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by �b
1(LPV)-LIND.

Theorem 12.1.3 (Buss [106]) The theory S1
2(PV) is ∀�b

1(LPV)-conservative over
PV1.

The proof of the theorem relies on Buss’s witnessing theorem and we shall not
present it here (see [278]).

12.2 Herbrand’s Theorem

Herbrand’s theorem is a statement about witnessing existential quantifiers in
logically valid first-order formulas of a certain syntactic form. Let L be an arbitrary
first-order language (possibly empty) and let A(x, y) be a quantifier-free L-formula.
The simplest form of Herbrand’s theorem says that if ∀x∃yA(x, y) is logically valid
then there are terms t1(x), . . . , tk(x) such that

A(x, t1(x)) ∨ · · · ∨ A(x, tk(x)) (12.2.1)

is already logically valid. Note that even if L = ∅ we have terms: the variables.
This can be interpreted as saying that we can compute a witness for y from a given
argument x by one of the k terms but not necessarily the same term for all x.

Many results in proof theory have a simple rudimentary version and also a num-
ber of more or less (often more rather than less) technically complicated stronger
variants. Herbrand’s theorem is no exception. The technically more difficult versions
are, for example, those describing how to find the terms ti from any first-order proof
of ∀x∃yA(x, y) or formulations for formulas A that are not quantifier-free or are not
even in a prenex form (the most cumbersome variant). Fortunately, we will not need
these difficult results but only a slight extension of the above informal formulation.

The key difference of the variant we need from the one given above is that
the logical validity of (12.2.1) is replaced by propositional validity. We define a
quantifier-free L-formula B to be propositionally valid if and only if any assignment
of propositional truth values 0, 1 to atomic formulas in B evaluates the whole formula
to 1. The only requirement in this assignment is that the same atomic formulas get
the same value, but the assignment has a priori no connection with the Tarski truth
definition in some L-structure.

Not all logically valid formulas are also propositionally valid. For example, none
of the equality axioms

x = x, x = y → y = x, (x = y ∧ y = z) → x = z (12.2.2)

is propositionally valid, and neither are the equality axioms for a relation symbol
R(x) or for a function symbol f(x) from L:

EqR(x, y) :
∧

i
xi = yi → R(x) ≡ R(y) (12.2.3)
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and
Eqf(x, y) :

∧
i

xi = yi → f(x) = f(y). (12.2.4)

For example, you can give to x = y the value 1 and to y = x the value 0, or to all
xi = yi the values 1 and to f(x) = f(y) the value 0.

One advantage of Herbrand’s theorem over the cut-elimination procedure is that
one can give its complete proof using only the compactness of propositional logic.

Theorem 12.2.1 (Herbrand’s theorem) Let L be an arbitrary first-order language
and let A(x, y) be a quantifier-free formula. Assume that ∀x∃yA(x, y) is logically
valid.

Then there are, for e ≥ 0 and k ≥ 1,

• equality axioms Eqj(u, v), j ≤ e, of the form (12.2.2), (12.2.3) or (12.2.4) for some
symbols of L,

• tuples of terms ri
j(x), si

j(x) and ti(x), for j ≤ e, v ≤ a and i ≤ k,

such that
(
∨
i,j

¬Eqj(ri
j(x), si

j(x))) ∨
∨

i
A(x, ti(x)) (12.2.5)

is propositionally valid.

Proof Assume for the sake of contradiction that the conclusion of the theorem is
not true. Consider a theory T consisting of

• all instances of all the equality axioms Eq(u, v) of the three forms (12.2.2), (12.2.3)
and (12.2.4) for all symbols of L, and, for all tuples of terms r(x), s(x),

Eq(r(x), s(x)),

• all instances of ¬A for all tuples of terms t(x),

¬A(x, t(x)).

Claim 1 T is propositionally satisfiable. That is, it is possible to assign to all atomic
formulas occurring in T propositional truth values such that all formulas in T become
satisfied.

This is the place where we will use the compactness of propositional logic. If T
is not propositionally satisfiable, already some finite T0 ⊆ T is not. But that would
mean that a disjunction of the negations of formulas in T0 is propositionally valid.
But such a disjunction is of the form (12.2.5), contradicting our assumption.

Now we define a first-order L-structure in which the sentence ∀x∃yA(x, y) fails. Let
h be a truth assignment to atomic formulas occurring in T that makes all formulas in
T true. Let A be the set of all L-terms w(x). On A define the relation

u ∼ v if and only if h(u = v) = 1 .
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Owing to the (instances of the) equality axioms (12.2.2) in T it is an equivalence
relation. In fact, owing to the (instances of the) equality axioms (12.2.3) and (12.2.4)
it is a congruence relation for all symbols of L: the axioms EqR and Eqf hold with ∼
in place of =.

This determines an L-structure B with the universe B consisting of all ∼-blocks
[u] of u ∈ A, B := A/ ∼, and with L interpreted on B via T:

B |� R([u1], . . . , [un]) if and only if h(R(u1, . . . , un)) = 1

and analogously for all function symbols f.

Claim 2 For all quantifier-free L-formulas C(z1, . . . , zn) and all [u1], . . . , [un] ∈ B,
we have

B |� C([u1], . . . , [un]) if and only if h(C(u1, . . . , un)) = 1.

The claim is readily established by the logical complexity of C and it implies that

B |� ¬∃yA([x1], . . . , y1, . . . ),

contradicting the hypothesis of the theorem.

From Theorem 12.2.1, we get, without any additional effort, a similar statement for
the consequences of universal theories, theories all of whose axioms are universal
sentences of the form

∀zB(z),

where B is quantifier-free.

Corollary 12.2.2 Let L be an arbitrary first-order language and let T be a universal
L-theory. Let A(x, y) be a quantifier-free formula and assume that ∀x∃yA(x, y) is
provable in T, i.e. that it is valid in all models of T.

Then there are e, a ≥ 0, k ≥ 1,

• equality axioms Eqj(u, v), j ≤ e, of the form (12.2.2), (12.2.3) or (12.2.4) for some
symbols of L,

• axioms ∀zBu(z) ∈ T, u ≤ a,
• tuples of terms ri

j(x), si
j(x) and wi

v(x) and ti(x), for j ≤ e and i ≤ k,

such that

(
∨
i,v

¬Bv(wi
v(x))) ∨ (

∨
i,j

¬Eqj(ri
j(x), si

j(x))) ∨
∨

i
A(x, ti(x)) (12.2.6)

is propositionally valid.

Proof If T proves the formula, already a finite number of axioms ∀zBv(z), v ≤ a,
from T suffices. Apply Theorem 12.2.1 to the formula

∀x∃y, z1, . . . , za A(x, y) ∨
∨

v
¬Bv(zv).
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We have formulated a version of Herbrand’s theorem having propositional validity
because that is what we shall use in proving simulations of theories by proof systems.
But now we formulate two corollaries of the theorem just in terms of first-order
provability in universal theories. These serve as witnessing theorems, and they will
be used in some arguments later on.

For simplicity of notation we shall consider just single quantifiers rather than
blocks of similar quantifiers (this is without loss of generality).

Corollary 12.2.3 Let T be a universal theory in a language L and let ∀x∃yA(x, y),
where A is quantifier-free, be provable in T.

Then there are k ≥ 1 and L-terms ti(x), i ≤ k, such that T proves∨
i≤k

A(x, ti(x)). (12.2.7)

Proof First-order logic includes the equality axioms and hence T proves that all
instances of all such axioms, as well as of its own axioms, are true. What remains
from the disjunction (12.2.6) in Corollary 12.2.2 is given by (12.2.7).

Let us now assume that our formula is more complex than just ∀∃, say it is a
∀∃∀-formula, i.e. a formula of the form

∀x∃y∀zD(x, y, z), (12.2.8)

with D quantifier-free. Let h(x, y) be a new binary function symbol not in L. It is
often called a Herbrand function. Then (12.2.8) is logically valid if and only if

∀x∃yD(x, y, h(x, y)) (12.2.9)

is logically valid; in fact, a theory T in the language L proves (12.2.8) if and only if it
proves (12.2.9). It is clear that the validity of the former in an L-structure implies the
validity of the latter. But the opposite is also true in the following sense: if (12.2.8)
were not true then there would be an a in the structure such that for each b we can
find a c there such that ¬D(a, b, c); hence, taking for h(a, b) one such c, interprets
the Herbrand function in a way such that (12.2.9) fails.

Combining this reasoning with Corollary 12.2.3 yields the next statement.

Corollary 12.2.4 (The KPT theorem [323]) Let T be a universal theory in a lan-
guage L and let ∀x∃y∀zD(x, y, z) be provable in T where D is quantifier-free.

Then there are k ≥ 1 and L-terms

t1(x), t2(x, z1), . . . , tk(x, z1, . . . , zk−1)

such that T proves

D(x, t1(x), z1) ∨ D(x, t2(x, z1), z2) ∨ · · · ∨ D(x, tk(x, z1, . . . , zk−1), zk). (12.2.10)

Proof Think of T as a theory in the language L ∪ {h}, with h the symbol for the
Herbrand function corresponding to the formula. Then the hypothesis of the theorem
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implies by Herbrand’s theorem that T proves (12.2.9) and, hence, a disjunction of the
form ∨

i≤k
D(x, t′i(x), h(x, t′i(x))). (12.2.11)

Modify this disjunction as follows. Find a subterm s occurring in (12.2.11) that starts
with the symbol h and that has the maximum size among all such terms. It must be
one of the terms h(x, t′i(x)) sitting at a position z in one of the disjuncts of (12.2.11);
say it is h(x, t′k(x)). Replace all its occurrences in the disjunction by a new variable
zk. This maneuver clearly preserves the validity on all structures for L ∪ {h} that
are models of T because we can interpret h arbitrarily. Note that by choosing the
maximum-size subterm we know that it does not occur in any t′i with i < k.

Now choose the next to maximum size subterm s of the required form and replace
it everywhere by zk−1. The subterm s is either in t′k in which case we have just
simplified t′k but have not changed anything else, or it may be one of the h(x, t′i(x)),
say h(x, t′k−1(x)). The subterm s then does not occur in any t′i for i < k− 1 but it may
still occur in t′k. This will transform t′k into a term t′′k (x, zk−1) that may depend also on
zk−1. Hence the last two disjuncts on the disjunction will look like

· · · ∨ D(x, t′k−1(x), zk−1) ∨ D(x, t′′k (x, zk−1), zk)

for some term t′′k with the variables shown.
Repeat this process as long as there is any occurrence of the symbol h.

There is a nice interpretation of the disjunction (12.2.3) in terms of a two-player
game, the so-called Student–Teacher game. Assume that

∀x∃y∀zD(x, y, z)

is valid in an L-structure (this is usually applied to the standard model, so we may
consider that the formula is true). Consider a game between Student and Teacher
proceeding in rounds. They both receive some a ∈ {0, 1}∗, and the task of Student is
to find b ∈ {0, 1}∗ such that ∀zD(a, b, z) is true. They play as follows.

• In the first round Student produces a candidate solution b1. If ∀zD(a, b1, z) is true
then Teacher says so. Otherwise she gives Student a counter-example: some c1 ∈
{0, 1}∗ such that ¬D(a, b1, c1) holds.

• Generally, before the ith round, i ≥ 2, Student has suggested solutions b1, . . . , bi−1
and has received counter-examples c1, . . . , ci−1. He sends a new candidate solution
bi and Teacher either accepts it or sends her counter-example.

The play may continue for a fixed number of rounds or for an unlimited number, as
prearranged. Student wins if and only if he finds a valid solution.

Assume that the disjunction (12.2.11) is valid. Student may use the terms ti as his
strategy: in the first round he sends

b1 := t1(a1).
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If that is incorrect and he gets c1 as a counter-example, he sends

b2 := t2(a, c1)

in the second round and similarly in the later rounds. But, because (12.2.11) is valid
in the structure, in at most the kth round his answer must be correct. Hence we get

Corollary 12.2.5 Let T be a universal theory in a language L and let ∀x∃y∀z
D(x, y, z), where D is quantifier-free, be provable in T. Let M be any model of T.

Then there are k ≥ 1 and L-terms ti(x, z1, . . . , zi−1), i ≤ k, such that Student has a
winning strategy for the Student–Teacher game, associated with the above formula
over M, such that he wins in at most k rounds for every a. Moreover, his strategy is
computed by the terms t1, . . . , tk as described above.

12.3 The || . . . || Translation

In Section 1.4 we presented the set of clauses DefC(x, y) that define a circuit C: the set
is satisfied if and only if y is the computation of C on an input x. We considered there
only circuits with one output, the last y-bit. Now we need to extend this notation to
circuits which output multiple bits (i.e. strings). It will also be convenient to consider
circuits with multiple string inputs (rather than combining one-string inputs). By
DefC(x1, . . . , xr; y, z) we denote the set of clauses whose conjunction means that y is
the computation of C on the inputs xi with output string z.

The following statement formalizes in resolution the fact that the computations of
circuits are uniquely determined by the inputs; it is easily proved by induction on the
size of the circuit.

Lemma 12.3.1 Let C be a size s circuit. Then there are size O(s) resolution deriva-
tions of

yj ≡ uj and zi ≡ vi, for all i, j,

from the initial clauses

DefC(x1, . . . , xr; y, z) ∪ DefC(x1, . . . , xr; , u, v).

Recall that LBA(PV) is the language LBA of bounded arithmetic augmented by
all function symbols of LPV; in particular, # is among them. Our aim is to define
for all sharply bounded (i.e. �b

0) LBA(PV)-formulas A(x1, . . . , xk) a sequence of
propositional formulas

||A(x1, . . . , xk)||n1,...,nk

with the property that the formula is a tautology if and only if

∀x1(|x1| = n1) . . . ∀xk(|xk| = nk) A(x1, . . . , xk)

is true in N.


