Exercises for o-minimality Lectures I and II

MSRI Graduate Model Theory Workshop

Victoria Noquez

July 23, 2012

Real Closed Fields

Exercise 1

Let x and y be algebraically independent over \mathbb{R}.
(a) Show that $\mathbb{R}(x, y)$ is formally real and that we can find orders $<_{1}$ and $<_{2}$ of $\mathbb{R}(x, y)$ such that $x<_{1} y$ and $y<_{2} x$.
(b) Use (a) to show that the ordering $<$ is not quantifier-free definable in \mathbb{R} in the language of rings.

Solution:

(a) Suppose $0=\sum_{i=1}^{n}\left(\frac{f_{i}(x, y)}{g_{i}(x, y)}\right)^{2}$ where $f_{i}, g_{i} \in \mathbb{R}[x, y], g_{i} \neq 0$. So if we let $G_{i}(x, y)=$ $\prod_{1 \leq j \leq n, i \neq j} g_{i}(x, y)$, then $0=\sum_{i=1}^{n}\left(G_{i}(x, y) f_{i}(x, y)\right)^{2}$, contradicting that x, y are algebraically independent.
Note that $(x-y)$ is not a sum of squares in $\mathbb{R}(x, y)$, since we would get $x-y=$ $\sum_{i=1}^{n}\left(\frac{f_{i}(x, y)}{g_{i}(x, y)}\right)^{2}$ where $f_{i}, g_{i} \in \mathbb{R}[x, y], g_{i} \neq 0 . \quad$ So if $G_{i}(x, y)=\prod_{1 \leq j \leq n, i \neq j} g_{i}(x, y), 0=$ $\sum_{i=1}^{n} G_{i}^{2}(x, y) f_{i}^{2}(x, y)-(x-y) \prod_{i=1}^{n} g_{i}^{2}(x, y)$, contradicting that x, y are algebraically independent. Similarly, $(y-x)$ is not a sum of squares in $\mathbb{R}(x, y)$.

Proposition 1. If F is formally real and $a \in F,-a$ not a sum of squares in F, then there is an ordering of F where $a>0$.

Proof. Let $\sum F^{2}$ denote the sums of squares in F, and note that if $x \in \sum F^{2}$, then $x \geq 0$ in any ordering of F.
Also note that if $-a$ is not a sum of squares, $a \neq 0$.

If $\sqrt{a} \in F$, then $a \in F^{2} \subset \sum F^{2}$, so in any ordering, $a>0$.
We will show that $F(\sqrt{a})$ is formally real. Then, since in this field a is a square, any ordering will be such that $a>0$, so we get the desired ordering of F by restricting this ordering to F.
Suppose $-1=\sum\left(b_{i}+c_{i} \sqrt{a}\right)^{2}$. Then $0=\sum b_{i}^{2}+1+\sum c_{i}^{2} a+\sqrt{a} \sum 2 b_{i} c_{i}$. So since $1, \sqrt{a}$ are a basis of $F(\sqrt{a})$, we must have $\sum b_{i}^{2}+1+\sum c_{i}^{2} a=0$ and $\sum 2 b_{i} c_{i}=0$. In particular, $-a=\frac{\sum b_{i}^{2}+1}{\sum c_{i}^{2}}=\frac{\sum b_{i}^{2} \sum c_{i}^{2}}{\left(\sum c_{i}^{2}\right)^{2}}+\frac{\sum c_{i}^{2}}{\left(\sum c_{i}^{2}\right)^{2}}$ which is the sum of squares $\Rightarrow \Leftarrow$.
Thus, $F(\sqrt{a})$ is formally real, as required.

Hence, we get an ordering $<_{1}$ in which $y-x>_{1} 0$ so $x<_{1} y$ and an ordering $<_{2}$ in which $x-y>_{2} 0$, so $y<_{2} x$.
(b) Let ϕ be a quantifier free formula in the language of rings such that for all $a, b \in \mathbb{R}$, $a<b \Leftrightarrow \mathbb{R} \vDash \phi(a, b)$. So $(\mathbb{R},<) \vDash \forall a, b \phi(a, b) \leftrightarrow a<b$. Let \mathcal{M}_{i} be the real algebraic closure of $\left(\mathbb{R}(x, y),<_{i}\right)$ for $i=1,2$ (since $\left(\mathbb{R}(x, y),<_{i}\right)$ is formally real by part (a), and thus, has a real algebraic closure whose order extends $<_{i}$). Since $(\mathbb{R},<) \subset \mathcal{M}_{i}$, by model completeness of RCF, $(\mathbb{R},<) \preceq \mathcal{M}_{i}$. So $\mathcal{M}_{i} \vDash \forall a, b \phi(a, b) \leftrightarrow a<i b$. So $\mathcal{M}_{1} \vDash \phi(x, y)$ and $\mathcal{M}_{2} \vDash \neg \phi(x, y)$. Now consider \mathcal{M}_{1} and \mathcal{M}_{2} in the language of rings. $\mathbb{R}(x, y) \subset \mathcal{M}_{1}, \mathcal{M}_{2}$, so since ϕ is quantifier free and in the language of rings, $\mathbb{R}(x, y) \vDash \phi(x, y)$ and $\mathbb{R}(x, y) \vDash \neg \phi(x, y) . \Rightarrow \Leftarrow$
So $<$ is not quantifier free definable in \mathbb{R} in the language of rings.

Exercise 2

Let F be a real closed field. We say that a function $g: F^{n} \rightarrow F$ is algebraic if there is a nonzero polynomial $p\left(X_{1}, \ldots, X_{n}, Y\right)$ over F such that for all $a \in F^{n}, p(a, g(a))=0$.
(a) Use quantifier elimination to show that every semialgebraic function is algebraic.
(b) Show that if $f: \mathbb{R} \rightarrow \mathbb{R}$ is semialgebraic, then there are disjoint intervals I_{1}, \ldots, I_{m} and a finite set X such that $\mathbb{R}=I_{1} \cup \ldots \cup I_{n} \cup X$ and f is analytic on each I_{j}. (Hint: Use the Implicit Function Theorem for \mathbb{R}.)

Solution:

(a) Let $g: F^{n} \rightarrow F$ be semialgebraic. So $\{(\bar{x}, y) \mid g(\bar{x})=y\}=\left\{(\bar{x}, y) \mid \bigvee_{i=1}^{m} \bigwedge_{j=1}^{n} p_{i j}(\bar{x}, y)=\right.$ $\left.0 \wedge q_{i j}(\bar{x}, y)>0\right\}$ for some polynomials $p_{i j}, q_{i j} \in F[\bar{x}, y], 1 \leq i \leq m, 1 \leq j \leq n$. Suppose for some i that $p_{i j} \equiv 0$ for all $j=1 . . n$. Then $\left\{(\bar{x}, y) \mid \bigwedge_{j=1}^{n} q_{i j}(\bar{x}, y)>0\right\} \subset$ $\operatorname{graph}(g)$. If this is empty, we can remove this whole disjunct for an equivalent defining formula. Otherwise, let (\bar{x}, y) be such that $\bigwedge_{j=1}^{n} q_{i j}(\bar{x}, y)>0$. Then, since the $q_{i j}^{\prime} s$ are polynomials, they are continuous, so by choosing y^{\prime} sufficiently close to but $\neq y$, we get
$q_{i j}\left(\bar{x}, y^{\prime}\right)$ between 0 and $q_{i j}(\bar{x}, y)$, so $\bigwedge_{j=1}^{n} q_{i j}\left(\bar{x}, y^{\prime}\right)>0$. Thus, $(\bar{x}, y),\left(\bar{x}, y^{\prime}\right) \in \operatorname{graph}(g)$, contradicting that g is a function. So, let $p(\bar{x}, y)=\prod_{i=1}^{m} \sum_{j=1}^{n}\left(p_{i j}(\bar{x}, y)\right)^{2}$. Then for all \bar{x}, $p(\bar{x}, g(\bar{x}))=0$, since for some $i, \bigwedge_{j=1}^{n} p_{i j}(\bar{x}, g(\bar{x}))=0$, so $\sum_{j=1}^{n}\left(p_{i j}(\bar{x}, g(\bar{x}))\right)^{2}=0$.
(b) By part (a), there is a polynomial p such that $p(x, f(x))=0$ for all $x \cdot p=p_{1} \cdot \ldots \cdot p_{m}$ where p_{1}, \ldots, p_{m} are irreducible polynomials and wlog, are all distinct (since if we have a repeated root, if we divide by it, the result will still witness that f is algebraic). Thus, since they are irreducible, $p_{i} \nmid p_{j}$ for $1 \leq i \neq j \leq m$.
Let $X=\left\{a \in \mathbb{R} \left\lvert\, \frac{\partial p}{\partial y}(a, f(a))=0\right.\right\}$. We will show that X is finite.
Note, if $a \in X$, then $(a, f(a)) \in p \cap \frac{\partial p}{\partial y}$, so it will be enough to show that this is finite. $\frac{\partial p}{\partial y}=\sum_{i=1}^{m}\left(\prod_{1 \leq j \leq m, j \neq i} p_{j}\right)\left(\frac{\partial p_{i}}{\partial y}\right)$. Since the degree of $\frac{\partial p_{i}}{\partial y}$ is strictly less than that of p_{i}, $p_{i} \nmid \frac{\partial p_{i}}{\partial y}$, and $\frac{\partial p_{i}}{\partial y} \nmid p_{i}$ since it is irreducible.
$p \cap \frac{\partial p}{\partial y} \subset \bigcup_{i=1}^{m}\left(p_{i} \cap \frac{\partial p}{\partial y}\right)$, so it is enough to show that each of these are finite. $\frac{\partial p}{\partial y}=$ $\sum_{j \neq i}\left(\prod_{k \neq j} p_{k}\right)\left(\frac{\partial p_{j}}{\partial y}\right)+\left(\prod_{k \neq i} p_{k}\right)\left(\frac{\partial p_{i}}{\partial y}\right) . \quad p_{i}$ divides the first summand, but not the second, since $p_{i} \nmid p_{k}$ for $k \neq i$ and $p_{i} \nmid \frac{\partial p_{i}}{\partial y}$, and p_{i} is irreducible. $\frac{\partial p}{\partial y} \nmid p_{i}$, since then it would divide p, which would give us a repeated factor.
Thus, by Bezout's Theorem, $p_{i} \cap \frac{\partial p}{\partial y}$ is finite for each $1 \leq i \leq m$. Hence, X is finite.
So $X=\left\{a_{1}, \ldots, a_{m-1}\right\}$ with $a_{1}<\ldots<a_{m}$. Let $a_{0}=-\infty, a_{m}=\infty$, and $I_{j}=\left(a_{j-1}, a_{j}\right)$ for $1 \leq j \leq m$. That is, $\mathbb{R}=I_{1} \cup \ldots \cup I_{m} \cup X$.
We will show, using the implicit function theorem, that f is analytic on each I_{j}.
Theorem 2 (Implicit Function Theorem). Suppose $F: W \rightarrow \mathbb{R}$ is analytic, $W \subset \mathbb{R}^{2}$ open, $(a, b) \in W$ such that $F(a, b)=0 \neq \frac{\partial F}{\partial y}(a, b)$. Then there is a unique analytic function $\phi: \mathcal{U} \rightarrow \mathbb{R}$ for $\mathcal{U} \subset \Pi_{1}(W)$ open such that $F(x, \phi(x))=0$ and $\phi(a)=b$.

Let $W=I_{j} \times \mathbb{R}$. So W is open in \mathbb{R}^{2}. Then $p: W \rightarrow \mathbb{R}$ is analytic since it is a polynomial. Then pick any $a \in I_{j}$, let $b=f(a)$, so $(a, b) \in W, p(a, b)=0 \neq \frac{\partial p}{\partial y}(a, b)$. Then there is a unique analytic function $\phi: I_{j} \rightarrow \mathbb{R}$ such that $p(x, \phi(x))=0$ and $\phi(a)=b$. Thus, $f \equiv \phi$ on I_{j}, so f must be analytic on I_{j}, as required.

Exercise 3*

(Real Nullstellensatz) Let F be a real closed field and let $J \subset F\left[X_{1}, \ldots, X_{n}\right]$ be an ideal. We say that J is real if for any $p_{1}, \ldots, p_{m} \in F\left[X_{1}, \ldots, X_{n}\right]$ such that $\sum p_{i}^{2} \in J$, then $p_{i} \in J$ for $1 \leq i \leq m$. Show that $I(V(J))=J$ if and only if J is real.

Solution:

\Rightarrow : Let $\sum_{i=1}^{m} p_{i}^{2} \in J$. If $V(J)=\emptyset$, then $J=I(V(J))=F\left[X_{1}, \ldots, X_{n}\right]$, so J is real. Otherwise, let $x \in V(J)$.

Lemma 3. A field F is formally real if and only if for all $a_{1}, \ldots, a_{m} \in F, \sum_{i=1}^{m} a_{i}^{2}=0 \Rightarrow$ $a_{i}=0 \forall 1 \leq i \leq m$.

Proof. \Leftarrow : If $m=1$, then $a_{1}^{2}=0 \Rightarrow a_{1}=0$. Otherwise, suppose there is i such that $a_{i}^{2} \neq 0$. Then $\sum 1 \leq j \leq m, j \neq i\left(\frac{a_{j}}{a_{i}}\right)^{2}=-1 . \Rightarrow \Leftarrow$
\Rightarrow : Suppose $\sum_{i=1}^{m} a_{i}^{2}=-1$ for some $a_{1} \ldots a_{n} \in F$. Then $\sum_{i=1}^{m} a_{i}^{2}+1=0 \Rightarrow 1=0 . \Rightarrow \Leftarrow$
So F is formally real.

Suppose for some $p_{1}, \ldots, p_{m}, \sum_{i=1}^{m} p_{i}^{2} \in J$. Then $\sum_{i=1}^{m}\left(p_{i}(x)\right)^{2}=0$, so by the Lemma, $p_{i}(x)=0$ for all $1 \leq i \leq m$. Thus, $p_{i} \in I(V(J))=J$.
\Leftarrow : We will need a few lemmas for the other direction.
Lemma 4. If P is a real prime ideal of $F\left[X_{1}, \ldots, X_{n}\right]$, then if K is the field of fractions of $F\left[X_{1}, \ldots, X_{n}\right] / P, K$ is formally real.

Proof. Let $\sum_{i=1}^{m}\left(\frac{a_{i}+P}{b_{i}+P}\right)^{2}=P$ where $a_{i}, b_{i} \in F\left[X_{1}, \ldots, X_{n}\right], b_{i} \notin P$, (so a sum of squares in K which is equal to 0). Let $c_{i}=\prod_{1 \leq j \leq m, j \neq i} b_{j}+P$. Then $\sum_{i=1}^{m}\left(c_{i} a_{i}+P\right)^{2}=P$. So $\sum_{i=1}^{m}\left(c_{i} a_{i}\right)^{2} \in P$, so $c_{i} a_{i} \in P$. We know that $c_{i} \notin P$, or else we would get some $b_{j} \in P$ since P is prime. So we must have $a_{i} \in P$. Thus, $a_{i}+P=P$, so $\frac{a_{i}+P}{b_{i}+P}=P$, that is, 0 in K.

Thus, by Lemma $3, K$ is formally real.

Lemma 5. If $J=\bigcap_{i=1}^{m} P_{i}$ where the P_{i} 's are prime and J is real, then each P_{i} is real.
Proof. Let P_{1}, \ldots, P_{m} be such that $J=\bigcap_{i=1}^{m} P_{i}$, and no $P_{i} \subset P_{j}$ for $i \neq j$. If $m=1$, then $P_{1}=J$ is real. If not, consider P_{i} and let $c_{j} \in P_{j} \backslash P_{i}$ for all $j \neq i, c=\prod_{1 \leq j \leq m, i \neq j} c_{j}$. Let $\sum_{k=1}^{q} a_{k}^{2} \in P_{i}$. Then $c^{2} \sum_{k=1}^{q} a_{k}^{2}=\sum_{k=1}^{q}\left(c a_{k}\right)^{2}$. Since, $\sum_{k=1}^{q} a_{k}^{2} \in P_{i}$, this is in P_{i}, and since $c^{2} \in P_{j}$ for all $j \neq i$, it is in P_{j}. Thus, $\sum_{k=1}^{q}\left(c a_{k}\right)^{2} \in \bigcap_{i=1}^{m} P_{i}=J$. So since J is real, $c a_{k} \in J$, and thus, $c a_{k} \in P_{i}$ for each $1 \leq k \leq q$. So since P_{i} is prime, $c \in P_{i}$ or $a_{k} \in P_{i}$. But if $c \in P_{i}$ then
$c_{j} \in P_{i}$ for some $j \neq i$. Thus, we must have $a_{k} \in P_{i}$ for all $1 \leq k \leq q$. Thus, each P_{i} is real.

Since J is real, it is radical: let $f \in \sqrt{J}$, and n be such that $f^{n} \in J$. Let m be such that $m+n=2^{k}$ for some k. then $f^{m} f^{n} \in J$, so $f^{2^{k}} \in J$. Thus, since J is real, $f \in J$.

So by the primary decomposition theorem, $J=\bigcup_{i=1}^{m} P_{i}$ for some prime ideals $P_{1}, \ldots, P_{m} \in$ $F\left[X_{1}, \ldots, X_{n}\right]$. And by Lemma 5, each of these are real ideals.

Clearly, $J \subset I(V(J))$, so let $f \in I(V(J))$. To show that $f \in J$, we will show that $f \in P_{i}$ for each i. Since F is a field, $F\left[X_{1}, \ldots, X_{n}\right]$ is Noetherian, so $P_{i}=\left\langle g_{1}, \ldots, g_{k}\right\rangle$. For any \bar{v}, if $g_{1}(\bar{v})=\ldots=g_{k}(\bar{v})=0$, then $\bar{v} \in V(J)$. So since $f \in I(V(J)), f(\bar{v})=0$. Thus, $F \vDash \forall \bar{v}\left(\bigwedge g_{i}(\bar{v})=0 \rightarrow f(\bar{v})=0\right)$. Let K be the field of fractions of $F\left[X_{1}, \ldots, X_{n}\right] / P$. K is formally real by Lemma 4 , so let L be its real algebraic closure. $F \subset L$, so by model completeness, $F \preceq L$, so $L \vDash \forall \bar{v}\left(\bigwedge g_{i}(\bar{v})=0 \rightarrow f(\bar{v})=0\right)$. $L \vDash \bigwedge g_{i}\left(X_{1} / P_{i}, \ldots, X_{n} / P_{i}\right)=0$ since $g_{i} \in P_{i}$, so $L \vDash f\left(X_{1} / P_{i}, \ldots, X_{n} / P_{i}\right)=0$. Thus, $f \in P_{i}$.

Note: the original exercise said: Let F be a real closed field, and let P be a prime ideal in $F\left[X_{1}, \ldots, X_{n}\right]$. Then, there is $x \in F^{n}$ with $f(x)=0$ for all $f \in P$ if and only if whenever $p_{1}, \ldots, p_{m} \in F\left[X_{1}, \ldots, X_{n}\right]$ and $\sum p_{i}^{2} \in P$, then all the $p_{i} \in P$.

This has a counterexample: Consider the ideal $\left(x^{2}+y^{2}\right) \subset \mathbb{R}[x, y]$. This is prime since $x^{2}+y^{2}$ is irreducible over $\mathbb{R} .(0,0) \in V\left(\left(x^{2}+y^{2}\right)\right)$. But $x, y \notin\left(x^{2}+y^{2}\right)$.

Exercise 4

Prove that for all n and d there are M and D such that if $f\left(X_{1}, \ldots, X_{n}\right)=\frac{g}{h}$ where g and h are real polynomials of degree at most d and f is positive semidefinite, then there are polynomials $g_{1}, \ldots, g_{M}, h_{1}, \ldots, h_{M}$ of degree at most D such that

$$
f=\sum_{i=1}^{M} \frac{g_{i}^{2}}{h_{i}^{2}}
$$

Solution:

Let $R \vDash R C F$ and suppose not. Then let n, d be such that for polynomials g, h in n variables of degree at most d such that $\frac{g}{h}$ is positive semidefinite, for all $M, D, g_{1}, h_{1}, \ldots, g_{M}, h_{M}$ polynomials in n variables of degree at most D, there is \bar{x} such that $\frac{g(\bar{x})}{h(\bar{x})} \neq \sum_{i=1}^{M} \frac{\left(g_{i}(\bar{x})\right)^{2}}{\left(h_{i}(\bar{x})\right)^{2}}$.

For M, D, let $\Phi_{M, D}(\bar{a}, \bar{b})$ be a formula expressing the following: If \bar{a}, \bar{b} are coefficients of polynomials $a(\bar{x})$ and $b(\bar{x})$ in n variables of degree at most d such that for all $\bar{x}, \frac{a(\bar{x})}{b(\bar{x})} \geq 0$ then for all $\overline{c_{1}}, \ldots, \overline{c_{M}}, \overline{d_{1}}, \ldots, \overline{d_{M}}$ coefficients of polynomials $c_{1}(\bar{x}), \ldots, c_{M}(\bar{x}), d_{1}(\bar{x}), \ldots, d_{M}(\bar{x})$ in n variables of degree at most D, there exists x such that $\frac{a(\bar{x})}{b(\bar{x})} \neq \sum_{i=1}^{M} \frac{\left(c_{i}(\bar{x})\right)^{2}}{\left(d_{i}(\bar{x})\right)^{2}}$.

Then, by assumption, $\left\{\Phi_{M, D}(\bar{a}, \bar{b}) \mid M, D \geq 0\right\}$ is finitely satisfiable.
So let $S \succeq R$ have realizations \bar{a}, \bar{b} of this. Then, $S \vDash R C F$, and the corresponding $\frac{a(\bar{x})}{b(\bar{x})}$ is a positive semi-definite functions which cannot be expressed as a sum of squares. This contradicts Hilbert's $17^{\text {th }}$ Problem.

Theorem 6 (Hilbert's $17^{\text {th }}$ Problem). If R is a real closed field, $\bar{x} \in R^{n}$, and $f \in R(\bar{x})$ is positive semidefinite, then there are $g_{1}, \ldots, g_{m} \in R(\bar{x})$ such that $f=\sum_{i=1}^{m} g_{i}^{2}$.

Exercise 5

If K is a field, let $K[[t]]$ denote the field of formal power series over K in variable t, and let $K((t))$ denote its fraction field, the field of formal Laurent series over K. Let

$$
K\langle\langle t\rangle\rangle=\bigcup_{n=1}^{\infty}\left(\left(t^{\frac{1}{n}}\right)\right)
$$

be the field of formal Puiseux series over K. Series in $K\langle\langle t\rangle\rangle$ are of the form $\sum_{i=m}^{\infty} a_{i} t^{\frac{i}{n}}$ for some $m, n \in \mathbb{Z}$ with $n>0$. An important theorem is that if K is algebraically closed, then $K\langle\langle t\rangle\rangle$ is also algebraically closed. It follows that if R is real closed then $R\langle\langle t\rangle\rangle$ is real closed.
(a) Show that $R \prec R\langle\langle t\rangle\rangle$, and t is a positive infinitesimal element of $R\langle\langle t\rangle\rangle$.
(b) Suppose that $r \in R$ and $f:(0, r) \rightarrow R$ is definable. Show that there is $\mu \in R\langle\langle t\rangle\rangle$ such that $R\langle\langle t\rangle\rangle \vDash f(t)=\mu$. Suppose that $\mu=a t^{q}+$ higher-degree terms. Show that f is asymptotic to $a x^{q}$ at 0 . In other words, show that

$$
R \models \forall \epsilon>0 \exists \delta>0\left(0<x<\delta \rightarrow\left|\frac{f(x)}{a x^{q}}-1\right|<\epsilon\right) .
$$

Solution:

(a) Since $R, R\langle\langle t\rangle\rangle \vDash R C F$, by model completeness, since $R \subset R\langle\langle t\rangle\rangle, R \prec R\langle\langle t\rangle\rangle$.

We know that $t>0$ in $R\langle\langle t\rangle\rangle$ since $t=\left(t^{\frac{1}{2}}\right)^{2}$, and $t \neq 0$. Let $r \in R, r \neq 0$ be given. $r^{2}-t=\left(\sum_{n=0}^{\infty}(-1)^{n}\left(r^{1-2 n}\binom{\frac{1}{2}}{n}\right) t^{n}\right)^{2}$ (by taking the Taylor expansion of $\sqrt{r^{2}-t}$). So since their difference is a non-zero square in $R\langle\langle t\rangle\rangle, r^{2}>t$.
(b) Let $f:(0, r) \rightarrow R$ be defined by $\phi(a, b)$. That is, $f(a)=b \Leftrightarrow R \vDash \phi(a, b)$. So $R \vDash \forall a(0<a<r \rightarrow \exists!b(\phi(a, b)))$, and by elementarity, $R\langle\langle t\rangle\rangle \vDash \forall a(0<a<r \rightarrow$ $\exists!b(\phi(a, b)))$. Thus, since $R\langle\langle t\rangle\rangle \vDash 0<t<r$ by part (a), $R\langle\langle t\rangle\rangle \vDash \exists!\mu(f(t)=\mu)$.
Then, note that $\frac{\mu}{a x^{q}}=1+g(x)$ where each power of x is strictly positive, since every term after $a x^{q}$ in μ has degree strictly greater than q. Thus, as $x \rightarrow 0, g(x) \rightarrow 0$. So for any $\epsilon>0$, we can choose $\delta>0$ such that $0<x<\delta \Rightarrow\left|\frac{\mu}{a t^{q}}-1\right|<\epsilon$. So, since $R\langle\langle t\rangle\rangle \vDash \mu=f(t), R\langle\langle t\rangle\rangle \vDash\left|\frac{f(t)}{a t^{q}}-1\right|<\epsilon$. Thus, since $R \preceq R\langle\langle t\rangle\rangle$, and $\epsilon>0$ was arbitrary, $R \vDash \forall \epsilon>0 \exists \delta>0\left(0<x<\delta \rightarrow\left|\frac{f(x)}{a x^{q}}-1\right|<\epsilon\right)$.

Basic o-minimality

Exercise 15*

Suppose $(M,<, \ldots)$ is o-minimal, $a<b \in M$ and $f:(a, b) \rightarrow M$ is strictly increasing. Prove that $f \mid I$ is continuous for some interval $I \subset(a, b)$.

Solution:

Since f is injective and (a, b) is infinite, $f((a, b))$ is infinite, so let $(r, s) \subset f((a, b))$ be an interval. Again, since f is injective, there are unique $c, d \in(a, b)$ such that $f(c)=r$ and $f(d)=s$. So, since f is strictly increasing, $c<d$ and $f((c, d))=(r, s)$. So let $(u, v) \subset(r, s)$ be an interval. Then there must be e, g with $c<e<g<d$ such that $f(e)=u$ and $f(g)=v$. For any $t \in(u, v), f(e)<t<f(g)$, so for (the unique) $h \in(a, b)$ such that $f(h)=t$, $e<h<g$. So $f^{-1}((u, v))=(e, g)$ is open. Thus, f is continuous on (r, s).

The problem originally said to prove that f is continuous on (a, b), which is not always true. This is Lemma 3 in Chapter 3 of van den Dries. It is also the exercise from the o-minimality lecture on Tuesday $7 / 24$.

However, we can further prove that the number of points at which f is not continuous is finite.

Let $\phi(x)$ be $\forall c, d(c<f(x)<d \rightarrow \exists r, s(r<x<s \wedge \forall v(r<v<s \rightarrow c<f(v)<d)))$. Let $X=\{x \in(a, b) \mid f$ is not continuous $\}=\{x \mid \neg \phi(x)\}$. X is definable, so by o-minimality, if X is infinite, then there is some interval $J \subset X$. But then $f: J \rightarrow M$ is strictly increasing, so by the above argument, there is an interval $I \subset J$ on which f is continuous $\Rightarrow \Leftarrow$, since $I \subset X$. So X must be finite.

Definable Closure and Exchange

Exercise 18

[Exchange] Suppose $c \in \operatorname{dcl}(A \cup\{b\})$. Then $c \in d c l(A)$ or $b \in d c l(A \cup\{c\})$.

Solution:

Let $c \in d c l(A \cup\{b\})$. Let $\phi(\bar{x}, y, z)$ be such that $\{c\}=\{x \mid \phi(\bar{a}, b, x)\}$ for some $\bar{a} \in A$. Let $B=\{y \mid \phi(\bar{a}, y, c) \wedge \exists!x \phi(\bar{a}, y, x)\}$.

Lemma 7. If a set D is definable over some C and $x \in \partial D$ (the boundary of D), then $x \in \operatorname{dcl}(C)$.

Proof. Since D is definable, by o-minimality, $D=I_{1} \cup \ldots \cup I_{k} \cup X$ where I_{1}, \ldots, I_{k} are open intervals and X is finite. So $\partial D=X \cup$ the set of (non-infinite) endpoints of I_{1}, \ldots, I_{k}. Let $\partial D=\left\{b_{1}, \ldots, b_{n}\right\}$ with $b_{1}<\ldots<b_{n}$. Let $x=b_{i}$, and $\psi(y)=\exists b_{1}, \ldots, b_{i-1}, b_{i+1}, \ldots, b_{n}\left(b_{1}<\right.$ $b_{2}<\ldots<b_{i-1}<y<b_{i+1}<\ldots<b_{n} \wedge \bigwedge_{1 \leq j \leq m, j \neq i} b_{j} \in \partial D \wedge y \in \partial D$. Then $\mathcal{M} \vDash \psi(y) \leftrightarrow y=x$. So $x \in \operatorname{dcl}(C)$.

So if $b \in \partial B$, then $b \in \operatorname{dcl}(A \cup\{c\})$.
If b is not on the boundary of B, then $b \in I \subset B$ for some interval I. Let $\theta(y)=$ $\exists!x \phi(\bar{a}, y, x)$, and let Y be the set defined by θ. Note that $I \subset B \subset Y$.

Define $f: Y \rightarrow M$ by $f(y)=x$ (the unique x guaranteed to exists by θ). f is an A-definable function on I (since $I \subset Y$), and $f \equiv c$ on I, since $I \subset B$, so for $y \in I, \phi(\bar{a}, y, c)$.

Let $\psi(x)=\exists u<v \forall u<y<v f(y)=x$. That is, there is an interval on which f has the constant value x.

Claim 1. $\psi(Y)$ is finite.
Proof. By the Monotonicity theorem, $Y=I_{1} \cup \ldots \cup I_{m} \cup X$ where X is finite, I_{i} 's are intervals, and f is either strictly monotone or constant on each interval. So if x is such that f is constantly x on some interval J, it must be on the whole I_{i} in which J is contained. Thus, there can only be m many such x 's, so $\psi(Y)$ is finite.

So let $\psi(Y)=\left\{a_{1}, \ldots, a_{m}\right\}$. So since $c \in \psi(Y), c=a_{i}$ for some $1 \leq i \leq m$.
By Lemma 7, since $c \in \partial(\psi(Y))$ which is definable over $A, c \in \operatorname{dcl}(A)$

Consequences of Cell Decomposition

Exercise 21

Suppose \mathcal{M} is o-minimal and \mathcal{N} is elementarily equivalent to \mathcal{M}. Prove that \mathcal{N} is o-minimal. Solution:

Let $S \subset \mathcal{N}$ be definable and let $\phi(\bar{x}, y)$ and $\bar{a} \in N^{m}$ be such that $S=\{y \in N \mid \mathcal{N} \vDash$ $\phi(\bar{a}, y)\}$. We want to show that S is a finite union of intervals and points.

Let $A=\{(\bar{r}, y) \mid \phi(\bar{r}, y)\}$. So for each $\bar{r} \in M^{m}, A_{\bar{r}}$ is definable.
Let $B=\left\{(\bar{r}, c, d) \mid(c, d) \subset A_{\bar{r}} \wedge \forall(e, f) \supset(c, d),(e, f) \not \subset A_{\bar{r}}\right\}$. (We can express this in a first order way.)

So $B_{\bar{r}}$ is the set of (c, d) which are disjoint intervals contained in $A_{\bar{r}}$. By o-minimality, $B_{\bar{r}}$ is finite for all $\bar{r} \in M^{m}$. So by Uniform Bounding, there is N such that $\left|B_{\bar{r}}\right|<N$ for all $\bar{r} \in M^{m}$.

Similarly, let $C=\left\{(\bar{r}, c) \mid c \in A_{\bar{r}} \wedge \forall(e, f) \ni c,(e, f) \not \subset A_{\bar{r}}\right\}$. Again, by o-minimality, since $C_{\bar{r}}$ is the set of isolated points in $A_{\bar{r}}, C_{\bar{r}}$ is finite, so by Uniform Bounding, there is M such that $\left|C_{\bar{r}}\right|<M$ for all $\bar{r} \in M^{m}$.

Let $\theta_{1}(\bar{r}, c)$ be $(-\infty, c) \subset A_{\bar{r}} \wedge \forall d>c(-\infty, d) \not \subset A_{\bar{r}}$ and $\theta_{2}(\bar{r}, d)$ be $(d, \infty) \subset A_{\bar{r}} \wedge \forall c<$ $d(c, \infty) \not \subset A_{\bar{r}}$. So
$\mathcal{M} \vDash \forall \bar{r} \exists c_{1}<d_{1}<\ldots<c_{N}<d_{N} \exists x_{1}, \ldots, x_{M}$
$\left(A_{\bar{r}}=\left(c_{1}, d_{1}\right) \cup \ldots \cup\left(c_{N}, d_{N}\right) \cup\left\{x_{1}, \ldots, x_{M}\right\}\right)$
$\vee\left(\exists c \theta_{1}(c) \wedge A_{\bar{r}}=(-\infty, c) \cup\left(c_{1}, d_{1}\right) \cup \ldots \cup\left(c_{N}, d_{N}\right) \cup\left\{x_{1}, \ldots, x_{M}\right\}\right)$
$\vee\left(\exists d \theta_{2}(d) \wedge A_{\bar{r}}=\left(c_{1}, d_{1}\right) \cup \ldots \cup\left(c_{N}, d_{N}\right) \cup(d, \infty) \cup\left\{x_{1}, \ldots, x_{M}\right\}\right)$
$\vee\left(\exists c, d \theta_{1}(c) \wedge \theta_{2}(d) \wedge A_{\bar{r}}=(-\infty, c) \cup\left(c_{1}, d_{1}\right) \cup \ldots \cup\left(c_{N}, d_{N}\right) \cup(d, \infty) \cup\left\{x_{1}, \ldots, x_{M}\right\}\right)$.
Since $\mathcal{N} \equiv \mathcal{M}, \mathcal{N}$ satisfies this as well. Thus, since $S=A_{\bar{a}}, S$ is a finite union of points and intervals (c, d) with $c, d \in N \cup\{ \pm \infty\}$.

