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Real Closed Fields

Exercise 1

Let x and y be algebraically independent over R.

(a) Show that R(x, y) is formally real and that we can find orders <1 and <2 of R(x, y)
such that x <1 y and y <2 x.

(b) Use (a) to show that the ordering < is not quantifier-free definable in R in the language
of rings.

Solution:

(a) Suppose 0 =
n∑
i=1

(
fi(x, y)

gi(x, y)
)2 where fi, gi ∈ R[x, y], gi 6= 0. So if we let Gi(x, y) =

∏
1≤j≤n,i 6=j

gi(x, y), then 0 =
n∑
i=1

(Gi(x, y)fi(x, y))2, contradicting that x, y are algebraically

independent.

Note that (x − y) is not a sum of squares in R(x, y), since we would get x − y =
n∑
i=1

(
fi(x, y)

gi(x, y)
)2 where fi, gi ∈ R[x, y], gi 6= 0. So if Gi(x, y) =

∏
1≤j≤n,i 6=j

gi(x, y), 0 =

n∑
i=1

G2
i (x, y)f 2

i (x, y)− (x− y)
n∏
i=1

g2i (x, y), contradicting that x, y are algebraically inde-

pendent. Similarly, (y − x) is not a sum of squares in R(x, y).

Proposition 1. If F is formally real and a ∈ F , −a not a sum of squares in F , then
there is an ordering of F where a > 0.

Proof. Let
∑
F 2 denote the sums of squares in F , and note that if x ∈

∑
F 2, then

x ≥ 0 in any ordering of F .

Also note that if −a is not a sum of squares, a 6= 0.
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If
√
a ∈ F , then a ∈ F 2 ⊂

∑
F 2, so in any ordering, a > 0.

We will show that F (
√
a) is formally real. Then, since in this field a is a square, any

ordering will be such that a > 0, so we get the desired ordering of F by restricting this
ordering to F .

Suppose −1 =
∑

(bi + ci
√
a)2. Then 0 =

∑
b2i + 1 +

∑
c2i a +

√
a
∑

2bici. So since
1,
√
a are a basis of F (

√
a), we must have

∑
b2i + 1 +

∑
c2i a = 0 and

∑
2bici = 0. In

particular, −a =
∑
b2i+1∑
c2i

=
∑
b2i

∑
c2i

(
∑
c2i )

2 +
∑
c2i

(
∑
c2i )

2 which is the sum of squares ⇒⇐.

Thus, F (
√
a) is formally real, as required.

Hence, we get an ordering <1 in which y − x >1 0 so x <1 y and an ordering <2 in
which x− y >2 0, so y <2 x.

(b) Let φ be a quantifier free formula in the language of rings such that for all a, b ∈ R,
a < b ⇔ R � φ(a, b). So (R, <) � ∀a, bφ(a, b) ↔ a < b. Let Mi be the real algebraic
closure of (R(x, y), <i) for i = 1, 2 (since (R(x, y), <i) is formally real by part (a),
and thus, has a real algebraic closure whose order extends <i). Since (R, <) ⊂ Mi,
by model completeness of RCF, (R, <) � Mi. So Mi � ∀a, bφ(a, b) ↔ a <i b. So
M1 � φ(x, y) and M2 � ¬φ(x, y). Now consider M1 and M2 in the language of
rings. R(x, y) ⊂ M1,M2, so since φ is quantifier free and in the language of rings,
R(x, y) � φ(x, y) and R(x, y) � ¬φ(x, y). ⇒⇐
So < is not quantifier free definable in R in the language of rings.

Exercise 2

Let F be a real closed field. We say that a function g : F n → F is algebraic if there is a
nonzero polynomial p(X1, . . . , Xn, Y ) over F such that for all a ∈ F n, p(a, g(a)) = 0.

(a) Use quantifier elimination to show that every semialgebraic function is algebraic.

(b) Show that if f : R → R is semialgebraic, then there are disjoint intervals I1, . . . , Im
and a finite set X such that R = I1 ∪ . . . ∪ In ∪X and f is analytic on each Ij. (Hint:
Use the Implicit Function Theorem for R.)

Solution:

(a) Let g : F n → F be semialgebraic. So {(x, y)|g(x) = y} = {(x, y)|
m∨
i=1

n∧
j=1

pij(x, y) =

0 ∧ qij(x, y) > 0} for some polynomials pij, qij ∈ F [x, y], 1 ≤ i ≤ m, 1 ≤ j ≤ n.

Suppose for some i that pij ≡ 0 for all j = 1..n. Then {(x, y)|
n∧
j=1

qij(x, y) > 0} ⊂

graph(g). If this is empty, we can remove this whole disjunct for an equivalent defining

formula. Otherwise, let (x, y) be such that
n∧
j=1

qij(x, y) > 0. Then, since the q′ijs are

polynomials, they are continuous, so by choosing y′ sufficiently close to but 6= y, we get
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qij(x, y
′) between 0 and qij(x, y), so

n∧
j=1

qij(x, y
′) > 0. Thus, (x, y), (x, y′) ∈ graph(g),

contradicting that g is a function. So, let p(x, y) =
m∏
i=1

n∑
j=1

(pij(x, y))2. Then for all x,

p(x, g(x)) = 0, since for some i,
∧n
j=1 pij(x, g(x)) = 0, so

n∑
j=1

(pij(x, g(x)))2 = 0.

(b) By part (a), there is a polynomial p such that p(x, f(x)) = 0 for all x. p = p1 · . . . · pm
where p1, . . . , pm are irreducible polynomials and wlog, are all distinct (since if we have
a repeated root, if we divide by it, the result will still witness that f is algebraic).
Thus, since they are irreducible, pi - pj for 1 ≤ i 6= j ≤ m.

Let X = {a ∈ R|∂p
∂y

(a, f(a)) = 0}. We will show that X is finite.

Note, if a ∈ X, then (a, f(a)) ∈ p ∩ ∂p
∂y

, so it will be enough to show that this is finite.

∂p
∂y

=
m∑
i=1

(
∏

1≤j≤m,j 6=i

pj)(
∂pi
∂y

). Since the degree of ∂pi
∂y

is strictly less than that of pi,

pi - ∂pi∂y
, and ∂pi

∂y
- pi since it is irreducible.

p ∩ ∂p
∂y
⊂

m⋃
i=1

(pi ∩
∂p

∂y
), so it is enough to show that each of these are finite. ∂p

∂y
=∑

j 6=i

(
∏
k 6=j

pk)(
∂pj
∂y

) + (
∏
k 6=i

pk)(
∂pi
∂y

). pi divides the first summand, but not the second,

since pi - pk for k 6= i and pi - ∂pi
∂y

, and pi is irreducible. ∂p
∂y

- pi, since then it would
divide p, which would give us a repeated factor.

Thus, by Bezout’s Theorem, pi ∩ ∂p
∂y

is finite for each 1 ≤ i ≤ m. Hence, X is finite.

So X = {a1, . . . , am−1} with a1 < . . . < am. Let a0 = −∞, am =∞, and Ij = (aj−1, aj)
for 1 ≤ j ≤ m. That is, R = I1 ∪ . . . ∪ Im ∪X.

We will show, using the implicit function theorem, that f is analytic on each Ij.

Theorem 2 (Implicit Function Theorem). Suppose F : W → R is analytic, W ⊂ R2

open, (a, b) ∈ W such that F (a, b) = 0 6= ∂F
∂y

(a, b). Then there is a unique analytic

function φ : U → R for U ⊂ Π1(W ) open such that F (x, φ(x)) = 0 and φ(a) = b.

Let W = Ij × R. So W is open in R2. Then p : W → R is analytic since it is a
polynomial. Then pick any a ∈ Ij, let b = f(a), so (a, b) ∈ W , p(a, b) = 0 6= ∂p

∂y
(a, b).

Then there is a unique analytic function φ : Ij → R such that p(x, φ(x)) = 0 and
φ(a) = b. Thus, f ≡ φ on Ij, so f must be analytic on Ij, as required.

Exercise 3*

(Real Nullstellensatz) Let F be a real closed field and let J ⊂ F [X1, . . . , Xn] be an ideal.
We say that J is real if for any p1, . . . , pm ∈ F [X1, . . . , Xn] such that

∑
p2i ∈ J , then pi ∈ J

for 1 ≤ i ≤ m. Show that I(V (J)) = J if and only if J is real.
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Solution:

⇒: Let
m∑
i=1

p2i ∈ J . If V (J) = ∅, then J = I(V (J)) = F [X1, . . . , Xn], so J is real. Otherwise,

let x ∈ V (J).

Lemma 3. A field F is formally real if and only if for all a1, . . . , am ∈ F ,
m∑
i=1

a2i = 0 ⇒

ai = 0 ∀1 ≤ i ≤ m.

Proof. ⇐: If m = 1, then a21 = 0 ⇒ a1 = 0. Otherwise, suppose there is i such that a2i 6= 0.

Then
∑

1 ≤ j ≤ m, j 6= i(
aj
ai

)2 = −1. ⇒⇐

⇒: Suppose
m∑
i=1

a2i = −1 for some a1 . . . an ∈ F . Then
m∑
i=1

a2i + 1 = 0 ⇒ 1 = 0. ⇒⇐

So F is formally real.

Suppose for some p1, . . . , pm,
m∑
i=1

p2i ∈ J . Then
m∑
i=1

(pi(x))2 = 0, so by the Lemma,

pi(x) = 0 for all 1 ≤ i ≤ m. Thus, pi ∈ I(V (J)) = J .
⇐: We will need a few lemmas for the other direction.

Lemma 4. If P is a real prime ideal of F [X1, . . . , Xn], then if K is the field of fractions of
F [X1, . . . , Xn]/P , K is formally real.

Proof. Let
m∑
i=1

(
ai + P

bi + P
)2 = P where ai, bi ∈ F [X1, . . . , Xn], bi /∈ P , (so a sum of squares in K

which is equal to 0). Let ci =
∏

1≤j≤m,j 6=i

bj + P . Then
m∑
i=1

(ciai + P )2 = P . So
m∑
i=1

(ciai)
2 ∈ P ,

so ciai ∈ P . We know that ci /∈ P , or else we would get some bj ∈ P since P is prime. So
we must have ai ∈ P . Thus, ai + P = P , so ai+P

bi+P
= P , that is, 0 in K.

Thus, by Lemma 3, K is formally real.

Lemma 5. If J =
m⋂
i=1

Pi where the Pi’s are prime and J is real, then each Pi is real.

Proof. Let P1, . . . , Pm be such that J =
m⋂
i=1

Pi, and no Pi ⊂ Pj for i 6= j. If m = 1, then

P1 = J is real. If not, consider Pi and let cj ∈ Pj \ Pi for all j 6= i, c =
∏

1≤j≤m,i 6=j

cj. Let

q∑
k=1

a2k ∈ Pi. Then c2
q∑

k=1

a2k =

q∑
k=1

(cak)
2. Since,

q∑
k=1

a2k ∈ Pi, this is in Pi, and since c2 ∈ Pj

for all j 6= i, it is in Pj. Thus,

q∑
k=1

(cak)
2 ∈

m⋂
i=1

Pi = J . So since J is real, cak ∈ J , and thus,

cak ∈ Pi for each 1 ≤ k ≤ q. So since Pi is prime, c ∈ Pi or ak ∈ Pi. But if c ∈ Pi then
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cj ∈ Pi for some j 6= i. Thus, we must have ak ∈ Pi for all 1 ≤ k ≤ q. Thus, each Pi is
real.

Since J is real, it is radical: let f ∈
√
J , and n be such that fn ∈ J . Let m be such that

m+ n = 2k for some k. then fmfn ∈ J , so f 2k ∈ J . Thus, since J is real, f ∈ J .

So by the primary decomposition theorem, J =
m⋃
i=1

Pi for some prime ideals P1, . . . , Pm ∈

F [X1, . . . , Xn]. And by Lemma 5, each of these are real ideals.
Clearly, J ⊂ I(V (J)), so let f ∈ I(V (J)). To show that f ∈ J , we will show that f ∈ Pi

for each i. Since F is a field, F [X1, . . . , Xn] is Noetherian, so Pi = 〈g1, . . . , gk〉. For any
v , ifg1(v) = . . . = gk(v) = 0, then v ∈ V (J). So since f ∈ I(V (J)), f(v) = 0. Thus,
F � ∀v(

∧
gi(v) = 0 → f(v) = 0). Let K be the field of fractions of F [X1, . . . , Xn]/P . K

is formally real by Lemma 4, so let L be its real algebraic closure. F ⊂ L, so by model
completeness, F � L, so L � ∀v(

∧
gi(v) = 0→ f(v) = 0). L �

∧
gi(X1/Pi, . . . , Xn/Pi) = 0

since gi ∈ Pi, so L � f(X1/Pi, . . . , Xn/Pi) = 0. Thus, f ∈ Pi.

Note: the original exercise said: Let F be a real closed field, and let P be a prime ideal in
F [X1, . . . , Xn]. Then, there is x ∈ F n with f(x) = 0 for all f ∈ P if and only if whenever
p1, . . . , pm ∈ F [X1, . . . , Xn] and

∑
p2i ∈ P , then all the pi ∈ P .

This has a counterexample: Consider the ideal (x2 + y2) ⊂ R[x, y]. This is prime since
x2 + y2 is irreducible over R. (0, 0) ∈ V ((x2 + y2)). But x, y /∈ (x2 + y2).

Exercise 4

Prove that for all n and d there are M and D such that if f(X1, . . . , Xn) = g
h

where g and
h are real polynomials of degree at most d and f is positive semidefinite, then there are
polynomials g1, . . . , gM , h1, . . . , hM of degree at most D such that

f =
M∑
i=1

g2i
h2i
.

Solution:
Let R � RCF and suppose not. Then let n, d be such that for polynomials g, h in n vari-

ables of degree at most d such that g
h

is positive semidefinite, for all M,D, g1, h1, . . . , gM , hM

polynomials in n variables of degree at most D, there is x such that g(x)
h(x)
6=

M∑
i=1

(gi(x))2

(hi(x))2
.

For M,D, let ΦM,D(a, b) be a formula expressing the following: If a, b are coefficients of

polynomials a(x) and b(x) in n variables of degree at most d such that for all x, a(x)
b(x)
≥ 0 then

for all c1, . . . , cM , d1, . . . , dM coefficients of polynomials c1(x), . . . , cM(x), d1(x), . . . , dM(x) in

n variables of degree at most D, there exists x such that a(x)
b(x)
6=

M∑
i=1

(ci(x))2

(di(x))2
.

Then, by assumption, {ΦM,D(a, b)|M,D ≥ 0} is finitely satisfiable.

So let S � R have realizations a, b of this. Then, S � RCF , and the corresponding a(x)
b(x)

is a positive semi-definite functions which cannot be expressed as a sum of squares. This
contradicts Hilbert’s 17th Problem.
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Theorem 6 (Hilbert’s 17th Problem). If R is a real closed field, x ∈ Rn, and f ∈ R(x) is

positive semidefinite, then there are g1, . . . , gm ∈ R(x) such that f =
m∑
i=1

g2i .

Exercise 5

If K is a field, let K[[t]] denote the field of formal power series over K in variable t, and let
K((t)) denote its fraction field, the field of formal Laurent series over K. Let

K〈〈t〉〉 =
∞⋃
n=1

((t
1
n ))

be the field of formal Puiseux series over K. Series in K〈〈t〉〉 are of the form
∞∑
i=m

ait
i
n for

some m,n ∈ Z with n > 0. An important theorem is that if K is algebraically closed, then
K〈〈t〉〉 is also algebraically closed. It follows that if R is real closed then R〈〈t〉〉 is real closed.

(a) Show that R ≺ R〈〈t〉〉, and t is a positive infinitesimal element of R〈〈t〉〉.

(b) Suppose that r ∈ R and f : (0, r) → R is definable. Show that there is µ ∈ R〈〈t〉〉
such that R〈〈t〉〉 � f(t) = µ. Suppose that µ = atq+ higher-degree terms. Show that
f is asymptotic to axq at 0. In other words, show that

R � ∀ε > 0∃δ > 0(0 < x < δ → |f(x)

axq
− 1| < ε).

.

Solution:

(a) Since R,R〈〈t〉〉 � RCF , by model completeness, since R ⊂ R〈〈t〉〉, R ≺ R〈〈t〉〉.

We know that t > 0 in R〈〈t〉〉 since t = (t
1
2 )2, and t 6= 0. Let r ∈ R, r 6= 0 be given.

r2 − t = (
∞∑
n=0

(−1)n(r1−2n
(

1
2

n

)
)tn)2 (by taking the Taylor expansion of

√
r2 − t). So

since their difference is a non-zero square in R〈〈t〉〉, r2 > t.

(b) Let f : (0, r) → R be defined by φ(a, b). That is, f(a) = b ⇔ R � φ(a, b). So
R � ∀a(0 < a < r → ∃!b(φ(a, b))), and by elementarity, R〈〈t〉〉 � ∀a(0 < a < r →
∃!b(φ(a, b))). Thus, since R〈〈t〉〉 � 0 < t < r by part (a), R〈〈t〉〉 � ∃!µ(f(t) = µ).

Then, note that µ
axq

= 1 + g(x) where each power of x is strictly positive, since every
term after axq in µ has degree strictly greater than q. Thus, as x → 0, g(x) → 0. So
for any ε > 0, we can choose δ > 0 such that 0 < x < δ ⇒ | µ

atq
− 1| < ε. So, since

R〈〈t〉〉 � µ = f(t), R〈〈t〉〉 � |f(t)
atq
− 1| < ε. Thus, since R � R〈〈t〉〉, and ε > 0 was

arbitrary, R � ∀ε > 0∃δ > 0(0 < x < δ → |f(x)
axq
− 1| < ε).
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Basic o-minimality

Exercise 15*

Suppose (M,<, . . .) is o-minimal, a < b ∈M and f : (a, b)→M is strictly increasing. Prove
that f |I is continuous for some interval I ⊂ (a, b).

Solution:
Since f is injective and (a, b) is infinite, f((a, b)) is infinite, so let (r, s) ⊂ f((a, b)) be

an interval. Again, since f is injective, there are unique c, d ∈ (a, b) such that f(c) = r and
f(d) = s. So, since f is strictly increasing, c < d and f((c, d)) = (r, s). So let (u, v) ⊂ (r, s)
be an interval. Then there must be e, g with c < e < g < d such that f(e) = u and f(g) = v.
For any t ∈ (u, v), f(e) < t < f(g), so for (the unique) h ∈ (a, b) such that f(h) = t,
e < h < g. So f−1((u, v)) = (e, g) is open. Thus, f is continuous on (r, s).

The problem originally said to prove that f is continuous on (a, b), which is not always
true. This is Lemma 3 in Chapter 3 of van den Dries. It is also the exercise from the
o-minimality lecture on Tuesday 7/24.

However, we can further prove that the number of points at which f is not continuous is
finite.

Let φ(x) be ∀c, d(c < f(x) < d→ ∃r, s(r < x < s∧∀v(r < v < s→ c < f(v) < d))). Let
X = {x ∈ (a, b)|f is not continuous} = {x|¬φ(x)}. X is definable, so by o-minimality, if X
is infinite, then there is some interval J ⊂ X. But then f : J → M is strictly increasing,
so by the above argument, there is an interval I ⊂ J on which f is continuous ⇒⇐, since
I ⊂ X. So X must be finite.

Definable Closure and Exchange

Exercise 18

[Exchange] Suppose c ∈ dcl(A ∪ {b}). Then c ∈ dcl(A) or b ∈ dcl(A ∪ {c}).

Solution:
Let c ∈ dcl(A∪{b}). Let φ(x, y, z) be such that {c} = {x|φ(a, b, x)} for some a ∈ A. Let

B = {y|φ(a, y, c) ∧ ∃!xφ(a, y, x)}.

Lemma 7. If a set D is definable over some C and x ∈ ∂D (the boundary of D), then
x ∈ dcl(C).

Proof. Since D is definable, by o-minimality, D = I1 ∪ . . .∪ Ik ∪X where I1, . . . , Ik are open
intervals and X is finite. So ∂D = X∪ the set of (non-infinite) endpoints of I1, . . . , Ik. Let
∂D = {b1, . . . , bn} with b1 < . . . < bn. Let x = bi, and ψ(y) = ∃b1, . . . , bi−1, bi+1, . . . , bn(b1 <

b2 < . . . < bi−1 < y < bi+1 < . . . < bn∧
∧

1≤j≤m,j 6=i

bj ∈ ∂D∧y ∈ ∂D. ThenM � ψ(y)↔ y = x.

So x ∈ dcl(C).

So if b ∈ ∂B, then b ∈ dcl(A ∪ {c}).
If b is not on the boundary of B, then b ∈ I ⊂ B for some interval I. Let θ(y) =

∃!xφ(a, y, x), and let Y be the set defined by θ. Note that I ⊂ B ⊂ Y .
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Define f : Y → M by f(y) = x (the unique x guaranteed to exists by θ). f is an
A-definable function on I (since I ⊂ Y ), and f ≡ c on I, since I ⊂ B, so for y ∈ I, φ(a, y, c).

Let ψ(x) = ∃u < v∀u < y < vf(y) = x. That is, there is an interval on which f has the
constant value x.

Claim 1. ψ(Y ) is finite.

Proof. By the Monotonicity theorem, Y = I1 ∪ . . . ∪ Im ∪ X where X is finite, Ii’s are
intervals, and f is either strictly monotone or constant on each interval. So if x is such that
f is constantly x on some interval J , it must be on the whole Ii in which J is contained.
Thus, there can only be m many such x’s, so ψ(Y ) is finite.

So let ψ(Y ) = {a1, . . . , am}. So since c ∈ ψ(Y ), c = ai for some 1 ≤ i ≤ m.
By Lemma 7, since c ∈ ∂(ψ(Y )) which is definable over A, c ∈ dcl(A)

Consequences of Cell Decomposition

Exercise 21

SupposeM is o-minimal and N is elementarily equivalent toM. Prove that N is o-minimal.
Solution:

Let S ⊂ N be definable and let φ(x, y) and a ∈ Nm be such that S = {y ∈ N |N �
φ(a, y)}. We want to show that S is a finite union of intervals and points.

Let A = {(r, y)|φ(r, y)}. So for each r ∈Mm, Ar is definable.
Let B = {(r, c, d)|(c, d) ⊂ Ar ∧ ∀(e, f) ⊃ (c, d), (e, f)6⊂Ar}. (We can express this in a

first order way.)
So Br is the set of (c, d) which are disjoint intervals contained in Ar. By o-minimality,

Br is finite for all r ∈ Mm. So by Uniform Bounding, there is N such that |Br| < N for all
r ∈Mm.

Similarly, let C = {(r, c)|c ∈ Ar ∧ ∀(e, f) 3 c, (e, f)6⊂Ar}. Again, by o-minimality, since
Cr is the set of isolated points in Ar, Cr is finite, so by Uniform Bounding, there is M such
that |Cr| < M for all r ∈Mm.

Let θ1(r, c) be (−∞, c) ⊂ Ar ∧ ∀d > c(−∞, d)6⊂Ar and θ2(r, d) be (d,∞) ⊂ Ar ∧ ∀c <
d(c,∞) 6⊂Ar. So
M � ∀r∃c1 < d1 < . . . < cN < dN∃x1, . . . , xM

(Ar = (c1, d1) ∪ . . . ∪ (cN , dN) ∪ {x1, . . . , xM})
∨(∃cθ1(c) ∧ Ar = (−∞, c) ∪ (c1, d1) ∪ . . . ∪ (cN , dN) ∪ {x1, . . . , xM})
∨(∃dθ2(d) ∧ Ar = (c1, d1) ∪ . . . ∪ (cN , dN) ∪ (d,∞) ∪ {x1, . . . , xM})
∨(∃c, dθ1(c) ∧ θ2(d) ∧ Ar = (−∞, c) ∪ (c1, d1) ∪ . . . ∪ (cN , dN) ∪ (d,∞) ∪ {x1, . . . , xM}).

Since N ≡M, N satisfies this as well. Thus, since S = Aa, S is a finite union of points and
intervals (c, d) with c, d ∈ N ∪ {±∞}.
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