and s; = 9" (“sequence” will
be defined as usual). So we easilly proveax + 0 =axand (x + ) + 1 =+ (B + 1).
Then, using induction, we prove that “+°° is defined for each two natural numbers.
The same can be done with multiplication and induction will guarantee the wanted
arithmetical properties of “+” and ‘“-”. Observe that induction also implies that
this can be done uniquely. Moreover, because 7.7 holds for all (not only ““arithmetical”)
formulas, the domain of natural numbers forms a standard model (i.e. without cuts)
of PA in MST. On the other side there remains the problem whether N defines a set.

Finally remark that by using the modification 5.2 (iv) of extensionality we may
considerably simplify a structure of N; in particular, x =yy and x Ly y are x = y
and (r = y v = € y), respectively.

§ 8. Partial consistency result

In this Chapter we will construct (in ZF) a Kripke-style model for considerable
fragment of MST.
8.1. Let M be a fixed infinite set.

Definition. A world over M (shortly world) is an ordered pair w = {w*, w~) such
that: :
(i) wr,w-c M* and (i) wtrnw =0.
The set of worlds is denoted by W. The set W is partially ordered by
w, Sw, iff wicw:&wicws. ,
8.2. For each world w e W we define a Kripke structure K, = {(|K,|, <., F,> by
i) |K={weW|w=sw},
i) =, = |Kw|2:
(iii) for w, € |K,,| and a,be M:
a) w;k,aeb iff <(a,b)ewi,
b) w,kE,a=05iff a =0,
¢) F, is in obviously way extended to all sentences.

For a formula ¢ with some free variables we define: w, k, ¢ iff w, F, @, where @ is
the universal closure of ¢. '
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8.3. Let #, be the set of all formulas of the modal set-theoretical language with
just one free variable ¢ and with parameters from M. Let *: & 1 = M be a fixed
mapping for which " = p* iff p == ... pory = I YR

D D
2n times 2n times

8.4. Now we define a sequence of worlds {w,} (x an ordinal) by
() wo =<9, 0),

(i W = Twd | 1> {if ~ a limit)
B<a - B<a "

(iii) Warr = Wi U {<a, p())*) | <a, p(t) ") ¢ w; & w, k,,_ Oela)},

Wiy = wi U (<8, 9(0)") | (@, p0)"> ¢ wt & w, E,,_ CI1p(a)}.
It is simple to realize that this definition is correct, i.e. it defines a sequence of worlds.
Also is immediate that the sequence {w,} is monotonous in W (x < B - wy < wy).

Thus, surely, there exists & such that W = Wy, (in fact (Vg = &) w, = w;). Let us
fix any such §&.

8.5. Definition. We call a formula ¢ monotonic iff
(Vw,, w; € W) (w; < w, - (w, F,, O — w, Fw, O9)).

Let m&# be the set of monotonic formulas, m#, = m&F N F L-

Lemma. Let ¢t) € m.?'l ., CEM and we |K|. Then
6)  wk,Ocep® - Opl),
(1) w Fy, Oc ¢ (T9)" = Ogle),
(iii) wk,, O719(c) - Oc e (M),
(v)  wk,, O71p) - Do ¢ g

Proof. We will write “«” instead of “iff” and “=" instead of “if ... then . L
(i) w F“'E Ocegp” < w, Fwé Oeep e, 9" ewf = (Ix < & w, Fw, O@(c). By mo-
notonicity of ¢, w, e Oele).
(il) wk,, Océ¢(Tg)" <> w; Fue Oc¢ (@) =<e, (@) dews= (Ax < &) w, Fyw, Og(c).
By monotonicity of ¢ w,, kwe Oe(c).
(1ii) 20 ‘:We O1g(c) <> w, Fwe O071@(c). Observe, that monotonicity of ¢ implies

3 < &) w, F, Oe(c). Thus (e, (m¢)"> ¢w; and, by definition, (e, (e e
€ wi,y = wf. So w; Fue (o€ (T190) 7.

(iv) Again‘(see (iii)) (3o < &) w, Ew, O@(c), hence (¢, "> ¢ w; and, by definition,
¢, 9"y e ws,y = w;. So w, I:We Océ¢ g™,
8.6. Lemma. m& contains all nonmodal formulas.
Proof. Easily from definition of satisfaction.
8.7. We define a theory U with following axioms:
(i) the logical axioms T + S4 + S5 + BF (and N-rule too),
() (LP),
(i) Iy OVi(Otey = Oe(t)) & (¢ ¢ y = O19(#))), for nonmodal .
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Our main consistency result is
Theorem. U is consistent.

‘Proof. We will prove that KWE is a model for U, i.e. for each we leEI w I=w5 U.
This is nontrivial only for the axioms of (iii). By 8.5 (using 8.8) we have
w Vi[Ot € @" —» Og(t) & (O 19#) - Ot e (M 19) "))
and
w ke VH((OE € (T 19)* = Op() & (OgE) » Ot ¢ 9)).

Thus, since ¢ = (T —1@)t,

we By OVH(Ot € 9" = Do) & Ot ¢ ¢ = O9()
and, using 84, we obtain
wky,, WOV(Otey = Qo) & (Ot ¢y = CIe(F).

8.8. Corollary. MST with instances of (MCA) only for nonmodal formulas is con-
sistent with S4 + BF + S5.

8.9. Let us eketch how to modify the construction above to obtain a model for the
theory from 8.8 together with some modification of extensionality. The variant of
5.2 (ii) we mentioned is the following :

(ii") Vi{((tex = tey) & (Ot ¢ = Of¢y) &A(texvd¢a) >z =y.
Observe that BF implies: (ii’) — (iv) ((iv) refers to 5.2).

The suitable modification of the construction to obtain also a model of (ii’) is the
following: Let us call a pair of sets et ayewt), {1 ¢ ade w~}) a type realized
by a in w. Instead of “completing” the types of ¢*’s in any step of the construction
consider the set X of types ({t|w Fr, Op@)}, {t | wkx, O9@)}), peF,, and
construct the next world »’ in such a way, that each nonempty (i.e. different from
{8, #3) type from X is realized in w’ by exactly one element. This implies that (ii’) is
true in all K,, ’s. Precise formulation of this construction needs some more definitions
and technical results and we omit it.

Let us finish this Chapter with remark that a construction similar to ours (using
fixed-point of some sequence of structures) was used already by FEFERMAN.

§ 9. Related systems

In the literature we found a few systems closely connected to MST. We shall discuss
them in this Chapter.

9.1. The systems which we found are those of Frrcm [5], [6], of GmLMoRrE [8] and
of FEFERMAN [1], [2], [3]. Since the systems of FrrcH and of GILMORE are covered by
those of FEFERMAN (see [2], P- 78 and p. 86) we shall be concerned only with the lat-
ter one.

9.2. FEFERMAN’s systems differ in formalization in all three references and it is not
easy to compare them. We think that the system of [3] reflects sufficiently the ideas
of both [1] and [2]. Also its formalization is nearest to that of MST. Thus we shall
describe FEFERMAN’s ideas and compare them with MST using [3].
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9.3. Let us begin with citing FEFERMAN ([3], pp. 88—90): “(i) There is nothing
currently on the horizon which gives hope of obtaining anything like the T rege-Russell
(pre-PM) or Church-Curry programs for a foundation of mathematics in a type-free
theory. These programs are first of all monistic (“everything is a class” or “everything
is a function”) and secondly attempt to extract all of mathematics from some few
relatively simple principles of a very general “‘logical” character.

(i) Instead these programs are more profitably reversed. We should start with a
part S of mathematics that is already accepted, or at least reasonably well-under-
stood — be it number theory, or analysis, or even stronger theories. S should then be
extended to a theory S8 which admits instances of self-application not avaible in S,
This should be done as a matter of convenience, thus the extension should bhe con-
servative.”

FEFERMAN is lead to selfapplicative notions also by his goal to find foundations for
category theory which would be unrestricted in the sense, that large categories, cate-
gories of categories, etc. would be naturally included.

9.4. FEFERMAN'S idea: Let S be any consistent theory in any logic including clas-
sical. The language & of S includes the operations 0 (zero), ’ (successor), {, > (pairing),
such that @ £ 0, 2’ =y - 2 = Y <, ) =<{a, by > u=a&v=b are theorems
of S. The first step is to extend % by adding a ternary predicate App(x, y, 2) with
the intended meaning “the operation x is defined at y with value 2. This is also ex-
pressed by @y =~ z and App is then denoted by =. The extended language is denoted
by #(=). The theory S is extended to S. in #() by adding some appropriate axioms
concerning 2. We shall omit them here because they are irrelevant for our discussion.
The next step is to extend ZL(=) by a pair of new binary predicates %, 7 and by a
new unary logical operator [. The extended language is denoted by #(n, 7, ). The
intended meaning of these new symbols is “for any property ¢ there exists y such
that tiy iff it can be verified (in some sense) that @(t), and tiy iff it can be verified
that —¢(f), and g iff it can be verified that @”. The logic is extended over that of
S by the modal system T + S4 + BF (+ N-rule) and by the axiom schemes

(1) ¢ = (g, ¢ atomic,
(it) 79 > O, ¢ atomic of L(x),
(iii) iy = Q" tnyy.

For any theory Z we write Z F* @ iff for some y,, .. SWEZ (p, &...&y) » @
is derivable in the described logic.

The final extension S of S has the logic described above (with derivability +*) and
the axioms of S_ together with ' :

(D) (tny & t7y) (disjointness)

and

(€) For each formula ¢ of £, 7, =) with free variables among ¢, @, (1 < n):
Ya,, ..., a,3y Vi(tyy = Oe®) & (thy = Oe) (comprehensinn).

Observe, that N-rule is not generally applicable in S, ie., S p* y does not imply
S .
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We have to remark that the original version of axiom (C) is stronger than this one,
because it also contains a “functional representation’ of ¥ in terms of =~ and a;’s.
We used this version because we are interested only in the (L1, m, 7)-part of the orig-
inal S. However, this is rather incorrect, since it is not clear why the original S of [3]
should be conservative (with respect to sentences without >~ ) over our version of S
(if we understand [3] correctly, then it is not).

9.5, The assumptions about S (which are needed for a ““functional part” of S). the
different languages and the different logics make it impossible to compare S with MST
directly. We propose to compare the following subtheory S* of §: The language %
of S8* consists of the predicates #, 7 and the logical operator []. The logical assump.
tions of S* are those of modal predicate caleulus + T + S4 + BF (+ N-rule) together
with (LP) and:

(Al) tny - Oiny,
(A2) 1ty - Otiy,
(A3) iy = I:I—ltny.

The axioms of S* are (D) and (C) (restricted to Z*). The derivability from S* means
the same as in §, namely S* |* ¢ iff for some Y150, P €5* (ie. (D) + some in-
stances of (C)) the formula (1 &...&y) > ¢ is derivable (in the usual sense) in
the above described logic of S* alone. We remark again that the H*-consequences of
S* are not closed under N-rule.

9.6. We denote by MST* the theory MST + 84 + BF. Using an idea of 3.5 we are
able to construct two theories T, and T, with classical derivability concept and with
the same theorems as S* and MST*. The direct comparing of T,, T, will be possible
and thus, in fact, the comparing of S*, MST* too.

Theory T,: The language of T, is #* and the axioms are
(i) T + 0T + 84 + BF),
@@  Op),
(iii) OI(AL), CI(A2), (J(A3),
(iv) (D), (C).

Theory T,: The language of T, is the modal set-theoretical language and the
axioms are ' :

(i) T + (T + S4 + BF),
(if) O(LP),
(iii) [)(MCA).

The derivability concept of both T, and T, is the same, the classical (see 3.5). We
state a result analogical to 3.5 without any proof:

Lemma.
(i) S*H* g iff T, F, g, (ii) MST* F ¢ iff T, , ¢,
where |, denotes derivability in T,, T, (see 3.5).
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9.7. Using [](Al) and [1(A3) we can reformulate (C) as follows:
(€") y Ve((Otgy = Qo) & (O tgy = O())-
Thus (C') is identical with (MCA). This suggests two things:
a) try to interpret T, in T, by interpreting € as 7,
b) try to interpret T, in T, by interpreting xny as [Jx € y and 7y as [z ¢y.
However, both fails. /

9.8. a) fails because there is no chance to prove [J(C’) in T, . A question surely arises
whether [J(MCA) is necessary for developing T,, or equivalently, whether the logic
of §* is not sufficient for MST. The question is artificial since the logic of MST arose
from the idea of modification of (CA). However, the answer is, as we shall see, no;
the lack of N-rule for-MST would have lead to essential difficulties.

9.9. b) looks more satisfactorily: the described interpretation is correct for whole T,
except [](A3). This suggests the third possibility:

¢) try to interpret % as € and to use [](A3) as “definition” of # (i.e., to interpret x7y
as [z ¢ y). '
This ¢) leads to a correct interpretation of T, without [J(Al) in T,.

9.8 and 9.9 show that there is not a simple way to interpret one of T;, T, in
another.

9.10. We finish this Chapter by sketching how usual mathematical objects are intro-
duced into 8 (for details see [3]). The natural numbers are not finite ordinals but terms
0,0’,0”, ... A function from a to b is not some subset of the cartesian product a x b,
but it is a function in the sense of =. Also @ x b itself is not the set of usual ordered
pairs but of terms (u, v) such that una and vnb. It is an open question whether natural
numbers form an object N. However, this is easily shown to be consistent with 8. 1f
we try to define the natural numbers as finite ordinals then 8 will not prove induc-
tion in the whole generality-this is caused by the lack of N-rule (see [2], p. 107). This
answers the question of 9.8.
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