Michael Sipser
Mathematics Department
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

ABSTRACT.

We present a new, combinatorial proof of the classical theorem that the analytic sets are not closed under complement. Possible connections with questions in complexity theory are discussed.

INTRODUCTION.

A number of recent results in circuit complexity theory have been stimulated by a new understanding of certain old theorems in descriptive set theory. The hierarchy theorem for polynomial-size, constant depth circuits is the finite counterpart to the Borel rank hierarchy theorem [S2]. The lower bound for circuits computing the parity function [FSS, A] in part stemmed from a result showing that infinite parity functions are not Borel definable [S1]. In both cases, the classical proofs do not exhibit enough combinatorial structure to yield insight into the finitary questions and new proofs were required.

The link between circuits and Borel sets stems from an analogy between polynomial growth and countability [S1]. In this paper, we propose a further link suggested by this analogy, one between NP
and the analytic sets [K, M]. Several observations support this connection. NP sets are exactly those which are accepted by polynomial-size, nondeterministic circuits (ignoring uniformity issues). A Nondeterministic circuit is one with inputs that are nondeterministically set as well as ordinary inputs. By the addition of additional nondeterministic inputs these circuits may be converted to equivalent polynomial-size, depth-2, nondeterministic circuits. The infinitary analog to these, the countable, depth-2, nondeterministic circuits accept exactly the analytic sets.

This analogy suggests that the $N P=c o-N P$ question may be illuminated by the theorem stating that the class of analytic sets is not closed under complementation. The classical proof by diagonalization of this theorem does not seem to have a corresponding finitary argument. We give here a new purely combinatorial proof of this theorem.

PRELIMINARIES.

Let $\Sigma=\{0,1\}$ and Σ^{ω} be the set of infinite 0,1 sequences or reals. An interval is the set of reals extending a finite sequence. An open set is a union of intervals. Closing the open sets under countable union and intersection gives the Borel sets. An analytic set is a projection of a Borel set, (i.e., A is analytic if $A=\{\alpha:\langle\alpha, \beta\rangle \in B$ for some $B\}$ where B is Borel and $\langle\alpha, \beta\rangle$ is any pairing function).

Definition. A literal is a member of $\left\{x_{1}, \bar{x}_{1}, x_{2}, \bar{x}_{2}, \ldots\right\}$. A \underline{V}_{1}-circuit is a collection of literals and an \underline{I}_{2}-circuit is a
countable collection of V_{1}-circuits. These naturally represent functions from Σ^{ω} to Σ. A nondeterministic circuit has additional nondeterministic inputs represented by literals drawn from $\left\{y_{i}, \overline{y_{i}}\right\}$. It accepts a given real if there is some setting of the nondeterministic inputs which causes evaluation to l. If a nondeterministic Λ_{2}-circuits accepts a real ρ, then a setting π of the x and y inputs causing evaluation to l is called a proof. If C is a member V_{1}-circuit then π satisfies C at j if the $j^{\text {th }}$ literal of C is 1 in π.

The nondeterministic circuits accept exactly the class of analytic sets.

Let $N=\{1,2, \ldots\}$ and N^{*} be the set of finite sequences over N. A tree is a subset of N^{*} closed under prefix. Let T be the set of all trees. We fix any enumeration of N^{*} and obtain a natural correspondence between trees and reals. Hence we may speak of; say, an analytic set of trees. A tree is well-founded if it has no infinite branch, (i.e., tree τ is well-founded every $\alpha \in \mathcal{N}^{\omega}$ contains a prefix ber). Let W be the set of all well-founded trees. It is easy to verify that \bar{W}, the complement of W, is analytic. (nondeterministically guess the branch). We show that W itself is not.

We introduce some additional notation. If s, t are sequences in N^{*} then $s t$ is the concatenation of s and t. If A is a set of sequences then $s A=\{s t: t \in A\}$.

The Proof.
Theorem. There is an analic set \bar{W} whose complement is not
analytic.

Proof. Let W be the set of all well-founded trees. We first establish the following Ramsey-like property of collections of trees.

Definition. For any tree τ, collection of trees A, and $s \in N^{*}$ we say the detail of τ at $s, \tau^{s}=\{t: s t \in \tau\}$. The detail of A at $S, A^{S}=\left\{T^{S}: \tau \in A\right\}$. Say A is large at s if $W \subseteq A^{S}$ or simply large if it is large for some s. For example, W is large at e, the sequence of length 0 .

Claim. If A is large at s and is divided into a countable union of sets, $A=B_{1} \cup B_{2} \cup \ldots$ then for some i and j, B_{i} is large at $s j$.

Proof. Assume to the contrary that for each $i, j B_{i}$ is not large at $s j$. So each detail of B_{i} at any sj lacks a tree T, j in W. By pasting these together, one obtains the well-founded tree $\sigma=1 \tau_{1,1} \cup \tau_{2,2} \cup \cdots \operatorname{not} i n B_{i}^{S}$ for any i and therefore not in A^{s}. But $\sigma \in W$ contradicting the largeness of A at s

To show that W is not analytic, we construct a sequence of large sets $W \supseteq A_{1} \supseteq A_{2} \supseteq \cdots$ containing trees which "converge" to one not in W.

Assume to the contrary that W is analytic, accepted by a nondeterministic Λ_{2}-circuited N containing V_{1}-circuits C_{1}, C_{2}, \ldots. Let $N *=\left\{t_{1}, t_{2}, \ldots\right\}$. We perform a construction in stages. The goal of stage i is to construct $A_{i} \subseteq W, s_{i} \in N^{*}$, and $p_{i} \in N^{*}$ such that A_{i} is large at s_{i}, all $\sigma \in A_{i}$ agree on t_{1}, \ldots, t_{i}, and each o \quad 解 has a proof which satisfies C_{j} at $p_{i}(j)$
(the $j^{\text {th }}$ position of p_{i}) for $j \leq i$. Let $A_{0}=W, s_{i}=e$, and $p_{i}=e . \quad$ Go to Stage 1.

Stage i. Let $B_{m}=\left\{\alpha \in A_{i-1}: \alpha\right.$ has a proof which satisfies C_{i} at $m\}$. By the lemma, for some m and n, B_{m} is large at $s_{i-1} n$. Fix m and n. Let $D=\left\{\alpha \in B_{m}: \alpha\right.$ contains $\left.t_{i}\right\}$ and $E=B_{m}-D$. By the lemma, either D or E is large at a sequence $s_{i-1} n k$. Let A_{i} be this large set. Let $s_{i}=s_{i-1} n k$ and $p_{i}=p_{i-1} m$. Go to stage $\mathbf{i}+1$.

It is straightforward to verify that upon completion of all stages there is exactly one tree α in every A_{i}. Furthermore α is not in W since it contains an infinite branch $S_{1} \cup S_{2} u \cdots$ and there is a proof $\pi=p_{1} u p_{2} u \cdots$ which satisfies every c_{i}. Therefore α is accepted by N, a contradiction.

CONCLUSION.
The links between topological notions such as open set, Borel set, and analytic set and their companions in circuit complexity bear further investigation. Ajtai's theorem [A] that every polynomial-size, depth-k definable set is well approximable by a union of cylinders is analogous to the theorem that all Borel sets are measurable, i.e., well approximable by open sets. There seems to be a parallel between Baire category theorem type constructions and constructions involving probabilistic methods. It is interesting to view these observations in the context of defining a notion of finite topological space.

ACKNOWLEDGEMENT.

I am deeply grateful to John Addison for having introduced me to descriptive set theory.

REFERENCES

[A] M. Ajtai, " \sum_{1}^{1}-formulae on finite structures", Annals of Pure and Applied Logic 24, 1983, 1-48.
[FSS] M. Furst, J.B. Saxe, M. Sipser, "Parity, circuits, and the polynomial time hierarchy", Proceedings of the 22 nd Annual Symposium on Foundations of Computer Science, 1981, 260-270.
[K] K. Kuratowski, Topology, Academic Press, 1966.
[M] Y. Moschavakis, Descriptive Set Theory, North-Holland, 1980.
[S1] M. Sipser, "On polynomial versus exponential growth", unpublished report, 1981.
[S2] M. Sipser, "Borel sets and circuit complexity", Proceedings of the 15 th Annual Symposium on Theory of Computing, 1983, 61-69.

