An Introduction to

Godel's Theorems

Peter Smith

Faculty of Philosophy
University of Cambridge

Version date: December 12, 2005
Copyright: (©2005 Peter Smith
Not to be cited or quoted without permission

The book’s website is at www.godelbook.net

Contents

Preface

1

What Godel's Theorems say

1.1
1.2
1.3
1.4
1.5
1.6
1.7

Basic arithmetic

Incompleteness

More incompleteness

Some implications?

The unprovability of consistency
More implications?

What’s next?

Decidability and enumerability

2.1
2.2
2.3

Effective computability, effective decidability
Enumerable sets
Effective enumerability

Axiomatized formal theories

3.1
3.2
3.3
3.4
3.5
3.6

Formalization as an ideal

Formalized languages

Axiomatized formal theories

More definitions

The effective enumerability of theorems
Negation complete theories are decidable

Capturing numerical properties

4.1
4.2
4.3
4.4
4.5
4.6

Three remarks on notation

A remark about extensionality

The language L4

Expressing numerical properties and relations
Capturing numerical properties and relations

Expressing vs. capturing: keeping the distinction clear

Sufficiently strong arithmetics

5.1
5.2
5.3
5.4

The idea of a ‘sufficiently strong’ theory

An undecidability theorem

An incompleteness theorem

The truths of arithmetic can’t be axiomatized

N O U W = <

— =
= = 00 00

15
15
17
20
21
23
25

26
26
27
28
31
33
33

35
35
36
37
38

Contents

Interlude: taking stock, looking ahead

6

7

10

11

Two formalized arithmetics

6.1 BA — Baby Arithmetic
6.2 BA is complete

6.3 Q — Robinson Arithmetic
6.4 Q is not complete

6.5 Why Q is interesting

What Q can prove

7.1 Capturing less-than-or-equal-to in Q

7.2 Eight simple facts about what Q can prove
7.3 Defining the Ag, 31 and II; wifs

7.4 Qis ¥y complete

7.5 An intriguing corollary

First-order Peano Arithmetic

8.1 Induction and the Induction Schema

8.2 PA — First-order Peano Arithmetic

8.3 PA in summary

8.4 A very brief aside: Presburger Arithmetic
8.5 Is PA consistent?

Primitive recursive functions

9.1 Introducing the primitive recursive functions
9.2 Defining the p.r. functions more carefully
9.3 An aside about extensionality

9.4 The p.r. functions are computable

9.5 Not all computable numerical functions are p.r.

9.6 Defining p.r. properties and relations
9.7 Some more examples

Capturing functions

10.1 Expressing and capturing functions

10.2 ‘Capturing as a function’

10.3 ‘If capturable, then capturable as a function’
10.4 Capturing functions, capturing properties
10.5 The idea of p.r. adequacy

Q is p.r. adequate
11.1 Q can capture all ¥; functions

11.2 L4 can express all p.r. functions: starting the proof

11.3 The idea of a S-function

11.4 L 4 can express all p.r. functions: finishing the proof

11.5 The p.r. functions are 3,

40

43
43
45
47
48
49

50
50
52
54
56
58

60
60
62
64
65
66

69
69
71
73
74
76
78
79

85
85
86
87
88
89

91
91
94
95
97
99

Contents

11.6

The adequacy theorem

Interlude: a very little about Principia

12 The arithmetization of syntax

13

12.1
12.2
12.3
12.4
12.5
12.6
12.7

Godel numbering

Coding sequences

Prfseq is p.r.

Some cute notation

The idea of diagonalization
Gdl and diag and are p.r.
Proving that Prfseq is p.r.

PA is incomplete

13.1
13.2
13.3
13.4
13.5
13.6
13.7
13.8

Constructing G

Interpreting G

G is undecidable in PA: the semantic argument
‘G is of Goldbach type’

G is unprovable in PA: the syntactic argument
w-incompleteness, w-inconsistency

=G is unprovable in PA: the syntactic argument
Putting things together

14 Godel's First Theorem

15

14.1
14.2
14.3
14.4
14.5
14.6
14.7

Generalizing the semantic argument
Incompletability — a first look

The First Theorem, at last

Rosser’s improvement

Broadening the scope of the First Theorem
True Basic Arithmetic can’t be axiomatized
Incompletability — another quick look

Using the Diagonalization Lemma

15.1
15.2
15.3
15.4
15.5
15.6
15.7

The provability predicate

Diagonalization again

The Diagonalization Lemma: a special case
The Diagonalization Lemma generalized
Incompleteness again

Capturing provability?

Tarski’s Theorem

Interlude: about the First Theorem

16 The Second Incompleteness Theorem

16.1

Expressing the Incompleteness Theorem in PA

100

102

108
108
110
111
112
113
113
114

121
121
122
123
124
124
125
126
127

128
128
130
130
132
135
136
137

138
138
139
140
141
142
142
143

147

151
151

Contents

17

16.2 The Formalized First Theorem in PA
16.3 The Second Theorem for PA

16.4 How surprising is the Second Theorem?
16.5 How interesting is the Second Theorem?

Exploring the Second Theorem

17.1 More notation

17.2 The Hilbert-Bernays-Lob derivability conditions
17.3 G, Con, and ‘Godel sentences’

17.4 Lob’s Theorem

Bibliography

152
153
154
156

158
158
159
161
162

165

Preface

In 1931, the young Kurt Godel published his First and Second Incompleteness
Theorems; very often, these are simply referred to as ‘Godel’s Theorems’. His
startling results settled (or at least, seemed to settle) some of the crucial ques-
tions of the day concerning the foundations of mathematics. They remain of
the greatest significance for the philosophy of mathematics — though just what
that significance is continues to be debated. It has also frequently been claimed
that Gédel’s Theorems have a much wider impact on very general issues about
language, truth and the mind. This book gives outline proofs of the Theorems
and related formal results, and touches on some of their implications.

Who is this book for? Roughly speaking, for those who want a lot more detail
than you get in books for a general audience (the best of those is Franzén 2005),
but who find classic texts in mathematical logic (like Mendelson 1997) daunting
and too short on explanatory scene-setting. So I hope philosophy students taking
an advanced logic course will find the book useful, as will mathematicians who
want a relatively relaxed exposition.

I originally intended to write a rather shorter book, leaving more of the formal
details to be filled in from elsewhere. But while that plan might have suited some
readers, I soon realized that it would seriously irritate others to be sent hither
and thither to consult a variety of text books with different terminologies and
different notations. So in the end, I have given more or less full proofs of most
key results. However, my original plan shows through in two ways. First, some
proofs are still only roughly sketched in, and there are other proofs which are
omitted entirely. Second, I try to signal very clearly when the detailed proofs
I do give can be skipped without much loss of understanding. With judicious
skimming, you should be able to follow the main formal themes of the book even
if you start from a very modest background in logic.

As we go through, there is also an amount of broadly philosophical commen-
tary. I follow Godel in believing that our formal investigations and our general
reflections on foundational matters should illuminate and guide each other. 1
hope that the more philosophical discussions (though certainly not always un-
contentious) will also be reasonably widely accessible.

Writing a book like this presents many problems of organization. At various
points we will need to call upon some background ideas from general logical
theory. Do we explain them all at once, up front? Or do we introduce them as

11 plan, in due course, to put optional exercises (and answers!) on the book’s website at
www.godelbook.net.

Preface

we go along, when needed? Similarly we will also need to call upon some ideas
from the general theory of computation — for example, we will make use of both
the notion of a ‘primitive recursive function’ and the more general notion of
a ‘recursive function’. Again, do we explain these together? Or do we give the
explanations many chapters apart, when the respective notions first get used?
I’'ve mostly adopted the second policy, introducing new ideas as and when
needed. This has its costs, but I think that there is a major compensating benefit,
namely that the way the book is organized makes it clearer just what depends on
what. It also reflects something of the historical order in which ideas emerged.

Many thanks are due to generations of students and to JC Beall, Hubie Chen,
Torkel Franzén, Andy Fugard, Jeffrey Ketland, Jonathan Kleid, Fritz Mueller,
Tristan Mills, Jeff Nye, Alex Paseau, Michael Potter, José F. Ruiz, Wolfgang
Schwartz and Brock Sides for comments on draft chapters. Particular thanks to
Richard Zach both for pointing out a number of mistakes, large and small, in
an early draft and for suggestions that much improved the book. And particular
thanks too to Seamus Holland, Luca Incurvati, Brian King, and Mary Leng, who
read carefully through a late draft in a seminar together and made many helpful
comments.

Like so many others, I am also hugely grateful to Donald Knuth, Leslie Lam-
port and the ITEX community for the document processing tools which make
typesetting a mathematical text like this one such a painless business.

vi

1 What Godel's Theorems say

1.1 Basic arithmetic

It seems to be child’s play to grasp the fundamental notions involved in the arith-
metic of addition and multiplication. Starting from zero, there is a sequence of
‘counting’ numbers, each having just one immediate successor. This sequence of
numbers — officially, the natural numbers — continues without end, never circling
back on itself; and there are no ‘stray’ numbers, lurking outside this sequence.
Adding n to m is the operation of starting from m in the number sequence and
moving n places along. Multiplying m by n is the operation of (starting from
zero and) repeatedly adding m, n times. And that’s about it.

Once these fundamental notions are in place, we can readily define many more
arithmetical notions in terms of them. Thus, for any natural numbers m and n,
m < n if there is a number k& # 0 such that m + k = n. m is a factor of n if
0 < m and there is some number k such that 0 < k and m X k = n. m is even
if it has 2 as a factor. m is prime if 1 < m and m’s only factors are 1 and itself.
And so on.

Using our basic and/or defined concepts, we can then make various general
claims about the arithmetic of addition and multiplication. There are familiar
elementary truths like ‘addition is commutative’, i.e. for any numbers m and
n, we have m +n = n + m. There are also yet-to-be-proved conjectures like
Goldbach’s conjecture that every even number greater than two is the sum of
two primes.

That second example illustrates the truism that it is one thing to understand
what we’ll call the language of basic arithmetic (i.e. the language of the addition
and multiplication of natural numbers, together with the standard first-order
logical apparatus), and it is another thing to be able to evaluate claims that can
be framed in that language.

Still, it is extremely plausible to suppose that, whether the answers are readily
available to us or not, questions posed in the language of basic arithmetic do have
entirely determinate answers. The structure of the number sequence is (surely)
simple and clear. There’s a single, never-ending sequence, starting with zero;
each number is followed by a unique successor; each number is reached by a finite
number of steps from zero; there are no repetitions. The operations of addition
and multiplication are again (surely) entirely determinate; their outcomes are
fixed by the school-room rules. So what more could be needed to fix the truth or
falsity of propositions that — perhaps via a chain of definitions — amount to claims
of basic arithmetic? To put it fancifully: God sets down the number sequence

1. What Goédel's Theorems say

and specifies how the operations of addition and multiplication work. He has
then done all he needs to do to make it the case that Goldbach’s conjecture is
true (or false, as the case may be).

Of course, that last remark is far too fanciful for comfort. We may find it
compelling to think that the sequence of natural numbers has a definite structure,
and that the operations of addition and multiplication are entirely nailed down
by the familiar rules. But what is the real content of the thought that the truth-
values of all basic arithmetic propositions are thereby ‘fixed’?

Here’s one initially attractive way of giving non-metaphorical content to that
thought. The idea is that we can specify a bundle of fundamental assumptions
or azioms which somehow pin down the structure of the number sequence,
and which also characterize addition and multiplication (after all, it is entirely
natural to suppose that we can give a reasonably simple list of true axioms
to encapsulate the fundamental principles so readily grasped by the successful
learner of school arithmetic). So suppose that ¢ is a proposition which can be
formulated in the language of basic arithmetic. Then, the plausible suggestion
continues, the assumed truth of our axioms always ‘fixes’ the truth-value of any
such ¢ in the following sense: either ¢ is logically deducible from the axioms by
a normal kind of proof, and so is true; or = is deducible from the axioms, and
so ¢ is false.2 We may not, of course, actually stumble on a proof one way or the
other. But the picture is that the axioms contain the information from which the
truth-value of any basic arithmetical proposition can in principle be deductively
extracted by deploying familiar step-by-step logical rules of inference.

Logicians say that a theory T' is (negation)-complete if, for every sentence ¢ in
the language of the theory, either ¢ or —p is deducible in T’s proof system. So,
put into this jargon, the suggestion we are considering is: we should be able to
specify a reasonably simple bundle of true axioms which taken together give us a
complete theory of basic arithmetic. In other words, we can find a theory in which
we can prove in principle the truth or falsity of any claim about addition and/or
multiplication (or at least, any claim we can state using quantifiers, connectives
and identity). And if that’s right, truth in basic arithmetic could just be equated
with provability in some appropriate system.

It is tempting to say more. For what will the axioms of basic arithmetic look
like? Here’s a candidate: ‘For every natural number, there’s a unique next one’.
And this claim looks very like a definitional triviality. You might say: it is just
part of what we mean by talk of the natural numbers that we are dealing with
an ordered sequence where each member of the sequence has a unique successor.
And, plausibly, other candidate axioms are similarly true by definition (either
bald definitions, or derivable from logic plus definitions).

But if both of those thoughts are right — if the truths of basic arithmetic

IThere are issues lurking here about what counts as ‘pinning down a structure’ using a
bunch of axioms: we’ll have to return to some of these issues in due course.

2‘Normal proof’ is vague, and later we will need to be more careful: but the idea is that
we don’t want to countenance, e.g., ‘proofs’ with an infinite number of steps.

2

Incompleteness

all flow deductively from logic plus definitions — then true arithmetical claims
would be simply analytic in the philosophers’ sense (follows from logic plus
definitions).> And this so-called ‘logicist’ view would then give us a very neat
explanation of the special certainty and the necessary truth of correct claims of
basic arithmetic.

1.2 Incompleteness

But now, in headline terms, what Gédel’s First Incompleteness Theorem shows
1s that that the entirely natural idea that we can axiomatize basic arithmetic is
wrong. Suppose we try to specify a suitable axiomatic theory 7' that seems to
capture the structure of the natural number sequence and pin down addition and
multiplication (and maybe a lot more besides). Then Godel gives us a recipe for
coming up with a corresponding sentence Gr, couched in the language of basic
arithmetic, such that (i) we can show (on very modest assumptions) that neither
Gr nor =Gy can be proved in 7', and yet (ii) we can also recognize that G will
be true so long as T' is consistent.

This is surely astonishing. Somehow, it seems, the class of basic arithmetic
truths about addition and multiplication will always elude our attempts to pin
it down by a fixed set of fundamental assumptions (definitional or otherwise)
from which we can deduce everything else.

How does Godel show this in his great 1931 paper? Well, note how we can use
numbers and numerical propositions to encode facts about all sorts of things (for
a trivial example, students in the philosophy department might be numbered off
in such a way that one student’s code-number is less than another’s if the first
student is older than the second; a student’s code-number is even if the student
in question is female; and so on). In particular, then, we can use numbers and
numerical propositions to encode facts about what can be proved in a theory
T. And what Godel did is find a general method that enabled him to take any
theory T strong enough to capture a modest amount of basic arithmetic and
construct a corresponding arithmetical sentence Gp which encodes the claim
‘The sentence Gr itself is unprovable in theory 7.

Suppose that T is a sound theory of arithmetic, i.e. T has true axioms and
a reliably truth-preserving deductive logic. Then everything 7" proves must be
true. But if T were to prove its Godel sentence Gp, then it would prove a false-
hood (since what Gr ‘says’ would then be untrue). Hence, if T is sound, Gr is
unprovable in T. But then Gy is ¢rue (since it correctly ‘says’ it is unprovable).
Hence —Gr is false; and so that too can’t be proved by T'. In sum, still assuming
T is sound, neither G nor its negation will be provable in T: therefore T' can’t

3Thus Gottlob Frege, writing in his wonderful Foundations of Arithmetic, urges us to seek
the proof of a mathematical proposition by ‘following it up right back to the primitive truths.
If, in carrying out this process, we come only on general logical laws and on definitions, then
the truth is an analytic one.” (1884/1950, p. 4)

1. What Goédel's Theorems say

be negation-complete. And in fact we don’t even need to assume that 7" is sound:
Godel goes on to show that 7’s mere consistency is enough to guarantee that
Gr is unprovable.

Our reasoning here about ‘This sentence is unprovable’ is of course reminiscent
of the Liar paradox, i.e. the ancient conundrum about ‘This sentence is false’,
which is false if it is true and true if it is false. You might well wonder whether
Godel’s argument leads to a paradox rather than a theorem. But not so. As
we will see, there is nothing at all suspect about Godel’s First Theorem as a
technical result about formal axiomatized systems.

‘Hold on! If we can locate Gr, a Gddel sentence for our favourite theory
of arithmetic 7', and can argue that Gr is true-but-unprovable, why can’t we
just patch things up by adding it to 7" as a new axiom?’ Well, to be sure, if
we start off with theory T' (from which we can’t deduce Gr), and add Gr as
a new axiom, we’ll get an expanded theory U = T + G from which we can
quite trivially deduce Gr. But we can now just re-apply Godel’s method to our
improved theory U to find a new true-but-unprovable-in-U arithmetic sentence
Gy that encodes ‘I am unprovable in U’. So U again is incomplete. Thus T is
not only incomplete but, in a quite crucial sense, is incompletable.

Let’s emphasize this key point. There’s nothing mysterious about a theory
failing to be negation-complete, plain and simple. Imagine the departmental
administrator’s ‘theory’ T" which records some basic facts about the course se-
lections of a group of students — the language of T, let’s suppose, is very limited
and can only be used to tell us about who takes what course in what room when.
From the ‘axioms’ of T' we’ll be able, let’s suppose, to deduce further facts such
as that Jack and Jill take a course together, and at least ten people are taking
the logic course. But if there’s no axiom in 7" about their classmate Jo, we might
not be able to deduce either J = ‘Jo takes logic’ or =J = ‘Jo doesn’t take logic’.
In that case, T isn’t yet a negation-complete story about the course selections
of students. However, that’s just boring: for the ‘theory’ about course selection
is no doubt completable (i.e. it can be expanded to settle every question that
can be posed in its very limited language). By contrast, what gives Gédel’s First
Theorem its real bite is that it shows that any properly axiomatized and consis-
tent theory of basic arithmetic must remain incomplete, whatever our efforts to
complete it by throwing further axioms into the mix.

Note, by the way, that since Gy can’t be derived from U, i.e. T + Gp, it can’t
be derived from the original T either. And we can keep on going: iteration of the
same trick generates a never-ending stream of independent true-but-unprovable
sentences for any nice axiomatized theory of basic arithmetic 7.

1.3 More incompleteness

Incompletability doesn’t just affect basic arithmetic. For the next simplest ex-
ample, consider the mathematics of the rational numbers (fractions, positive and

4

Some implications?

negative). This embeds basic arithmetic in the following sense. Take the positive
rationals of the form n/1 (where n is a natural number). These of course form a
sequence with the structure of the natural numbers. And the usual notions of ad-
dition and multiplication for rational numbers, when restricted to rationals of the
form n/1, correspond exactly to addition and multiplication for the natural num-
bers. So suppose that there were a negation-complete axiomatic theory T' of the
rationals such that, for any proposition v of rational arithmetic, either ¥ or —
can be deduced from T'. Then, in particular, given any proposition 1)’ about the
addition and/or multiplication of rationals of the form n/1, T will entail either
" or —m)’. But then T plus simple instructions for rewriting such propositions 1)’
as propositions about the natural numbers would be a negation-complete theory
of basic arithmetic — which is impossible by the First Incompleteness Theorem.
Hence there can be no complete theory of the rationals.

Likewise for any stronger theory that can define (an analogue of) the natural-
number sequence. Take set theory for example. Start with the empty set @. Form
the set {@} containing & as its sole member. Now form the set {&, {&}} contain-
ing the empty set we started off with plus the set we’ve just constructed. Keep
on going, at each stage forming the set of sets so far constructed (a legitimate
procedure in any standard set theory). We get the sequence

o.{2}.{2,{2}}. {2.{2}.{2.{2}}}....

This has the structure of the natural numbers. It has a first member (correspond-
ing to zero); each member has one and only one successor; it never repeats. We
can go on to define analogues of addition and multiplication. If we could have a
negation-complete axiomatized set theory, then we could, in particular, have a
negation-complete theory of the fragment of set-theory which provides us with
an analogue of arithmetic; and then adding a simple routine for translating the
results for this fragment into the familiar language of basic arithmetic would
give us a complete theory of arithmetic. So, by Godel’s First Incompleteness
Theorem again, there cannot be a negation-complete set theory.

In sum, any axiomatized mathematical theory T rich enough to embed a
reasonable amount of the basic arithmetic of the addition and multiplication
of the natural numbers must be incomplete and incompletable — yet we can
recognize certain ‘Godel sentences’ for T to be not only unprovable but to be
true if T is consistent.

1.4 Some implications?

Godelian incompleteness immediately defeats what is otherwise a surely attrac-
tive suggestion about the status of arithmetic — namely the logicist idea that it
flows deductively from definitional truths that articulate the very ideas of the
natural numbers, addition and multiplication.

1. What Goédel's Theorems say

But then, how do we manage somehow to latch on to the nature of the un-
ending number sequence and the operations of addition and multiplication in a
way that outstrips whatever rules and principles can be captured in definitions?
At this point it can seem that we must have a rule-transcending cognitive grasp
of the numbers which underlies our ability to recognize certain ‘Godel sentences’
as correct arithmetical propositions. And if you are tempted to think so, then
you may well be further tempted to conclude that minds such as ours, capable
of such rule-transcendence, can’t be machines (supposing, reasonably enough,
that the cognitive operations of anything properly called a machine can be fully
captured by rules governing the machine’s behaviour).

So there’s apparently a quick route from reflections about Godel’s First The-
orem to some conclusions about the nature of arithmetical truth and the nature
of the minds that grasp it. Whether those conclusions really follow will emerge
later. For the moment, we have an initial idea of what the Theorem says and
why it might matter — enough, I hope, already to entice you to delve further into
the story that unfolds in this book.

1.5 The unprovability of consistency

If T' can prove even a modest amount of basic arithmetic, it will be able to prove
0 # 1. Soif T also proves 0 = 1, it is inconsistent. Conversely, if T' is inconsistent,
then — since an inconsistent theory can prove anything? — it can prove 0 = 1.
However, we said that we can use numerical propositions to encode facts about
what can be proved in T. So there will be in particular a numerical proposition
Conr that encodes the claim that T can’t prove 0 = 1, i.e. encodes in a natural
way the claim that T is consistent.

We already know, however, that there is also a numerical proposition which
encodes the claim that G is unprovable, namely Gr itself!

So this means that (part of) the conclusion of Gédel’s First Theorem, namely
the claim that if T" is consistent, then Gr is unprovable, can itself be encoded by
a numerical proposition, namely Conp — Grp.

Now for another wonderful Goédelian insight. It turns out that the informal
reasoning that we use, outside T, to prove ‘if T is consistent, then G is un-
provable’ is elementary enough to be mirrored by reasoning inside T' (i.e. by
reasoning with numerical propositions which encode facts about T-proofs). Or
at least that’s true so long as T satisfies conditions only slightly stronger than
the First Theorem assumes. So, again on modest assumptions, we can show that
T actually proves Conp — Gr.

But the First Theorem has already shown that if T is consistent it can’t prove
Gr. So it immediately follows that if T is consistent it can’t prove Conp. And that

4There are, to be sure, deviant non-classical logics in which this principle doesn’t hold. In
this book, however, we aren’t going to take further note of them, if only because of considera-
tions of space.

6

More implications?

is Godel’s Second Incompleteness Theorem. Roughly interpreted: nice theories
that include enough basic arithmetic can’t prove their own consistency.®

1.6 More implications?

Suppose there’s a genuine issue about whether T is consistent. If T' had been
able to prove itself consistent, would that have settled the matter and shown
that it 4s consistent? Of course not. For if T" were inconsistent we can derive
anything within 7" — including a statement of its own consistency!

But then why does the Second Theorem matter? Think of it this way. If a nice
arithmetical theory T can’t even prove that it is itself consistent, it certainly
can’t prove that a richer theory T is consistent (since if the richer theory
is consistent, then any cut-down part of it is consistent). Thus we can’t use
nice ‘finitistic’ reasoning of the kind we can encode in ordinary arithmetic to
prove other more ‘risky’ mathematical theories are in good shape. For example,
we can’t use unproblematic arithmetical reasoning to convince ourselves of the
consistency of set theory (with its postulation of a universe of wildly infinite
sets).

And that is a very interesting result, for it seems to sabotage what is called
Hilbert’s Programme, which is precisely the project of defending the wilder
reaches of infinitistic mathematics by giving ‘safe’ consistency proofs. A lot more
about this in due course.

1.7 What's next?

What we’ve said so far, of course, has been very sketchy and introductory. We
must now start to do better — though for the next few chapters our discussions
will remain fairly informal. In Chapter 2, we introduce the notions of effective
computability, decidability and enumerability, notions we are going to need in
what follows. Then in Chapter 3, we explain more carefully what we mean by
talking about an ‘axiomatized theory’ and prove some elementary results about
theories in general. In Chapter 4, we introduce some concepts relating specifically
to axiomatized theories of arithmetic. Then in Chapter 5 we prove a neat and
relatively easy result — namely that any so-called ‘sufficiently strong’ axiomatized
theory of arithmetic is negation incomplete. For reasons that we’ll explain, this
informal result falls well short of Godel’s First Incompleteness Theorem. But
it provides a very nice introduction to some key ideas that we’ll be developing
more formally in the ensuing chapters.

5That is rough. The Second Theorem shows that 7' can’t prove Con which is certainly
one entirely natural way of expressing T’s consistency inside 7'. But could there be some other
sentence of T', ConZ,, which also in some good sense expresses T’s consistency but which T' can
prove? We'll have to return to this sort of question later.

2 Decidability and enumerability

This chapter briskly introduces three related ideas that we’ll need in the next
few chapters. Later in the book, we’ll return to these ideas and give a sharp
technical treatment of them. But for present purposes, an informal, intuitive
presentation is enough.

2.1 Effective computability, effective decidability

Familiar arithmetic routines (e.g. for squaring a number or finding the highest
common factor of two numbers) give us ways of effectively computing an answer.
Likewise other familiar routines (e.g. for testing whether a number is prime) give
us ways of effectively deciding whether some property holds.

When we say such routines are effective we mean that (i) they involve entirely
determinate, mechanical, step-by-step procedures. (ii) There isn’t any room left
for the exercise of imagination or intuition or fallible human judgement. (iii) To
execute the procedures, we don’t have to resort to outside oracles (or other
sources of empirical information). (iv) We don’t have to resort to random meth-
ods (coin tosses). And (v) the procedures are guaranteed to terminate and deliver
a result after a finite number of steps.

In a word, effective procedures involve following an algorithm — i.e. following
a series of step-by-step instructions (instructions which are pinned down in ad-
vance of their execution), with each small step clearly specified in every detail
(leaving no room for doubt as to what does and what doesn’t count as executing
the step), and such that following the instructions will always deliver a result.
Such algorithms can be executed by a dumb computer. Indeed it is natural to
turn that last point into an informal definition:

An algorithmic procedure is a computable one, i.e. one that a suit-
ably programmed computer can execute and that is guaranteed to
deliver a result in finite time.

And then we can give two further interrelated definitions:!

A function is effectively computable iff there is an algorithmic pro-
cedure that a suitably programmed computer could use for calcu-
lating the value of the function for any given argument.

IFor more about how to relate these two definitions via the notion of a ‘characteristic
function’, see Section 9.6. We are assuming for the moment that functions are ‘total’ — i.e.
defined for all arguments in the relevant domain. And ‘iff’ is, of course, the standard logicians’
abbreviation for ‘if and only if’.

8

Effective computability, effective decidability

A property is effectively decidable iff there is an algorithmic pro-
cedure that a suitably programmed computer could use to decide
whether the property applies in any given case.

But what kind of computer do we have in mind here when we say that an algo-
rithmic procedure is one that a computer can execute? We need to say something
here about the relevant computer’s (a) size and speed, and (b) architecture.

(a) A real-life computer is limited in size and speed. There will be some upper
bound on the size of the inputs it can handle; there will be an upper bound on
the size of the set of instructions it can store; there will be an upper bound on
the size of its working memory. And even if we feed in inputs and instructions
it can handle, it is of little practical use to us if the computer won’t finish doing
its computation for centuries.

Still, we are going to cheerfully abstract from all those ‘merely practical’ con-
siderations of size and speed. In other words, we will say that a function is
effectively computable if there is a finite set of step-by-step instructions which
a computer could in principle use to calculate the function’s value for any par-
ticular arguments, given memory, working space and time enough. Likewise, we
will say that a property is effectively decidable if there is a finite set of step-by-
step instructions a computer can use which is in principle guaranteed to decide
whether the property applies in any given case, again abstracting from worries
about memory and time limitations. Let’s be clear, then: ‘effective’ here does
not mean that the computation must be feasible for us, on existing computers,
in real time. So, for example, we count a numerical property as effectively decid-
able in this broad sense even if on existing computers it might take more time to
compute whether a given number has it than we have left before the heat death
of the universe. It is enough that there’s an algorithm that works in theory and
would deliver an answer in the end, if only we had the computational resources
to use it and could wait long enough.

‘But then,” you might well ask, ‘why on earth bother with these radically
idealized notions of computability and decidability. If we allow procedures that
may not deliver a verdict in the lifetime of the universe, what good is that? If
we are interested in issues of computability, shouldn’t we really be concerned
not with idealized-computability-in-principle but with some stronger notion of
practicable computability?’

That’s an entirely fair challenge. And modern computer science has much to
say about grades of computational complexity and different levels of feasibility.
However, we will stick to our idealized notions of computability and decidabil-
ity. Why? Because we’ll later be proving a range of limitative theorems, about
what can’t be algorithmically decided. And by working with a weak ‘in princi-
ple’ notion of what is required for being decidable, our impossibility results will
be exceedingly strong — they won’t depend on mere contingencies about what
is practicable, given the current state of our software and hardware, and given
real-world limitations of time or resources. They show, in particular, that some

9

2. Decidability and enumerability

problems are not mechanically decidable, even on the most generous understand-
ing of that idea.

(b) We’ve said that we are going to be abstracting from limitations on storage
etc. But you might suspect that this still leaves much to be settled. Doesn’t the
‘architecture’ of a computing device affect what it can compute?

The short answer is ‘no’. And intriguingly, some of the central theoretical
questions here were the subject of intensive investigation even before the first
electronic computers were built. Thus, in the mid 1930s, Alan Turing famously
analysed what it is for a numerical function to be step-by-step computable in
terms of the capacities of a Turing machine (a computer following a program
built up from extremely simple steps: for explanations and examples, see Chap-
ter ?7). Now, it is easy to spin variations on the details of Turing’s original
story. For example, a standard Mark I Turing machine has just a single ‘tape’
or workspace to be used for both storing and manipulating data: but we can
readily describe a Mark II machine which has (say) two tapes — one to be used
as a main workspace, and a separate one for storing data. Or we can consider
a computer with unlimited ‘Random Access Memory’ — that is to say, an ideal-
ized version of a modern computer with an unlimited set of registers in which it
can store various items of working data ready to be retrieved into its workspace
when needed.? The details don’t matter here and now. What does matter is that
exactly the same functions are computable by Mark I Turing machines, Mark IT
machines, and by register machines, despite their different architectures. Indeed,
all the definitions of algorithmic computability by idealized computers that have
ever been seriously proposed turn out to be equivalent. In a slogan, algorithmic
computability is architecture independent. Likewise, what is algorithmically de-
cidable is architecture independent.

Let’s put that a bit more carefully, in two stages. First, there’s a Big Mathe-
matical Result — or rather, a cluster of results — that can conclusively be proved
about the equivalence of various definitions of computation for numerical func-
tions and properties. And this Big Mathematical Result supports the claim Tur-
ing famously makes in his classic paper published in 1936, which we can naturally
call

Turing’s Thesis The numerical functions that are computable in
the intuitive sense are just those functions that are computable
by a Turing machine. Likewise, the numerical questions that are
effectively decidable in the intuitive sense are just those questions
that are decidable by a suitable Turing machine.

This claim — we’ll further explore its content in Chapter ?? — correlates an
intuitive notion with a sharp technical analysis. So you might perhaps think it
is not the sort of thing for which we can give a proof (though we will challenge

2The theoretical treatment of unlimited register machines was first given in (Shepherdson
and Sturgis, 1963); there is a very accessible presentation in the excellent (Cutland, 1980).

10

Enumerable sets

that view in Chapter ??7). But be that as it may. This much, at any rate is
true: after some seventy years, no successful challenge to Turing’s Thesis has
been mounted. Which means that we can continue to talk informally about
intuitively computable numerical functions and effectively decidable properties
of numbers, and be very confident that we are referring to fully determinate
classes.

But now, second, what about the idea of being computable as applied to
non-numerical functions (like truth-functions) or the idea of being effectively
decidable as applied to non-numerical properties (like the property of being an
axiom of some theory)? Are these ideas determinate too?

Well, think how a real-world computer can be used to evaluate a truth-function
or decide whether a formal expression is an axiom in a given system. In the first
case, we code the truth-values true and false using numbers, say 0 and 1, and
then do a numerical computation. In the second case, we write a program for
manipulating strings of symbols, and again — though this time behind the scenes
— these strings get correlated with binary codes, and it is these numbers that
the computer works on. In the end, using numerical codings, the computations
in both cases are done on numbers after all.

Now generalize that thought. A natural suggestion is that any computation
dealing with sufficiently determinate and distinguishable X's can be turned into
an equivalent numerical computation via the trick of using simple numerical
codes for the different X's. More carefully: by a relatively trivial algorithm, we
can map Xs to numbers; we can then do the appropriate core computation on
the numbers; and then another trivial algorithm translates the result back into
a claim about X'’s.

Fortunately, we don’t need to assess that natural suggestion in its full gen-
erality. For the purposes of this book, the non-numerical computations we are
interested in are cases where the Xs are expressions from standard formal lan-
guages, or sequences of expressions, etc. And in those cases, there’s no doubt at
all that we can algorithmically map claims about such things to corresponding
claims about numbers (see Sections 3.5, 12.1, 12.2). So the question e.g. whether
a certain property of formulae is a decidable one can be translated quite un-
contentiously into the question whether a corresponding numerical property is
a decidable one. Given Turing’s Thesis that it is quite determinate what counts
as a decidable property of numbers, it follows that it is quite determinate what
counts as a decidable property of formal expressions. And similarly for other
cases we are interested in.

2.2 Enumerable sets
Having introduced the twin ideas of effective computability and decidability, we

go on to explain the related notion of effective enumerability. But before we can
do that in the next section, we need the prior notion of (plain) enumerability.

11

2. Decidability and enumerability

Suppose, then, that 3 is some set of items: its members might be numbers,
strings of symbols, proofs, sets or whatever. We say that ¥ is enumerable if its
members can — at least in principle — be listed off (the zero-th, first, second, ...)
with every member appearing on the list; repetitions are allowed, and the list
may be infinite. It is tidiest to think of the empty set as the limiting case of an
enumerable set: after all, it is enumerated by the empty list!

That informal definition will serve well enough. But, for the pernickety, we
can make it more rigorous in various equivalent ways. Here, we’ll give just one.
And to do this, let’s introduce some standard jargon and notation that we’ll
need later anyway (for the moment, we’ll focus on one-place functions).

i. A function maps arguments in some domain to unique values. Suppose
the function f is defined for all arguments in the domain A; and suppose
that the values of f all belong to the set I'. Then we write

A>T
and say that f is a (total) function from A into T.

ii. The range of a function f: A — T is the set {f(x) | z € A}: in other
words, it is the set of y € I such that f maps some z € A to y.

iii. A function f: A — I is surjective iff the range of f is the whole of I" —
i.e. if for every y € T there is some z € A such that f(x) = y. (If you
prefer that in English, you can say that such a function is ‘onto’, since it
maps A onto the whole of T'.)

iv. We use ‘N’ to denote the set of all natural numbers.
Then here’s our first official definition:

The set X is enumerable iff it is either empty or there is a surjective
function f: N — 3. (We can say that such a function enumerates
)

To see that this comes to the same as our original informal definition, just note
the following two points. (a) Suppose we have a list of all the members of ¥ in
some order (starting with the zero-th, and perhaps an infinite list, perhaps with
repetitions). Then take the function f defined as follows f(n) = n-th member
of the list, if the list goes on that far, or f(n) = f(0) otherwise. Then f is a
surjection f: N — X. (b) Suppose conversely that f is surjection f: N — X.
Then, if we successively evaluate f for the arguments 0, 1, 2, ..., we get a list
of values f(0), f(1), f(2) ... which by hypothesis contains all the elements of %,
with repetitions allowed.

Here’s a quick initial result: If two sets are enumerable, so is the result of
combining their members into a single set. (Or if you prefer that in symbols: if
¥y and ¥y are enumerable so is X1 U Xs.)

12

Enumerable sets

Proof Suppose there is a list of members of ¥ and a list of members of 5. Then
we can interleave these lists by taking members of the two sets alternately, and
the result will be a list of the union of those two sets. (More formally, suppose f1
enumerates Y1 and fo enumerates Xo. Put g(2n) = fi(n) and g(2n+1) = fa(n);
then g enumerates X7 U X5.) X

That was easy and trivial. Here’s another much more important result — famously
proved by Georg Cantor?® — which is also easy, but certainly not trivial:

Theorem 1 There are infinite sets that are not enumerable.

Proof Consider the set B of infinite binary strings (i.e. the set of unending
strings like ‘0110001010011..."). There’s obviously an infinite number of them.
Suppose, for reductio, that we could list off these strings in some order. More
carefully, suppose that there is an enumerating function which maps the natural
numbers onto the binary strings as follows:

0 — 0110001010011...
1 — 1100101001101...
2 — 1100101100001...
3 — 0001111010101...
4 — 1101111011101...

Read off down the diagonal, taking the n-th digit of the n-th string (in our
example, this produces 01011...). Now flip each digit, swapping 0s and 1s (in
our example, yielding 10100...). By construction, this ‘flipped diagonal’ string
differs from the initial string on our original list in the first place, differs from the
next string in the second place, and so on. So our diagonal construction defines a
string that isn’t on the list, contradicting the assumption that our enumerating
function is ‘onto’, i.e. that our list contains all the binary strings. So B is infinite,
but not enumerable. X

It’s worth pausing to add three quick comments about this result for later use.

a. An infinite binary string bgb1bs ... can be thought of as characterizing
a real number 0 < b < 1 in binary digits. So our theorem shows that
the real numbers between in the interval [0, 1] can’t be enumerated (and
hence we can’t enumerate all the reals either).

b. An infinite binary string bob1bs . . . can also be thought of as characterizing
a corresponding set of natural numbers ¥, where n € ¥ just if b, = 0.
So our theorem is equivalent to the result that the set of sets of natural
numbers can’t be enumerated.

3Cantor first established this key result in his (1874), using, in effect, the Bolzano-
Weierstrass theorem. The neater ‘diagonal argument’ we give here first appears in his (1891).

13

2. Decidability and enumerability

c. A third way of thinking of an infinite binary string bob1b . .. is as char-
acterizing a corresponding function f, i.e. the function that maps each
natural number to one of the numbers {0, 1}, where f(n) = b,. So our
theorem is also equivalent to the result that the set of functions from the
natural numbers to {0,1} can’t be enumerated. (Put in terms of func-
tions, the trick in the proof is to suppose that these functions can be
enumerated in a list fo, f1, f2, . . ., define another function by ‘going down
the diagonal and flipping digits’, i.e. define d(n) = 1 — f,(n), and then
note that this diagonal function can’t be on the list after all. We’ll soon
meet this version of the ‘diagonalization’ trick again.)

It is also worth noting that non-enumerable sets have to be, in a good sense,
a lot bigger than enumerable ones. Suppose Y is a non-enumerable set; suppose
A C ¥ is some enumerable subset of 3; and let T' = X\ A be the set you get by
removing the members of A from ¥. Then this difference set will still be non-
emumerably infinite — for if it were enumerable, > = A U I" would be enumerable
after all (by the easy result we proved above).

2.3 Effective enumerability

Note carefully: to say that a set is enumerable is not to say that we can produce
a ‘nice’ algorithmically computable function that does the enumeration. The
claim is only that there is some function or other that does the job. So let’s now
add a further official definition:

The set ¥ is effectively enumerable iff it is either empty or there
is an effectively computable function that enumerates it.*

In other words, a set is effectively enumerable if an (idealized) computer could be
programmed to start producing a list of its members such that any member will
be eventually mentioned — the list may have no end, and may contain repetitions,
so long as any item in the set eventually appears.

It is often crucial whether a set can be effectively enumerated in this sense.
A finite set of finitely specifiable objects is always effectively enumerable: any
listing will do, and — since it is finite — it could be stored in an idealized computer
and spat out on demand. And for a simple example of an effectively enumerable
infinite set, imagine an algorithm that generates the natural numbers one at a
time in order, ignores those that fail the well-known (mechanical) test for being
prime, and lists the rest: this procedure generates a never-ending list on which
every prime will eventually appear — so the primes are effectively enumerable.

We'll see later that there are key examples of infinite sets which are enumerable
but which can’t be effectively enumerated.

4Jargon alert! Terminology hereabouts isn’t stable: some writers use ‘enumerable’ to mean
effectively enumerable, and use e.g. ‘denumerable’ for our wider notion.

14

3 Axiomatized formal theories

Godel’s Incompleteness Theorems tell us about the limits of axiomatized theories
of arithmetic. Or rather, more carefully, they tell us about the limits of axiom-
atized formal theories of arithmetic. But what exactly does this mean? This
chapter starts by exploring the idea. We then move on to prove some elementary
but rather important general results about axiomatized formal theories.

3.1 Formalization as an ideal

Rather than just dive into a series of definitions, it is well worth pausing to
remind ourselves of why we care about formalized theories.

Let’s get back to basics. In elementary logic classes, we are drilled in translat-
ing arguments into an appropriate formal language and then constructing formal
deductions of putative conclusions from given premisses. Why bother with for-
mal languages? Because everyday language is replete with redundancies and
ambiguities, not to mention sentences which simply lack clear truth-conditions.
So, in assessing complex arguments, it helps to regiment them into a suitable
artificial language which is expressly designed to be free from obscurities, and
where surface form reveals logical structure.

Why bother with formal deductions? Because everyday arguments often in-
volve suppressed premisses and inferential fallacies. It is only too easy to cheat.
Setting out arguments as formal deductions in one style or another enforces
honesty: we have to keep a tally of the premisses we invoke, and of exactly
what inferential moves we are using. And honesty is the best policy. For suppose
things go well with a particular formal deduction. Suppose we get from the given
premisses to some target conclusion by small inference steps each one of which
is obviously valid (no suppressed premisses are smuggled in, and there are no
suspect inferential moves). Our honest toil then buys us the right to confidence
that our premisses really do entail the desired conclusion.

Granted, outside the logic classroom we almost never set out deductive argu-
ments in a fully formalized version. No matter. We have glimpsed a first ideal
— arguments presented in an entirely perspicuous language with maximal clar-
ity and with everything entirely open and above board, leaving no room for
misunderstanding, and with all the arguments’ commitments systematically and
frankly acknowledged.!

IFor an early and very clear statement of this ideal, see Frege (1882), where he explains the
point of the first recognizably modern formal system of logic, presented in his Begriffsschrift
(i.e. Conceptual Notation) of 1879.

15

3. Axiomatized formal theories

Old-fashioned presentations of Euclidean geometry illustrate the pursuit of a
related second ideal — the (informal) axiomatized theory. Like beginning logic
students, school students used to be drilled in providing deductions, though
the deductions were framed in ordinary geometric language. The game is to
establish a whole body of theorems about (say) triangles inscribed in circles,
by deriving them from simpler results which had earlier been derived from still
simpler theorems that could ultimately be established by appeal to some small
stock of fundamental principles or azioms. And the aim of this enterprise? By
setting out the derivations of our various theorems in a laborious step-by-step
style — where each small move is warranted by simple inferences from propositions
that have already been proved — we develop a unified body of results that we
can be confident must hold if the initial Euclidean axioms are true.

On the surface, school geometry perhaps doesn’t seem very deep: yet making
all its fundamental assumptions fully explicit is surprisingly difficult. And giving
a set of axioms invites further enquiry into what might happen if we tinker with
these assumptions in various ways — leading, as is now familiar, to investigations
of non-Euclidean geometries.

Many other mathematical theories are also characteristically presented ax-
iomatically.? For example, set theories are presented by laying down some basic
axioms and exploring their deductive consequences. We want to discover exactly
what is guaranteed by the fundamental principles embodied in the axioms. And
we are again interested in exploring what happens if we change the axioms and
construct alternative set theories — e.g. what happens if we drop the ‘axiom of
choice’ or add ‘large cardinal’ axioms?

Now, even the most tough-minded mathematics texts which explore axiom-
atized theories are typically written in an informal mix of ordinary language
and mathematical symbolism. Proofs are rarely spelt out in every formal detail,
and their presentation falls short of the logical ideal of full formalization. But
we will hope that nothing stands in the way of our more informally presented
mathematical proofs being sharpened up into fully formalized ones — i.e. we
hope that they could be set out in a strictly regimented formal language of the
kind that logicians describe, with absolutely every inferential move made fully
explicit and checked as being in accord with some overtly acknowledged rule of
inference, with all the proofs ultimately starting from our explicitly given ax-
ioms. True, the extra effort of laying out everything in this kind of detail will
almost never be worth the cost in time and ink. In mathematical practice we
use enough formalization to convince ourselves that our results don’t depend on
illicit smuggled premisses or on dubious inference moves, and leave it at that
— our motto is ‘sufficient unto the day is the rigour thereof’.? But still, it is
absolutely essential for good mathematics to achieve maximum precision and to

2Tor a classic defence, extolling the axiomatic method in mathematics, see Hilbert (1918).

3‘Most mathematical investigation is concerned not with the analysis of the complete
process of reasoning, but with the presentation of such an abstract of the proof as is sufficient
to convince a properly instructed mind.” (Russell and Whitehead, 1910-13, vol. 1, p. 3)

16

Formalized languages

avoid the use of unexamined inference rules or unacknowledged assumptions. So,
putting together the logician’s aim of perfect clarity and honest inference with
the mathematician’s project of regimenting a theory into a tidily axiomatized
form, we can see the point of the notion of an axiomatized formal theory as a
composite ideal.

To forestall misunderstanding, let’s stress that it isn’t being supposed that we
ought always be aiming to work inside axiomatized formal theories. Mathematics
is hard enough even when done using the usual strategy of employing just as
much rigour as seems appropriate to the case in hand.* And in any case, as
mathematicians (and some philosophical commentators) are apt to stress, there
is a lot more to mathematical practice than striving towards the logical ideal. For
a start, we typically aim not merely for formal correctness but for explanatory
proofs, which not only show that some proposition must be true, but in some
sense make it clear why it is true. However, such points don’t affect our point,
which is that the business of formalization just takes to the limit features that
we expect to find in good proofs anyway, i.e. precise clarity and lack of inferential

gaps.

3.2 Formalized languages

So, putting together the ideal of formal precision and the ideal of regimentation
into an axiomatic system, we have arrived at the concept of an axiomatized
formal theory, which comprises a formalized language, a set of sentences from
the language which we treat as azxioms for the theory, and a deductive system
for proof-building, so that we can derive theorems from the axioms.

In this section, we’ll say just a bit more about the idea of a properly formalized
language — though we’ll be very brisk, as we don’t want to get bogged down in
details yet. Our main concern here is to emphasize a point about decidability.

Note that we are normally interested in interpreted languages — i.e. we are
normally concerned not merely with patterns of symbols but with expressions
which have an intended significance. After all, our formalized proofs are supposed
to be just that, i.e. proofs with content, which show things to be true. True, we’ll
often be very interested in features of proofs that can be assessed independently
of their significance (for example, we’ll want to know whether a putative proof
does obey the formal syntactic rules of a given deductive system). But it is one
thing to ignore their semantics for some purposes; it is another thing entirely to
drain formal proofs of all semantic significance.

Anyway, we can usefully think of a formal language L as in general being a
pair (£,7), where the £ is a syntactically defined system of expressions and 7

4See Lakatos (1976) for a wonderful exploration of how mathematics evolves. This gives
some real sense of how regimenting proofs in order to clarify their assumptions — the process
which formalization idealizes — is just one phase in the complex process that leads to the
growth of mathematical knowledge.

17

3. Axiomatized formal theories

gives the intended interpretation of these expressions.

(a) Start with the syntactic component £. We'll assume that this is based on a
finite alphabet of symbols.> We then first need to settle which symbols or strings
of symbols make up L’s logical vocabulary — typically this will comprise variables,
symbols for connectives and quantifiers, the identity sign, and bracketing devices.
Then we need similarly to specify which symbols or strings of symbols make up
L’s non-logical vocabulary, e.g. individual constants (names), predicates, and
function-expressions. Finally, we need further syntactic construction rules to
determine which finite sequences of logical and non-logical vocabulary constitute
the well-formed formulae of £ — its wffs, for short.

Some familiar ways of setting up the construction rules allow wifs which aren’t
sentences, where a sentence is a closed wif without any unquantified variables
left dangling free. But note, it is only sentences which will be interpreted as
expressing complete propositions that might be true or false.

All this should be very familiar from elementary logic: so just one comment
on syntax. Given that the whole point of using a formalized language is to
make everything as clear and determinate as possible, we don’t want it to be
a disputable matter whether a given sign or cluster of signs is e.g. a constant
symbol or one-place predicate symbol of a given system L. And, crucially, we
don’t want disputes either about whether a given string of symbols is an L-wff
or about whether a given wif is an L-sentence.

So, whatever the details, for a properly formalized language, there should
be clear and objective procedures, agreed on all sides, for effectively deciding
whether a putative constant-symbol really is a constant, etc. Likewise we need
to be able to effectively decide whether a string of symbols is a wif and also
decide whether a wif is a sentence.

(b) Let’s move on, then, to the interpretation Z. We’d like this to fix the content
of each L-sentence — and standardly, we fix the content of formal sentences by
giving truth-conditions, i.e. by saying what it would take for a given sentence
to be true. However, we can’t, in the general case, do this just by giving a list,
associating L-sentences with truth-conditions (for the simple reason that there
will be an unlimited number of sentences). We’ll therefore normally aim for a
‘compositional semantics’, which tells us how to systematically work out the
truth-condition of any L-sentence in terms of the semantic significance of its
syntactic parts.

What does such a compositional semantics look like? Here’s a very quick
reminder of one sort of case: again we’ll assume that this is all broadly famil-
iar from elementary logic. Suppose, then, that £ has the usual syntax of the
simplest predicate language (without identity or function symbols). A standard
interpretation Z will start by assigning values to constants and give satisfaction
conditions for predicates. Thus, perhaps,

5We can always construct e.g. an unending supply of variables from a finite base by stan-
dard tricks like using repeated primes (to yield ‘x’, ‘x’’, ‘X'’ etc.).

18

Formalized languages

The value of ‘a’ is Socrates;
the value of ‘b’ is Plato;
something satisfies ‘F’ iff it is wise;

an ordered pair of things satisfies ‘L’ iff the first loves the second.

Then Z continues by giving us the obvious rules for assigning truth-conditions
to atomic sentences, so that e.g. ‘Fa’ is true just in case the value of ‘a’ satisfies
‘F’ (i.e. iff Socrates is wise); ‘Lab’ is true just in case the ordered pair (value of
‘a’, value of ‘b’) satisfies ‘L’ (i.e. iff Socrates loves Plato); and so on.

Next, there are the usual rules for assigning truth-conditions to sentences built
up out of simpler ones using the propositional connectives. And finally (the tricky
bit!) we have to deal with the quantifiers. Take the existential case. Intuitively, if
the quantifier is to range over people, then ‘IxFx’ is true just if there is someone
we could temporarily dub with the new name ‘c’ who would make ‘Fc’ come out
true (because that person is wise). So let’s generalize this thought. To fix the
truth-condition for quantified sentences on interpretation Z, we must specify a
domain for quantifiers to run over (the set of people, for example), and then
we can say that a sentence of the form ‘Jvp(v)’ is true on Z just if, when we
expand £ with a new constant ‘c’, we can expand the interpretation Z to deal
with ‘c’ by giving it a value in the domain in such a way that ‘p(c)’ is true on
the expanded interpretation.® Similarly for universal quantifiers.

For the moment, let’s just make one comment about this kind of semantics,
parallel to our comment about syntax. Given the aims of formalization, a com-
positional semantics needs to yield a single unambiguous interpretation for each
sentence. Working out this interpretation should be a mechanical matter that
doesn’t require any ingenuity or insight — i.e. it should again be effectively de-
cidable what the interpretation is.

And of course, the usual accounts of the syntax and semantics of standard
formal languages of logic have the decidability feature.

SHere, of course, ‘p(c)’ stands in for any sentence with one or more occurrences of ‘c’; and
‘o(v)’ is the result of replacing each occurrence of ‘c’ with the variable v.

To connect our style of semantics to one that you might be more familiar with, note that
something satisfies ‘F’ according to Z iff it is in the set of wise people. Call that set associated
with ‘F’ its extension. Then ‘Fa’ is true on interpretation Z iff the value of ‘a’ is in the extension
of ‘F’. Pursuing this idea, we can give a basically equivalent semantic story that deals with
one-place predicates by assigning them subsets of the domain as extensions rather than by
giving satisfaction conditions (similarly two-place predicates will be assigned sets of ordered
pairs of elements of the domain, and so forth). Which is the way logic texts more usually tell
the official semantic story, and for a very good reason. In logic, we are interested in finding the
valid inferences, i.e. those which are such that, on any possible interpretation of the relevant
sentences, if the premisses are true, the conclusion is true. Logicians therefore need to be able
to generalize about all possible interpretations. Describing interpretations set-theoretically
gives us a mathematically clean way of doing this generalizing work. However, in specifying a
particular interpretation Z for a given £ we don’t need to put it in such overly set-theoretic
terms. So we won't.

19

3. Axiomatized formal theories

3.3 Axiomatized formal theories

Now for the idea of an axiomatized formal theory, built in a formalized language
(normally, of course, an interpreted formalized language). Again, it is issues
about decidability which need to be highlighted.

(a) First, some wifs of our theory’s language are to be selected as azioms, i.e. as
fundamental assumptions of our theory (and we can take it without significant
loss of generality that these are always sentences, i.e. closed wifs).

Since the fundamental aim of the axiomatization game is to see what follows
from a bunch of axioms, we certainly don’t want it to be a matter for dispute
whether a given proof does or doesn’t appeal only to axioms in the chosen set.
Given a purported proof of some result, there should be an absolutely clear
procedure for settling whether the input premisses are genuinely instances of
the official axioms. In other words, for an axiomatized formal theory, we must
be able to effectively decide whether a given wif is an axiom or not.

That doesn’t, by the way, rule out theories with infinitely many axioms. We
might want to say ‘every wiff of such-and-such a form is an axiom’ (where there
is an unlimited number of instances): that’s permissible so long as it is still
effectively decidable what counts as an instance of that form.

(b) Next, an axiomatized formal theory needs some deductive apparatus, i.e.
some sort of formal proof-system. And we’ll take proofs always to be finite arrays
of wifs, arrays which are built up in ways that conform to the rules of the relevant
proof-system, and whose only initial assumptions belong to the set of axioms.”

We’ll take it that the core idea of a proof-system is once more very familiar
from elementary logic. The differences between various equivalent systems of
proof presentation — e.g. old-style linear proof systems vs. different styles of
natural deduction proofs vs. tableau (or ‘tree’) proofs — don’t matter for our
purposes. What will matter is the strength of the system of rules we adopt.
We will predominantly be working with some version of standard first-order
logic with identity: but whatever system we adopt, it is crucial that we fix
on a set of rules which enable us to settle, without room for dispute, what
counts as a well-formed derivation in this system. In other words, we require the
property of being a well-formed proof from premisses ¢1, 2, . . . , 5 to conclusion

"We are not going to put any finite upper bound on the permissible length of proofs. So
you might well ask: why not allow infinite arrays to count as proofs too? And indeed, there
is some interest in theorizing about infinite ‘proofs’. For example, we’ll later consider the so-
called w-rule, which says that from the infinite array of premisses ¢(0), ¢(1), ¢(2), ..., ¢(n),
... we can infer Vzp(x) when the quantifier runs over all natural numbers. But do note that
finite minds can’t really take in the infinite number of separate premisses in an application
of the w-rule: if we momentarily think we can, it’s because we are confusing that impossible
task with e.g. the finite task of taking in the premisses ¢(0), ¢(1), ¢(2), ..., ¢(n) plus the
premiss (Vz > n)p(z). Hence, in so far as the business of formalization is primarily concerned
to regiment and formalize the practices of ordinary mathematicians, albeit in an idealized way,
it’s natural at least to start by restricting ourselves to finite proofs of the general type we can
cope with, even if we don’t put any contingent bound on the length of proofs.

20

More definitions

1 in the theory’s proof-system to be an effectively decidable one. The whole
point of formalizing proofs is to set out the deductive structure of an argument
with absolute determinacy, so we don’t want it to be a disputable or subjective
question whether the inference moves in a putative proof do or do not conform
to the rules for proof-building for the formal system in use. Hence there should
be a clear and effective procedure for deciding whether an array counts as a
well-constructed derivation according to the relevant proof-system.?

Be careful! The claim here is only that it should be decidable whether an
array of wifs presented as a well-constructed derivation really is a proper proof.
This is not to say that we can always decide in advance whether a proof from
given axioms exists to be discovered. Even in familiar first-order quantificational
logic, for example, it is not in general decidable whether there exists a proof from
certain premisses to a given conclusion (we’ll be proving this undecidability result
later, in Section ?7).

To summarize then, here again are the key headlines:

T is an (interpreted) axiomatized formal theory just if (a) T is
couched in an (interpreted) formalized language (£, Z), such that
it is effectively decidable what counts as a wif of £, what counts as
a sentence, what the truth-condition of any sentence is, etc., (b) it
is effectively decidable which L-wffs are axioms of T, and (¢) T
uses a proof-system such that it is effectively decidable whether an
array of £-wifs counts as conforming to the proof-building rules.

3.4 More definitions

Here are five more definitions specifically to do with theories:

i. Given a proof of the sentence (i.e. closed wif) ¢ from the axioms of the
theory T using the background logical proof system, we will say that ¢
is a theorem of the theory. Using the standard abbreviatory symbol, we
write: T F .

ii. A theory T is decidable iff the property of being a theorem of T is an
effectively decidable property — i.e. iff there is a mechanical procedure
for determining, for any given sentence ¢ of the language of theory T,
whether T .

iii. Assume now that T has a standard negation connective ‘=’. A theory T
decides the wif ¢ iff either T'+ ¢ or T'F+ —p. A theory T correctly decides

8When did the idea clearly emerge that properties like being a wff or an axiom or a proof
ought to be decidable? It was arguably already implicit in Hilbert’s conception of rigorous
proof. But Richard Zach has suggested that an early source for the explicit deployment of the
idea is von Neumann (1927).

21

3. Axiomatized formal theories

¢ just when, if ¢ is true (on the interpretation built into 7’s language),
T F ¢, and if ¢ is false, T —p.

iv. A theory T is negation complete iff T decides every sentence ¢ of its
language (i.e. for every ¢, either T F ¢ or T F —¢).

v. T is inconsistent iff it proves some pair of theorems of the form ¢, —p.

Here’s a very elementary example to illustrate some of these definitions. Con-
sider a trivial pair of theories, T7 and 75, whose shared language consists of the
propositional atoms ‘p’, ‘q’, ‘r’ and all the wifs that can be constructed out of
them using the familiar propositional connectives, whose shared underlying logic
is a standard natural deduction system for propositional logic, and whose sets of
axioms are respectively {‘-p’} and {‘p’, ‘q’, ‘=r’}. Given appropriate interpreta-
tions for the atoms, T7 and T5 are then both axiomatized formal theories. For it
is mechanically decidable what is a wff of the theory, and whether a purported
proof is indeed a proof from the given axioms. Both theories are consistent.
Both theories are decidable; just use the truth-table test to determine whether
a candidate theorem really follows from the axioms.

However, note that although T} is a decidable theory that doesn’t mean T}
decides every wil; it doesn’t decide e.g. the wif ‘(q Ar)’, since T7’s sole axiom
doesn’t entail either ‘(q Ar)’ or ‘=(qAr)’. To stress the point: it is one thing
to have a general way of mechanically deciding what is a theorem; it is another
thing for a theory to be negation complete, i.e. to have the resources to prove or
disprove every wif. But unlike T3, T, is negation complete (any wif constructed
from the three atoms using the truth-functional connectives has its truth-value
decided, and the true ones can be proved and the false ones disproved).

This mini-example illustrates another crucial terminological point. You will be
familiar with the idea of a deductive system being ‘(semantically) complete’ or
‘complete with respect to its standard semantics’. For example, a natural deduc-
tion system for propositional logic is said to be semantically complete when every
inference which is semantically valid (i.e. truth-table valid) can be shown to be
valid by a proof in the deductive system. But a theory’s having a semantically
complete logic is one thing, being a negation complete theory is something else
entirely. For example, T by hypothesis has a complete truth-functional logic,
but is not a complete theory. For a more interesting example, we’ll soon meet
a formal arithmetic which we label ‘Q’. This theory uses a standard quantifi-
cational deductive logic, which again is a (semantically) complete logic: but we
can easily show that Q is not a (negation) complete theory.”

9Putting it symbolically may help. To say that a theory T with the set of axioms X is
(negation) complete is to say that

for any sentence ¢, either ¥ - ¢ or X F —g;
while to say that a logic is (semantically) complete is to say that

for any set of sentences I', and any ¢, if I' F ¢ then T" - ¢,

22

The effective enumerability of theorems

Do watch out for this annoying and potentially dangerous double use of the
term ‘complete’; beware too of the use of ‘decidable’ and ‘decides’ for two
significantly different ideas. These dual usages are unfortunately now entirely
entrenched: you just have to learn to live with them.

3.5 The effective enumerability of theorems

Deploying our notion of effective enumerability, we can now state and prove the
following portmanteau theorem (the last claim is the crucial part):

Theorem 2 IfT is an axiomatized formal theory then (i) the set
of wffs of T, (ii) the set of sentences of T, (iii) the set of proofs
constructible in T, and (iv) the set of theorems of T, can each be
effectively enumerated.

Proof sketch for (i) By hypothesis, T has a formalized language with a finite
basic alphabet; and we can give an algorithm for mechanically enumerating all
the possible finite strings of symbols formed from a finite alphabet. For example,
start by listing all the strings of length 1, followed by all those of length 2 in some
‘alphabetical order’, followed by those of length 3 and so on. By the definition
of a formalized language, there is a mechanical procedure for deciding which of
these symbol strings count as wifs. So, putting these procedures together, as we
ploddingly generate the possible strings we can throw away all the non-wffs that
turn up, leaving us with an effective enumeration of all the wifs. X

Proof sketch for (i) Proved similarly, except at the last stage we throw away
the non-sentences (i.e. throw away the open wifs as well as the mere symbol
salads which aren’t wifs at all). X

Proof sketch for (iii) Assume that T-proofs are linear sequences of wifs. Just
as we can enumerate all the possible wifs, so we can effectively enumerate all
the possible sequences of wifs in some ‘alphabetical order’. One brute-force way
is to start enumerating all possible strings of symbols, and throw away any
that isn’t a sequence of wifs. By the definition of an axiomatized theory, there
is then an algorithmic recipe for deciding which of these sequences of wifs are
well-formed proofs in the theory (since for each wff it is decidable whether it
is either an axiom or follows from previous wifs in the list by allowed inference
moves). So as we go along we can mechanically select out the proof sequences
from the other sequences of wifs, to give us an effective enumeration of all the

where ‘H’ signifies the relation of formal deducibility, and ‘F’ signifies the relation of semantic
consequence. As it happens, the first proof of the semantic completeness of a proof-system
for quantificational logic was also due to Gddel, and the result is often referred to as ‘Godel’s
Completeness Theorem’ (Godel, 1929). The topic of that theorem is therefore evidently not
to be confused with his (First) Incompleteness Theorem, which concerns the negation incom-
pleteness of certain theories of arithmetic.

23

3. Axiomatized formal theories

possible proofs. (If T-proofs are more complex arrays of wifs — as in tree systems
— then the construction of an effective enumeration of the arrays needs to be
correspondingly more complex: but the core proof-idea remains the same.) X

Proof sketch for (iv) Start effectively enumerating proofs. But this time, just
record their conclusions (when those are sentences, i.e. closed wifs, which is
decidable if T' is an axiomatized formal theory). This mechanically generated
list now contains all and only the theorems of the theory. X

Two comments about these proof sketches. First, our talk about listing strings
of symbols in ‘alphabetical order’ can be cashed out in various ways. In fact,
any systematic mechanical ordering will do here. Here’s one simple device (it
prefigures the use of ‘Gédel numbering’, which we’ll encounter later). Suppose,
to keep things easy, the theory has a basic alphabet of less than ten symbols
(this is no real restriction). With each of the basic symbols of the theory we
correlate a different digit from ‘1, 2, ..., 9’; we will reserve ‘0’ to indicate some
punctuation mark, say a comma. So, corresponding to each finite sequence of
symbols there will be a sequence of digits, which we can read as expressing a
number. For example: suppose we set up a theory using just the symbols

_|7 _)’ \v/7 (7)7 F7 X7 C7/

and we associate these symbols with the digits ‘1’ to ‘9’ in order. Then e.g. the
wif

Vx(Fx — —=Wx'=F"cx’)
(where ‘F"” is a two-place predicate) would be associated with the number
374672137916998795

We can now list off the wifs constructible from this vocabulary as follows. We
examine each number in turn, from 1 upwards. It will be decidable whether the
standard base-ten numeral for that number codes a sequence of the symbols
which forms a wiff, since we are dealing with a formal theory. If the number does
correspond to a wif ¢, we enter ¢ onto our list of wifs. In this way, we mechani-
cally produce a list of wifs — which obviously must contain all wffs since to any
wif corresponds some numeral by our coding. Similarly, taking each number in
turn, it will be decidable whether its numeral corresponds to a series of symbols
which forms a sequence of wifs separated by commas (remember, we reserved ‘0’
to encode commas).

Our second comment is this. We should be very clear that to say that the
theorems of a formal axiomatized theory can be mechanically enumerated is not
to say that the theory is decidable. It is one thing to have a mechanical method
which is bound to generate any theorem eventually; it is quite another thing
to have a mechanical method which, given an arbitrary wff ¢, can determine —
without going on for ever — whether ¢ will ever turn up on the list of theorems.

24

Negation complete theories are decidable

3.6 Negation complete theories are decidable

Despite that last point, however, we do have the following important result in
the special case of negation-complete theories:!°

Theorem 3 A consistent, axiomatized, megation-complete for-
mal theory T is decidable.

Proof We know from Theorem 2 that there’s an algorithm for effectively enu-
merating the theorems of T'. So start effectively listing the theorems. Let ¢ be
any sentence of T. Since, by hypothesis, T is negation-complete, either ¢ is a
theorem of T or —¢ is. So it is guaranteed that — within a finite number of steps
— either ¢ or = will be produced in our enumeration of the theorems. If ¢ is
produced, stop the enumeration, and we can conclude that ¢ is a theorem. If
on the other hand —¢ is produced, stop the enumeration, and we can conclude
that ¢ is not a theorem, since the theory is assumed to be consistent. Hence, in
this case, there is a dumbly mechanical procedure for deciding whether ¢ is a
theorem. X

We are, of course, relying here on our ultra-generous notion of decidability-in-
principle we explained above (in Section 2.1). We might have to twiddle our
thumbs for an immense time before one of ¢ or —p to turn up. Still, our ‘wait
and see’ method is guaranteed in this case to produce a result in finite time, in an
entirely mechanical way — so this counts as an effectively computable procedure
in our official generous sense.

0By the way, it is trivial that an inconsistent axiomatized theory with a classical logic is
decidable. For if T is inconsistent, it entails every wff of T’s language by the classical principle
ex contradictione quodlibet. So all we have to do to determine whether ¢ is a T-theorem is
to decide whether ¢ is a sentence of T’s language, which by hypothesis you can if T" is an
axiomatized formal theory.

25

4 Capturing numerical properties

The previous two chapters concerned axiomatized formal theories in general.
This chapter introduces some key concepts we need in describing formal arith-
metics in particular, notably the concepts of expressing and capturing numerical
properties. But we need to start with two quick preliminary sections, about
notation and about the very idea of a property.

4.1 Three remarks on notation

(a) Godel’s First Incompleteness Theorem is about the limitations of axiom-
atized formal theories of arithmetic: if a theory T satisfies some fairly minimal
constraints, we can find arithmetical truths that T can’t prove. Evidently, in
discussing Godel’s result, it will be very important to be clear about when we
are working ‘inside’ some specified formal theory 7" and when we are talking
informally ‘outside’ that particular theory (e.g. in order to establish truths that
T can’t prove).

However, we do want our informal talk to be compact and perspicuous. Hence
we will tend to borrow the standard logical notation from our formal languages
for use in augmenting mathematical English (so, for example, we will write
VaVy(x +y =y + x) as a compact way of expressing the ‘ordinary’ arithmetic
truth that the order in which you sum numbers doesn’t matter).

Equally, we will want our formal wifs to be readable. Hence we will tend to use
notation in building our formal languages that is already familiar from informal
mathematics (so, for example, if we want to express the addition function in a
formalized theory of arithmetic, we will use the usual sign ‘4’, rather than some
unhelpfully anonymous two-place function symbol like ‘f3’).

This two-way borrowing of notation will inevitably make expressions of infor-
mal everyday arithmetic and their formal counterparts look very similar. And
while context alone should no doubt make it pretty clear which is which, it is best
to have a way of explicitly marking the distinction. To that end, we will adopt
the convention of using a sans-serif font for expressions in our formal languages.
Thus compare ...

VaVy(z +y=y+z) WVy(x+y=y+x)
Jyy =S50 Jyy =50
142=3 1+2=3

The expressions on the left will belong to our mathematicians’/logicians’ aug-
mented English (borrowing ‘S’ to mean ‘the successor of’): the expressions on

26

A remark about extensionality

the right are wifs — or abbreviations for wffs — of one of our formal languages,
with the symbols chosen to be reminiscent of their intended interpretations.

(b) In addition to italic symbols for informal mathematics and sans-serif symbols
for formal wifs, we also need another layer of symbols. For example, we need
a compact way of generalizing about formal expressions, as when we defined
negation completeness in Section 3.4 by saying that for any wif ¢, the theory T
implies either ¢ or its negation —p. We'll standardly use Greek letters for this
kind of ‘metalinguistic’ duty. We will also occasionally use Greek letters like ‘¢’
and ‘¢’ as place-holders, indicating gaps to be filled in expressions. Note then
that these symbols again belong to logicians’ augmented English: Greek letters
will never belong to our formal languages themselves.

So what exactly is going on when we are talking about a formal language
L and say e.g. that the negation of ¢ is =y, when we are apparently mixing
a symbol from augmented English with a symbol from £? Answer: there are
hidden quotation marks, and ‘—¢’ is to be read as meaning ‘the expression that
consists of the negation sign “—" followed by ¢’.

(¢c) Sometimes, when being wery punctilious, logicians use so-called Quine-
quotes when writing mixed expressions containing both formal and metalinguistic
symbols (thus: "—¢7). But this is excessive. We are not going to bother, and no
one will get confused by our more casual (and entirely standard) practice. In
any case, we’ll want to use corner-quotes later for a different purpose.

We’ll be very relaxed about ordinary quotation marks too. We’ve so far been
rather punctilious about using them when mentioning, as opposed to using, wifs
and other formal expressions. But from now on, we will normally drop them
other than around single symbols. Again, no confusion should ensue.

Finally, we will also be pretty relaxed about dropping unnecessary brackets
in formal expressions (and we’ll change the shape of pairs of brackets, and oc-
casionally insert redundant ones, when that aids readability).

4.2 A remark about extensionality

The extension of the numerical property P is the set of numbers n such that
n is P. And here’s a stipulation: we are going to use ‘property’ talk in this
book in such a way that P and Q count as the same property if they have the
same extension. As the jargon has it, we are treating properties extensionally.
(There’s nothing unusual about this stipulation in logical contexts: we are just
being explicit about our practice to fend off possible misunderstandings.)

Now, just as one and the same thing can be picked out by two denoting terms,
so a property can be presented in different ways. The number two is picked out by
both the terms ‘the smallest prime’ and ‘the cube root of eight’: as philosophers
are apt to put it, although these terms have different senses, they have the same
reference. Likewise, the numerical predicates ‘... divides by two’ and ‘...is the

27

4. Capturing numerical properties

predecessor of an odd number’ also have different senses, but locate the same
property. For a more dramatic example, if Goldbach’s conjecture is true, ‘...is
even and greater than two’ locates the same property as ‘.. .1is even and the sum
of two primes’. But very evidently, the two phrases have quite different senses
(and no-one knows if they really do have the same extension).

4.3 The language Ly

Now to business. There is no single language which could reasonably be called
the language for formal arithmetic: rather, there is quite a variety of different
languages, apt for framing theories of different strengths.

However, the core theories of arithmetic which we’ll be discussing first are
mostly framed in the language L4, i.e. the interpreted language (£ 4,Z4), which
is a formalized version of what we called ‘the language of basic arithmetic’ in
Section 1.2. So let’s begin by characterizing this language.

(a) Syntax The logical vocabulary of £4 comprises the usual connectives and
brackets, an inexhaustible supply of variables (including, let’s suppose, ‘a’ to
‘2%), the usual first-order quantifiers, plus the identity symbol. The fine details
are not critical.

The non-logical vocabulary of £4 is {0,S,+, x}, where

‘0’ is a constant.
‘S’ is a one-place function-expression (read ‘the successor of”).

‘+’” and ‘x’ are two-place function-expressions.

For readability, we’ll allow ourselves to write e.g. (x +y) and (x x y) rather than
+(x,y) and x(x,y).

We'll now define the (standard) numerals and the terms of L£4. Numerals,
then, are expressions that you can build up from our single constant ‘0’ using
just the successor function, i.e. they are expressions of the form SS...S0 with
zero or more occurrences of ‘S’. We’ll abbreviate the numerals S0, SS0, SSSO0,
etc. by 1, 2, 3, etc. And when we want to generalize, we’ll write ‘n’ to indicate
the standard numeral SS...S0 with n occurrences of ‘S’.!

n using ‘S’ rather than ‘s’, we depart from the normal logical practice which we follow
elsewhere of using upper-case letters for predicates and lower-case letters for functions: but
this particular departure is sanctioned by aesthetics and common usage.

‘We’ve made two other notational choices here. First, a very common alternative convention
is to use a postfixed prime as the symbol for the successor function; in that notation the
standard numerals are then 0, 0’, 0", 0"/, (Although we won’t be using that notation
in this book, I’ll avoid using the prime symbol for other purposes when there could be any
possibility of a browsing reader mistaking it for an unintended successor symbol.)

Second, another very common convention is to an overlined symbol like @ to abbreviate the
numeral SS...S0 with n occurrences of ‘S’. Our alternative convention of using a sans serif
font for formal expressions and abbreviations for formal expressions avoids the visual clutter
of overlinings.

28

The language L4

Next, terms are expressions that you can build up from ‘0’ and/or variables
using the successor function S, addition and multiplication — as in SSS0, (S0 + x),
(SSS0 x (Sx+vy)), and so on. Putting it more carefully,

‘0’ is a term, as is any variable.
If o and 7 are terms, so are So, (o 4+ 7), (¢ X 7).

Nothing else is a term.

The closed terms are the variable-free terms.

Now, the only predicate built into £ 4 is the identity sign. So that means that
the only possible atomic wiffs have the form ¢ = 7, where again ¢ and 7 are
terms. Then wifs are formed from atomic wffs in the entirely standard way, by
using connectives and quantifiers.

(b) Semantics The interpretation Z4 gives items of £ 4’s non-logical vocabulary
their natural readings. In particular, Z 4 assigns values to closed terms as follows:

The value of ‘0’ is zero. Or in an obvious shorthand, val[0] = 0.
If 7 is a closed term, then val[ST] = val[7] + 1.

If o and 7 are closed terms, then val[(o + 7)] = val[o] + val[7], and
val[(o x T)] = val[o] x val[7].

It immediately follows, by the way, that numerals have the values that they
should have, i.e. for all n, val[n] = n.

The atomic sentences (closed wifs) of £ 4 must all have the form o = 7, where
o and 7 are closed terms. Like any relational sentence, such a sentence is true
if the pair of values of the featured constants satisfies the featured predicate.
Hence

A sentence of the form o = 7 is true iff val[o] = val[7].

Molecular sentences built up using the truth-functional connectives are then
evaluated in the obvious ways: so

A sentence of the form —¢ is true iff ¢ is not true.
A sentence of the form (¢ A) is true iff ¢ and v are both true.

and so on through the other connectives. Which leaves us the quantified sentences
to deal with. Following the line in Section 3.2, we could explicitly say that the
domain of quantification is the natural numbers, and a sentence of the form
Ivip(v) is true on T4 just if there is some number in the domain which we can
dub with a new constant ‘c’ so that — on a suitable expansion of the interpretation
Za — ¢(c) comes out true. But of course, each number in the intended domain
already has a term to pick it out, i.e. the numeral n. So, here — in this special case
— we can drop the explicit talk of a domain of quantification and new constants
and put the rule for the existential quantifier very simply like this:

29

4. Capturing numerical properties

A sentence of the form Jvp(v) (where ‘v can be any variable) is
true iff, for some number n, ¢(n) is true.

Similarly
A sentence of the form Vvp(v) is true iff, for any n, p(n) is true.

And then it is easy to see that 74 will, as we want, effectively assign a unique
truth-condition to every L4 sentence.

(¢) Just one comment The semantics Z4 straightforwardly entails that the
sentence (1 + 2) = 3, i.e. in unabbreviated form (SO + S00) = SSSO, is true just
so long as one plus two is three; likewise 3x 4 = (x x 2), i.e. 3x S0000 = (x x S00),
is true just so long as there is some number such that four is twice that number
(i.e. so long as four is even). But, by any normal arithmetical standards, one
plus two is three, and four is even. So by the same workaday standards, those
two L 4-sentences are indeed true.

Later, when we come to present Godel’s Theorems, we’ll describe how to
construct some much more complex sentences of an arithmetical theory 7" built
in the language L4, sentences which are ‘true but unprovable-in-7". But while
the sentences in question are exotic, there is nothing in the least exotic about
the notion of truth being applied to them here: it is the very same workaday
notion we’ve just so simply explained. Z 4 explicitly defines what it takes for any
L 4-sentence, however complex, to be true in this humdrum sense.?

Now there are, to be sure, philosophers who will say that no L 4-sentence is
strictly speaking true in the humdrum sense — because they are equally prepared
to say that, strictly speaking, one plus two isn’t three and four isn’t even.?
Such common-or-garden arithmetic claims, they aver, presuppose the existence
of numbers as mysterious kinds of objects in some Platonic heaven, and they
doubt the literal existence of such things. On their view, then, such arithmetical
entities are fictions: and, at least when we are on our very best behaviour, we
really ought to say only that in the arithmetical fiction, one plus two equals three,
and four is even. We can’t, however, tangle with this rather popular view here:
and fortunately we needn’t do so, for the issues it raises are quite orthogonal to

2The notion of truth, in other words, is not being used here in a sense carrying any special
weight. Wittgenstein puts a related point this way in lectures:

One often hears statements about ‘true’ and ‘false’ — for example, that there
are true mathematical statements which can’t be proved in Principia Math-
ematica, etc. In such cases the thing is to avoid the words ‘true’ and ‘false’
altogether, and to get clear that to say that p is true is just to assert p; and
to say that p is false is simply to deny p or to assert —p. It is not a question
of whether p is ‘true in a different sense’. It is a question of whether we assert
p. (Wittgenstein, 1989, p. 188)

Here Wittgenstein is talking of the use of ‘true’ applied within a language, while we are
currently concerned about the use across languages, when we talk about L4 in English. The
point becomes: claiming an L4 sentence is true commits us to nothing more than an assertion
of a corresponding English arithmetical sentence.

3See e.g. (Field, 1989, Ch. 1) and (Balaguer, 1998) for discussion.

30

Expressing numerical properties and relations

our main concerns in this book. Fictionalists about arithmetic can systematically
read our talk of various L 4 being true in their favoured way — i.e. as talk ‘within
the arithmetical fiction’.

4.4 Expressing numerical properties and relations

A competent formal theory of arithmetic should surely be able to talk about a
lot more than just the successor function, addition and multiplication. But ‘talk
about’ how?

(a) Let’s assume for the moment that we are dealing with a theory built in the
language L 4. So, for a first example, consider L 4-sentences of the type

1. ’(/J(n) =def E|V(2 XV = n)
Then, for example, if n = 4, “4)(n)’ unpacks into ‘Iv(SSO x v = SSSSO)’. It is
obvious that, for any n,

if n is even, then ¥ (n) is true,
if n isn’t even, then —(n) is true,

where we mean, of course, true on the arithmetic interpretation built into L 4.
Relatedly, then, consider the open wif with one free variable

1. (X)) =get V(2 x v=x)

This is, as the logicians say, satisfied by the number n just when ¢ (n) is true, i.e.
just when n is even — or to put it another way, ¥ (x) has the set of even numbers
as its extension. Which means that our open wif expresses the property even,
for it has the right extension.

Another example: n has the property of being prime if it is greater than one,
and its only factors are one and itself. Or equivalently, n is prime just in case it
is not 1, and of any two numbers that multiply to give n, one of them must be
1. So consider the wif

2. x(M)=get (n#1 A VuWw(uxv=n — (u=1Vv=1)))

(where we use « # 8 to abbreviate ~a = (). This holds just in case n is prime,
i.e. for every n,

if n is prime, then x(n) is true,
if n isn’t prime, then —x(n) is true.

So relatedly, the corresponding open wff
2 x(X) =gt (x#£1 A VuW(uxv=x — (u=1Vv=1)))

is satisfied by exactly the prime numbers. Hence x(x) expresses the property
prime, again in the sense of having the right extension.

31

4. Capturing numerical properties

In this sort of way, a formal language like L 4 with limited basic resources can
come to express a whole variety of arithmetical properties by means of complex
open wifs with the right extensions. And our examples motivate the following
official definition that applies to any language L in which we can form the
standard numerals:

A property P is expressed by the open wif ¢(x) with one free
variable in an arithmetical language L iff, for every n,

if n has the property P, then ¢(n) is true,

if n does not have the property P, then —p(n) is true.

‘True’ of course continues to mean true on the given interpretation built into the
relevant L.

(b) We can now extend our definition in the obvious way to cover relations.
Note, for example, that in a language like L 4

3. P(m,n) =qer IV(Vv+m=n)

is true just in case m < n. And so it is natural to say that the corresponding
expression

3. (X, y) =det V(v +x=y)

expresses the relation less-than-or-equal-to, in the sense of getting the extension
right. Generalizing again:

A two-place relation R is expressed by the open wif ¢(x,y) with
two free variables in an arithmetical language L iff, for any m,n,
if m has the relation R to n, then ¢(m,n) is true,
if m does not have the relation R to n, then —(m, n) is true.

Likewise for many-place relations.?

4A footnote for very-well-brought-up logicians. We could have taken the canonical way of
expressing a monadic property to be not a complete open wif ¢(x) but a predicative expression
p(&) — where ‘¢’ here isn’t a variable but a place-holder, marking a gap to be filled by a term
(i.e. by a name or variable). Similarly, we could have taken the canonical way of expressing
a two-place relation to be a doubly gappy predicative expression ¢(&, (), etc. Now, there are
pernickety philosophical reasons for preferring the gappy notation to express properties and
relations. However, it is the default informal mathematical practice to prefer to use complete
expressions with free variables rather than expressions with place-holders to mark the gaps;
and sticking to this practice makes for a more familiar-looking notation and so greatly aids
readability. (Trust me! — I did at one stage try writing this book systematically using the
notation with Greek letters as place-holders and some passages looked quite unnecessarily
rebarbative.)

Still, there’s a wrinkle. Just once, in Section 10.5, we’ll want to talk about the expres-
sive power of a theory whose language lacks quantifiers and variables, so in particular lacks
expressions with free variables. In that special context, you’ll have to treat any reference to
expressions of the form ¢(x,y) as a cheerful abuse of notation, with the apparent variables
really functioning as place-holders, so there we mean what we really should otherwise write as

»(&,¢) and so on.

32

Capturing numerical properties and relations

4.5 Capturing numerical properties and relations

Of course, we don’t merely want various properties of numbers to be ezpressible
in the language of a formal theory of arithmetic. We also want to be able to use
the theory to prove facts about which numbers have which properties.

Now, it is a banal observation that to establish facts about individual numbers
typically requires much less sophisticated proof-techniques than proving general
truths about all numbers. To take a dramatic example, there’s a school-room
mechanical routine for testing any given even number to see whether it is the sum
of two primes. But while, case by case, every even number other than two that
has ever been checked passes the test, no one knows how to prove Goldbach’s
conjecture — i.e. no one knows how to prove ‘in one fell swoop’ that every even
number greater than two is the sum of two primes.

Let’s focus then on the relatively unambitious task of case-by-case proving
that particular numbers have or lack a certain property. This level of task is
reflected in the following definition concerning formal provability:

The theory T captures the property P by the open wif o(x) iff, for
any n,

if n has the property P, then T ¢(n),

if n does not have the property P, then T F —¢(n).

For example, in theories of arithmetic 7' with very modest axioms, the wif
¥(X) =ger V(2 X v =x) not only expresses but captures the property even. In
other words, for each even n, T' can prove ¥ (n), and for each odd n, T can prove
—p(n). Likewise, in the same theories, the wif x(x) from the previous section not
only expresses but captures the property prime.

As you would expect, extending the notion of ‘capturing’ to the case of rela-
tions is straightforward:

The theory T captures the two-place relation R by the open wif
o(x,y) iff, for any m, n,

if m has the relation R to n, then T+ ¢(m, n)

if m does not have the relation R to n, then T'F —¢(m,n).

4.6 Expressing vs. capturing: keeping the distinction clear

A little later, we’ll need the notion of a formal theory’s capturing numerical
functions (as well as properties and relations). But there is a minor complication
in that case, so let’s not delay over it here; instead we’ll immediately press on
in the next chapter to apply the concepts that we’ve already defined.

However, I should pause to note frankly that my talk of a theory’s ‘captur-
ing’ a numerical property is a bit deviant. But terminology here varies anyway.
Perhaps most commonly these days, logicians talk of P being ‘represented’ by
a p(x) satisfying our conditions for capture. But I’'m unapologetic: experience

33

4. Capturing numerical properties

suggests that the more usual jargon is in some danger of engendering confusion
in beginners. While ‘capture’ is helpfully mnemonic for ‘case-by-case prove’.

But whatever youmvoured jargon, the key thing is to be absohftely clear
about the distinction we need to mark — so let’s highlight it again. Whether a
property P is expressible in a given theory just depends on the richness of that
theory’s language. Whether a property P can be captured by the theory depends
on the richness of its proof-system.®

Expressibility does not imply capturability: indeed, we will prove later that
— for any respectable theory of arithmetic T — there are numerical properties
that are expressible but not capturable in T (see e.g. Section 15.6). However,
there is a link in the other direction. Suppose T is a sound theory of arithmetic
— i.e. one whose axioms are true on the given arithmetic interpretation of its
language and whose logic is truth-preserving. Then T’s theorems are all true.
Hence if T+ ©(n), then o(n) is true. And if T+ —¢p(n), then —¢(n) is true.
Which shows that if o(x) captures P in the sound theory T then, a fortiori, T’s
language expresses P.

5¢Expresses’ is used in our way by e.g. Smullyan (1992, p. 19). As alternatives, we find e.g.
‘arithmetically defines’ (Boolos et al., 2002, p. 199), or simply ‘defines’ (Leary, 2000, p. 130),
(Enderton, 2002, p. 205).

Godel originally talked of a numerical relation being ‘decidable’ (entscheidungsdefinit) when
it is captured by an arithmetical wif (Godel, 1931, p. 176). As later alternatives to our ‘captures’
we find ‘numeralwise expresses’ (Kleene, 1952, p. 195), (Fisher, 1982, p. 112), and also simply
‘expresses’(!) again (Mendelson, 1997, p. 170), ‘formally defines’ (Tourlakis, 2003, p. 180) and
plain ‘defines’ (Boolos et al., 2002, p. 207). At least ‘binumerate’ — (Smorynski, 1977, p. 838),
(Lindstréom, 2003, p. 9) — won’t cause confusion. But as noted, ‘represents’ (although it is
perhaps too close for comfort to ‘expresses’) seems the most common choice in recent texts:
see e.g. (Leary, 2000, p. 129), (Enderton, 2002, p. 205), (Cooper, 2004, p. 56).

The moral is plain: when reading other discussions, always very carefully check the local
definitions of the jargon!

34

5 Sufficiently strong arithmetics

In Chapter 6, we’ll begin examining some formal theories of arithmetic ‘from
the bottom up’, in the sense of first setting down the axioms of the theories and
then exploring what the various theories are capable of proving. Here in this
chapter, however, we proceed the other way about. We introduce the concept of
a sufficiently strong theory of arithmetic, which is a theory that by definition can
prove what we’d like any moderately competent theory of arithmetic to be able
to prove about decidable properties of particular numbers. We then establish
some easy but quite deep results about such theories.

5.1 The idea of a ‘sufficiently strong’ theory

Suppose that P is some effectively decidable property of numbers, i.e. one for
which we have a mechanical algorithm for deciding, given a natural number n,
whether n has property P or not (see Section 2.1).

Now, when we construct a formal theory of the arithmetic of the natural
numbers, we will surely want deductions inside our theory to be able to track,
case by case, any mechanical calculation that we can already perform infor-
mally. After all, we don’t want going formal to diminish our ability to determine
whether n has this property P. As we stressed in Section 3.1, formalization aims
at regimenting what we can already do: it isn’t supposed to hobble our efforts.
So while we might have some passing interest in more limited theories, we will
mainly want to aim for a formal theory T" which at least (a) is able to frame some
open wif ¢(x) which expresses the decidable property P, and (b) is such that if
n has property P, T'F ¢(n), and if n does not have property P, T'F —p(n) —i.e.
we want 1" to capture P (in the sense of Section 4.5).

The suggestion therefore is that, if P is any decidable property of numbers,
we ideally want a competent theory of arithmetic 7' to be able to capture P.
Which motivates the following definition:

A formal theory of arithmetic T is sufficiently strong if it captures
all decidable numerical properties.

So it seems a reasonable and desirable condition on a formal theory of the arith-
metic of the natural numbers that it be sufficiently strong. Much later (in Sec-
tion ??), when we’ve done some close analysis of the general idea of effective
decidability, we’ll finally be in a position to warrant the claim that some simple
and (by then) very familiar theories do indeed meet this condition, and we’ll
thereby show that the condition of being ‘sufficiently strong’ is actually easily

35

5. Sufficiently strong arithmetics

met. But we can’t establish that now: this chapter just supposes that there are
such theories and derives some consequences.?

5.2 An undecidability theorem

A trivial way for a theory T to be sufficiently strong (i.e. to prove lots of wffs
about properties of individual numbers) is by being inconsistent (i.e. by proving
every wif about individual numbers). It goes without saying, however, that we
are interested in consistent theories.

We also like to get decidable theories when we can, i.e. theories for which
there is an algorithm for determining whether a given wiff is a theorem (see
Section 3.4). But, sadly, we have the following key result:?

Theorem 4 No consistent, sufficiently strong, azriomatized for-
mal theory of arithmetic is decidable.

Proof We suppose T is a consistent and sufficiently strong axiomatized theory
yet also decidable, and derive a contradiction.

By hypothesis, T’s language can frame open wifs with ‘x’ free. These will be
effectively enumerable: ¢g(x), ¢1(x), @2(x), ... For by Theorem 2 (Section 3.5),
we know that the complete set of sentences of T’ can be effectively enumerated.
It will then be a mechanical business to select out the ones with just ‘x’ free
(there are standard rules for determining whether a variable is free or bound).

And now let’s fix on the following definition:

n has the property D if and only if T F =, (n)

Note that the construction here links the subscripted index with the standard
numeral substituted for the variable in =, (x). So this is a cousin of the ‘diago-
nal’ construction which we encountered in Section 2.2 (see the comment (c) on
the proof of Theorem 1).

We next show that the supposition that T" is a decidable theory entails that
the ‘diagonal’” property D is an effectively decidable property of numbers. For
given any number n, it will be a mechanical matter to enumerate the open wifs
until the n-th one, ¢, (x), is produced. Then it is a mechanical matter to form
the numeral n, substitute it for the variable and prefix a negation sign. Now we
just apply the supposed mechanical procedure for deciding whether a sentence

11t is in fact rather more usual to define being ‘sufficiently strong’ as a matter of capturing
not only all decidable properties but also all decidable relations and all computable functions
too. But since we haven’t yet defined what it is to capture a function, and since the arguments
of this chapter in any case don’t depend on that notion, we might as well stick with our weaker
definition of sufficient strength.

2The undecidability of arithmetic was first proved in (Church, 1936). The direct proof
given here can be extracted from Theorem 1 of (Tarski et al., 1953, pp. 46-49). The first
published version of our informal version which I know is (Hunter, 1971, pp. 224-225), though
T.J. Smiley was presenting it in Cambridge lectures in the 1960s.

36

An incompleteness theorem

is a T-theorem to test whether the wif -, (n) is a theorem. So, on our current
assumptions, there is an algorithm for deciding whether n has the property D.

Since, by hypothesis, the theory T is sufficiently strong, it can capture all
decidable numerical properties: so it follows that, in particular, D is capturable
by some open wif. This wif must of course occur somewhere in our enumeration
of the ¢(x). Let’s suppose the d-th wif does the trick: that is to say, property D
is captured by @g(x).

It is now entirely routine to get out a contradiction. For, by definition, to say
that pg(x) captures D means that for any n,

if n has the property D, T F pq4(n),
if n doesn’t have the property D, T F —pq4(n).

So taking in particular the case n = d, we have

i. if d has the property D, T F q4(d),
ii. if d doesn’t have the property D, T F —4(d).

But note that our initial definition of the property D implies in particular:
iii. d has the property D if and only if T F —pg4(d).

From (ii) and (iii), it follows that whether d has property D or not, the wiff
—pg(d) is a theorem either way. So by (iii) again, d does have property D, hence
by (i) the wif ¢4(d) must be a theorem too. So a wit and its negation are both
theorems of T'. Therefore T is inconsistent, contradicting our initial assumption
that T is consistent.

In sum, the supposition that T is a consistent and sufficiently strong axiom-
atized formal theory of arithmetic and decidable leads to contradiction. X

Which is a beautiful result: indeed it is one of the delights of our topic: we can
get exciting theorems fast!

There’s an old hope (which goes back to Leibniz) that can be put in modern
terms like this: we might one day be able to mechanize mathematical reasoning to
the point that a suitably primed computer could solve all mathematical problems
in a domain by deciding theoremhood in an appropriate formal theory. What
we’ve just shown is that this is a false hope: as soon as a theory is strong enough
to capture all boringly mechanical reasoning about individual numbers, it must
cease to be decidable.

5.3 An incompleteness theorem

Now let’s put together Theorem 3 (established in Section 3.6) and Theorem 4.

Theorem 3 A consistent, axiomatized, negation-complete formal
theory is decidable.

Theorem 4 No consistent, sufficiently strong, aziomatized formal
theory of arithmetic is decidable.

37

5. Sufficiently strong arithmetics

These, of course, immediately entail

Theorem 5 A consistent, sufficiently strong, axiomatized formal
theory of arithmetic cannot also be negation complete.

That is to say, for any c.s.s.a. (consistent, sufficiently strong, axiomatized) theory
of arithmetic, there will be a pair of sentences ¢ and —¢, neither of which are
theorems. But one of these must be true on the given interpretation of T’s
language. Therefore, for any c.s.s.a. theory of arithmetic T, there are true-but-
unprovable wifs in T.

And adding in new axioms won’t help. To re-play the sort of argument we
gave in Section 1.2, suppose T is a c.s.s.a. theory of arithmetic, and suppose G
is a true sentence of arithmetic that 7" can’t prove or disprove. The theory U
which you get by adding G as a new axiom to T will, of course, now trivially
prove Gp, so we’ve plugged that gap. But note that U is consistent (for if U, i.e.
T + Gr, were inconsistent, then by reductio, T+ =Gy, contrary to hypothesis).
And U is sufficiently strong (since it can still prove everything T' can prove).
It is still decidable which wifs are axioms of U, so the theory still counts as a
properly axiomatized formal theory. So Theorem 5 applies, and the new c.s.s.a.
theory U must therefore contain a wif Gy (distinct from Gr, of course) which is
again true-on-interpretation but unprovable. So T is not only incomplete but in
a good sense incompletable.

5.4 The truths of arithmetic can’t be axiomatized

Here’s another pair of definitions.

i. A set of wifs ¥ is aziomatizable if there is an axiomatized formal theory
T such that, for any wif ¢, ¢ € ¥ if and only if T F ¢ (i.e. X is the set of
T-theorems).

ii. An interpreted language L is sufficiently rich if it can express every de-
cidable property of numbers.

Then, as an immediate corollary of Theorem 5, we have

Theorem 6 The set of truths of a sufficiently rich language L is
unazxiomatizable.

Proof Suppose that L is sufficiently rich, and we’ll suppose — for reductio —
that the set of true wifs of L can be axiomatized by a theory T. Then T must
be negation complete — since for every closed wif ¢ of L, either v or —) is true,
and by hypothesis the true one is a theorem.

But let P be any decidable property of numbers. Since L is sufficiently rich,
there is some ¢(x) such that, for any n,

if n has the property P, ¢(n) is true,
if n doesn’t have the property P, —p(n) is true.

38

The truths of arithmetic can’t be axiomatized

Since T entails all the truths, it follows that for any n

if n has the property P, T F ¢(n),
if n doesn’t have the property P, T F —p(n).

Since P was an arbitrary decidable property, this means that 7" must be suffi-
ciently strong (by definition of the notion of sufficient strength). But T is con-
sistent, since by hypothesis it only contains truths. So, by Theorem 5, T is not
negation-complete after all. Contradiction! X

Now, the informal idea of (all) ‘the truths of arithmetic’ is no doubt not a
sharp one. But however we refine it, presumably we want it to include at least
the truths about the nice, decidable, properties of numbers. So in our jargon,
the truths of arithmetic, on any plausible sharpening of that idea, should be
the truths of a sufficiently rich language. Hence our new theorem warrants the
informal claim expressed in the title of this section: the truths of arithmetic can’t
be axiomatized.

39

Interlude: taking stock, looking ahead

Theorem 5, our informal incompleteness theorem, isn’t the same as Godel’s First
Incompleteness Theorem. But it is a cousin, and it looks to be a quite terrific
result to arrive at so very quickly.

Or is it? Everything depends, for a start, on the idea of a ‘sufficiently strong’
theory of arithmetic which captures all decidable properties of numbers. Now,
as we've already briefly indicated in Section 2.1, there are a number of standard,
well-understood, fully coherent ways of formally refining the intuitive notion of
decidability, ways that turn out to locate the same entirely definite and well-
defined class of numerical properties (in fact, these are the properties whose
application can be decided by a Turing machine). The specification ‘all decidable
properties of numbers’ is therefore in good order. And hence so is the idea of a
theory being strong enough to capture all decidable properties of numbers.

But that doesn’t take us very far. For it could still be the case that a theory
that captures all decidable properties has to be very rich indeed — involving
(say) a language with an infinity of different fundamental predicates for the
infinity of different decidable properties, with each new predicate waiting to be
governed by its own special axioms. So couldn’t the moral of our Theorem just
be that there can’t be complete theories of all the arithmetical truths expressible
in certain ultra-rich languages? That would still leave open the possibility that
there could be complete theories governing the propositions expressible in some
more restricted languages like L 4, the language of basic arithmetic.

However, we announced right back in Section 1.2 that Gédel’s own result rules
out complete theories even of the truths of basic arithmetic. Hence, if our easy
Theorem 5 is to have the full reach of Gédel’s Theorem, we’ll need to show that a
theory with the restricted language of basic arithmetic can already be sufficiently
strong.

The state of play is therefore this: if our informal style of argument for Theo-
rem 5 is to be used to establish something like Godel’s own result, then it needs
to be augmented with (i) a general treatment of the class of decidable prop-
erties, and (ii) a proof that some axiomatized theory of basic arithmetic can
indeed capture all such properties.

But even with (i) and (ii) in play, there would still remain a very significant
difference between our easy Theorem and Godel’s theorem. For our easy result
would still only tell us that somewhere or other there’s an unprovable truth in
any sufficiently strong 7. By contrast, Godel’s proof of the official First Incom-
pleteness Theorem actually tells us how to take a theory T and construct a true
but unprovable-in-T" sentence (the one that encodes ‘I am unprovable in 77).

40

The truths of arithmetic can’t be axiomatized

Moreover, Godel shows that this unprovable-in-T sentence has a particularly
simple form: it is a wif of the kind Vyp(y), where each separate instance ¢(n) is
provable-in-T' (so the unprovable wif is, as it were, only just out of reach). And
Godel shows all this — albeit still after quite an amount of hard work — without
needing the general treatment in (i) and without needing all of (ii) either.

In sum, then, there is a very significant gap between our intriguing, quickly-
derived, but informal Theorem 5 and the industrial-strength First Incomplete-
ness Theorem that Godel proves. So, while what we have shown so far is highly
suggestive, it is time to start turning to Godel’s own arguments.

To avoid getting lost, it will help to keep in mind the following road-map of the
route we are taking, leading up to the Theorem:

1. We begin by describing some standard formal systems of arithmetic, in
particular the benchmark system PA, so-called ‘First-order Peano Arith-
metic’, and an important subsystem Q, ‘Robinson Arithmetic’. (Chap-
ters 6-8)

2. These systems are framed in L 4, the language of basic arithmetic. So they
only have the successor, addition and multiplication as ‘built-in’ functions.
But we go on to describe the large family of ‘primitive recursive’ functions,
properties and relations (which includes all familiar arithmetical functions
like the factorial and exponential, and familiar arithmetic properties like
being prime, and relations like one number being the square of another).
And we then show that Q and PA can capture all the primitive recursive
functions, properties and relations — a result that was, in essence, first
proved by Godel. (Chapters 9-11)

3. We next turn to Godel’s simple but crucial innovation — the idea of sys-
tematically associating expressions of a formal arithmetic with numerical
codes. Any sensibly systematic scheme of ‘G6del numbering’ will do: but
Godel’s original style of numbering has a certain naturalness, and makes it
tolerably straightforward to prove arithmetical results about the codings.
With a coding scheme in place, we can reflect properties and relations
of strings of symbols of PA (to concentrate on that theory) by properties
and relations of their Gédel numbers. For example, we can define the nu-
merical properties Term and Wff which hold of a number when it is the
code number for a symbol sequence which is, respectively, a term or a wif
of PA. And we can, crucially, define the numerical relation Prfseq(m,n)
which holds when m codes for an array of wifs that is a PA proof, and
n codes the closed wif that is thereby proved. This project of coding up
various syntactic relationships is often referred to as the arithmetization
of syntax. And what Godel showed next is that — given a sane system
of Godel numbering — these and a large family of related arithmetical
properties and relations are primitive recursive. (The outline idea here

41

Interlude

is beautifully simple: joining up the dots takes some tiresome work in
Chapter 12.)

Next — the really exciting bit! — we use the fact that relations like Prfseq
are expressible in PA to construct the ‘Gddel sentence’ G. Given the coding
scheme, G ‘says’ there is no number that is the Godel number of a PA
proof of the wif that results from a certain construction — where the wif
that results is none other than G itself. So in effect G ‘says’ of itself ‘I
am unprovable in PA’. We can then show that G is indeed unprovable,
assuming PA is consistent. So we’ve found an arithmetical wff that is
true but unprovable in PA. (And given a slightly stronger assumption
than PA’s consistency, =G must also be unprovable in PA.) Moreover, this
unprovable wif has the simple form we indicated above. (Chapter 13)

Finally, Godel notes that the true-but-unprovable sentence G for PA is
generated by a method that can be applied to any other arithmetic that
satisfies some modest conditions. In particular, adding G as a new axiom
to PA just gives us a revised theory for which we can generate another
true-but-unprovable wif G’. PA is therefore not only incomplete but in-
completable. Indeed, any properly axiomatized that contains the weaker
theory Q is incompletable. (Chapter 14)

Now, on the face of it, all that looks rather different from our informal proof
using the idea of ‘sufficiently strong’ theories which capture all computable prop-
erties. But a close connection can be made by noting that the primitive recursive
properties are in fact a sub-class of the intuitively computable properties. Hence
showing that Q and PA can capture all primitive recursive properties is at least
a precursor to showing those theories are sufficiently strong. However, only when
we have travelled the original Godelian route (which doesn’t presuppose a gen-
eral account of computability) will we return to formalize the argument of our
informal proof (a task which does presuppose such a general account).

42

6 Two formalized arithmetics

We now move on from the generalities of the previous chapters, and look at four
particular formal theories of arithmetic. We limber up with two simple theories
in this chapter, namely Baby Arithmetic and Robinson Arithmetic. And then
in Chapter 8 we introduce Peano Arithmetic (the strongest and most important
of our four theories) and also briefly look at Presburger Arithmetic (a cut-down
version of Peano Arithmetic). These theories differ in strength, but they do share
the following features:

1. Zero and functions like successor and addition are treated as primitive
notions governed by basic axioms, and are not defined in terms of anything
more fundamental.

2. The theories’ deductive apparatus is no stronger than familiar first-order
logic. So we can quantify over numbers, but there are no second-order
quantifiers, so we can’t quantify over numerical properties.

It is absolutely standard to start by considering formal theories of arithmetic
with these features, though later in this book we’ll briefly look at some theories
which lack them.

6.1 BA — Baby Arithmetic

We begin with a very simple formal arithmetic which ‘knows’ about the addition
of particular numbers, ‘knows’ its multiplication tables, but can’t express general
facts about numbers at all (it lacks the whole apparatus of quantification). Hence
our label baby arithmetic, or BA for short. As with any formal theory, we need
to characterize its language, deductive apparatus, and axioms:

(a) BA’s language is Lp = (Lp,Zp). Lp’s non-logical vocabulary is the same
as that of £ (Section 4.3): so there is a single individual constant ‘0’, the one-
place function symbol ‘S’; and the two-place function symbols ‘4+’ and ‘x’. Note
that £p in particular contains the standard numerals. However, Lp’s logical
apparatus is restricted. As we said, it lacks the quantifiers and variables. But it
has the identity sign (so that we can express equalities), and negation (so that
we can express inequalities): and we might as well give it the other propositional
connectives too.

The intended interpretation Zg is the obvious one. ‘0’ still has the value zero.
‘S’ signifies the successor function, and ‘4’ and ‘x’ are interpreted as addition
and multiplication.

43

6. Two formalized arithmetics

(b) BA’s deductive apparatus can be based on your favourite system of propo-
sitional logic to deal with connectives. Then we need to add some standard rules
to deal with the identity sign: in particular, we need a version of Leibniz’s Law.
Then, if 7 and p are closed terms (see Section 4.3, (a)), Leibniz’s Law will allow
us to infer ¢(p) from the premisses p(7) and 7= p or p = 7.

(¢) Now for the axioms of BA. To start with, we want to pin down at least the
following facts about the structure of the number sequence: (1) Zero is the first
number, i.e. isn’t a successor; so for every n, 0 # Sn. (2) The number sequence
never circles back on itself; so different numbers have different successors — or
contraposing, for any m, n, if Sm = Sn then m = n.

We haven’t got quantifiers in BA’s language, however, so we can’t express
these general facts directly. Rather, we need to employ schemas and say: any
sentence that you get from one of the following schemas by substituting standard
numerals for the place-holders ¢, ‘€’ is an axiom.

Schema 1 0+#£S¢
Schema 2 S(=S¢ — (=¢

We’ll quickly show that instances of these schemas do indeed entail that dif-
ferent terms in the sequence 0, SO, SS0, SSSO, ..., pick out different numbers.
Recall, we use ‘n’ to represent the numeral SS...S0 with n occurrences of ‘S’
so the result we need is that, for any m, n, if m # n, then BA F m # n.

Proof Suppose m # n (and let [m—n|—1 = j > 0). And assume m = n as a tem-
porary supposition in BA (that’s a supposition of the form SS...S0 =SS...S0,
with m occurrences of ‘S’ on the left and n on the right). We can now use in-
stances of Schema 2 plus modus ponens to repeatedly strip off initial occurrences
of ‘'S’, one on each side of the identity, until either (i) we derive 0 = Sj, or else (ii)
we derive Sj = 0 and then use the symmetry of identity to conclude 0 = Sj. But
0 # Sj is an axiom (an instance of Schema 1). Contradiction. So, m # n follows
by reductio. Which proves that if m # n, then BA F m # n. X

Next we pin down the addition function by saying that any wif that you get
by substituting numerals in the following is also an axiom:

Schema 3 (+0=¢
Schema 4 C+SE=S(C+¢€)

Instances of Schema 3 tell us the result of adding zero. Instances of Schema 4
with ‘¢’ replaced by ‘0’ tell us how to add one (i.e. add S0) in terms of adding
zero and then applying the successor function to the result. Once we know about
adding one, we can use another instance of Schema 4 with ‘¢’ replaced by ‘S0’
to tell us how to add two (S50) in terms of adding S0. We can then invoke the
same Schema again to tell us how to add three (5550) in terms of adding two:
and so on and so forth, thus defining addition for every natural number.

44

BA is complete

We can similarly pin down the multiplication function by requiring every
numeral instance of the following to be axioms too:

Schema 5 (x0=0
Schema 6 (xSE=((xE+(¢

Instances of Schema 5 tell us the result of multiplying by zero. Instances of
Schema 6 with ‘¢’ replaced by ‘0’ tell us how to multiply by one in terms of
multiplying by zero and then applying the already-defined addition function.
Once we know about multiplying by one, we can use another instance of Schema
4 with ‘€’ replaced by ‘SO’ to tell us how to multiply by two in terms of adding
one. And so on and so forth, thus defining multiplication for every number.

Note, it is evidently decidable whether a wif is an instance of one of the six
Schemas, and so it is decidable whether a wif is an axiom of BA, as is required
if BA is to count as an axiomatized theory.

6.2 BA is complete

It is easy to see that BA’s axioms can be used to prove all the correct results
about the addition or multiplication of two numbers.

To illustrate, here’s a BA derivation of 2 x 1 = 2, or rather (putting that in
unabbreviated form) of SSO x SO = SSO0.

1. SSOx0=0 Instance of Schema 5
2. SS0 x SO = (SS0 x 0) + SS0 Instance of Schema 6
3. S50 x SO0 =0+ SS0 From 1, 2 by LL

(‘LL’ of course indicates the use of Leibniz’s Law which allows us to intersub-
stitute identicals.) To proceed, we now need to show that 0 + SS0 = SSO — and
note, this isn’t an instance of Schema 3. So

4. 040=0 Instance of Schema 3
5. 04+S0=S(0+0) Instance of Schema 4
6. 0+S0=5S0 From 4, 5 by LL
7. 04 SS0=S(0+S0) Instance of Schema 4
8. 04 SS0 =SS0 From 6, 7 by LL

Which gives us what we want:
9. SS0 x SO =SS0 From 3, 8 by LL

That’s pretty laborious, but it works. And a moment’s reflection on this little
proof reveals that similar proofs will enable us to derive the value of any sum or
product of two numerals.

Let’s say that an equation of BA is a wif of the form 7 = p, where 7 and p are
closed terms. Then we have the following pair of general results about equations:

45

6. Two formalized arithmetics

1. If 7 = pis true, then BAF 7= p.
2. If 7 = p is false, then BA F 7 £ p.

In other words, in the jargon of Section 3.4, BA correctly decides all equations.

Proof sketch for (1) Our sample proof above illustrates the sort of BA derivation
that will prove any true simple equation of the type j 4+ k = mor j x k = n. Given
a more complex closed term 7, involving nested additions and multiplications (or
applications of the successor function), we can then prove a true wif of the form
7 = t with a numeral on the right by repeated steps of evaluating inner-most
brackets.

To take a mini-example, suppose 7 has the shape SS((j + k) + S(j x k)). Then
we first prove the identities j + k = m and j x k = n, evaluating the inner-most
bracketed expressions. Substituting these results into the logical truth 7 = 7
using Leibniz’s Law will enable us to derive

SS((j + k) 4+ S(j x k)) = SS(m + Sn)

Now evaluate the new, simpler, bracketed expression on the right by proving
something of the form m 4 Sn = t. Hence, using Leibniz’s Law again, we get

SS((j+k)+S(j x k)) =SSt

And we are done, as the expression on the right is a numeral. Evidently, this
method of repeated substitutions always works: for any complex closed term 7
we’ll be able to prove a wif correctly equating its value to that of some numeral.

So, generalizing further, given any two closed terms 7 and p, if they have the
same value so 7 = p is true, then we’ll be able to prove 7 = p by proving each
term equal to the same numeral. X

Proof sketch for (2) Suppose that two complex closed terms 7 and p have values
m and n, where m # n. By the argument for (1), we’ll then be able to prove a
pair of wffs of the form 7 = m, p = n. But we’ve already shown in the previous
section that if m % n, BA proves m # n. So, if m # n, a BA proof of 7 # p
follows using Leibniz’s Law twice. X

These two results in turn imply
Theorem 7 BA is negation complete.

Proof sketch Note that Lp, like £ 4, has only one primitive predicate, the iden-
tity relation. So the only atomic claims expressible in BA are equations involving
closed terms; all other sentences are truth-functional combinations of such equa-
tions. But we’ve just seen that we can (1) prove each true ‘atom’ and (2) prove
the negation of each false ‘atom’. So, by a theorem of propositional logic, we can
derive any true truth-functional combination of atoms (equations), i.e. prove any
true sentence. And we can derive the negation of false truth-functional combi-
nation of atoms (equations), i.e. disprove any false sentence. In short, in the

46

Q — Robinson Arithmetic

jargon of Section 3.4, BA correctly decides every sentence. Hence, for any sen-
tence ¢ of BA, since either ¢ or - is true, either ¢ or -y is a theorem. So BA
is negation-complete. X

Since BA is complete, it is decidable, by Theorem 3. But of course we don’t
need a brute-force search through possible derivations in order to determine
whether a sentence ¢ is a BA theorem. For note that all BA theorems are true
(since the axioms are); and all true BA-sentences are theorems (as we’ve just
seen). Hence determining whether the BA-sentence ¢ is true settles whether it
is a theorem. But any such ¢ expresses a truth-function of equations, so we can
mechanically work out whether it is true or not by using school-room arithmetic
for the equations and then using a truth-table.

6.3 Q — Robinson Arithmetic

So far, then, so straightforward. But the reason that Baby Arithmetic manages
to prove every correct claim that it can express — and is therefore negation
complete by our definition — is that it can’t express very much. In particular,
it can’t express any generalizations at all. BA’s completeness comes at the high
price of being expressively extremely impoverished.

The obvious way to start beefing up BA into something more exciting is to
restore the familiar apparatus of quantifiers and variables. So let’s keep the
same non-logical vocabulary, but now allow ourselves the full resources of first-
order logic, so that we are working with the full language Ly = (L£4,Z4) of
basic arithmetic (see Section 4.3). Q’s deductive apparatus can be your favourite
version of first-order logic with identity, whatever that is.

Since we now have the quantifiers available to express generality, we can re-
place each metalinguistic Schema (specifying an infinite number of particular
axioms) by a single object-language Axiom. For example, we can replace the
first two Schemas governing the successor function by

Axiom 1 ¥x(0 # Sx)
Axiom 2 VxVy(Sx = Sy — x =)

Each instance of our earlier Schemas 1 and 2 can be deduced from the corre-
sponding Axiom by one or two applications of Universal Instantiation.

Note, however, that while these Axioms tell us that zero isn’t a successor, they
leave it open that there are other objects that aren’t successors cluttering up
the domain of quantification (there could be ‘pseudo-zeros’). We don’t want our
quantifiers — now that we’ve introduced them — running over such stray objects:
so let’s now explicitly rule them out:

Axiom 3 Yx(x 20 — Jy(x = Sy))

Next, we can similarly replace our previous Schemas for addition and multi-
plication by universally quantified Axioms:

47

6. Two formalized arithmetics

Axiom 4 Yx(x + 0 = x)

Axiom 5 WxVy(x+ Sy =S(x+y))
Axiom 6 Yx(x x 0 = 0)

Axiom 7 VxVy(x X Sy = (x X y) +x)

The formalized theory with language L4, Axioms 1 to 7, plus a standard first-
order logic, is called Robinson Arithmetic, or (very often) simply Q.!

6.4 Q is not complete

Since any BA Axiom — i.e. any instance of one of our previous Schemas — can be
derived from one of our new Q Axioms, every Lp-sentence that can be proved
in BA is equally a quantifier-free £ 4-sentence which can be proved in Q. Hence,
Q again correctly decides every quantifier-free sentence.

However, there are very simple true quantified sentences that Q can’t prove.
For example, Q can prove any particular wff of the form 0+ n = n. But it can’t
prove the universal generalization x =ger VX(0 + x = X).

Proof sketch One standard strategy for showing that a wif x is not a theorem
of a given theory T is to find an interpretation (often a deviant, unintended
interpretation) for the T-wffs which makes the axioms of T' true and hence all
its theorems true, but which makes x false.

Employing this strategy, we want to find a deviant, unintended, interpretation
of Q’s Axioms which would make them true but for which ‘adding’ a ‘number’
to zero changes it. Here’s an artificial — but still legitimate — example.

Take the domain of our deviant, unintended, interpretation of Q to be the set
N* comprising the natural numbers but with two other ‘rogue’ elements a and b
added (these can be Gwyneth Paltrow and Chris Martin, or any other pair that
takes your fancy). Let ‘0’ still to refer to zero. And take ‘S’ now to pick out the
successor® function S* which is defined as follows: S*n = Sn for any natural
number in the domain, while for our rogue elements S*a = a, and S*b =b. It is
immediate that Axioms 1 to 3 are still true on this deviant interpretation.

We now need to extend this model to re-interpret Q’s function ‘+’. Suppose
we take this to pick out addition®, where m +* n = m + n for any natural
numbers m, n in the domain, while a +* n = a and b+* n = b. Further, for any
x (whether number or rogue element), z +* a = b and « +* b = a. It is easily
checked that interpreting ‘+’ as addition™ still makes Axioms 4 and 5 true. But
by construction, 0 +* a # a, so this interpretation indeed makes y false.

We are not quite done, however, as we still need to show that we can give a co-
ordinate re-interpretation of ‘x’ in Q by some deviant multiplication* function.
But we can leave it as an exercise to fill in suitable details. X

IThis formal system was first isolated in (Robinson, 1952) and immediately became well-
known through the classic (Tarski et al., 1953).

48

Why Q is interesting

So Q can’t prove x. But obviously, Q can’t prove —y either. Just revert to the

standard interpretation Z4. Q certainly has true axioms on this interpretation:

so all theorems are true on Z4. But =y is false on Z4, so it can’t be a theorem.
In sum, Q ¥ x and Q ¥ —x.2 Which gives us the utterly unsurprising

Theorem 8 Q is not negation complete.

Of course, we've already announced that Godel’s First Theorem is going to prove
that no axiomatized theory in the language of basic arithmetic can be negation-
complete. But what we’ve just shown is that we don’t need to invoke anything
as Godel’s arguments to see that Q is incomplete: Q is, so to speak, boringly
incomplete.

6.5 Why Q is interesting

Given it can’t even prove ¥x(0 + x = x), Q is a pretty weak theory of arithmetic.
Even so, despite such shortcomings, Q will emerge as having some very nice
properties which do make it of special interest. In particular, and perhaps rather
surprisingly, it turns out to be sufficiently strong in the sense of Chapter 5. For
‘sufficient strength’ is a matter of being able to case-by-case prove enough wifs
about decidable properties of individual numbers. And Q’s weakness at proving
generalizations doesn’t stop it doing that.

Establishing this claim is business for much later (plainly, we can only establish
it when we have a general theory of decidability to hand). But it gives us the
motivation to press on in the next chapter to look in a preliminary way at what
Q can prove.

2The notational shorthand here is to be read in the obvious way: i.e we write T' ¥ ¢ as
short for not-(T + ¢), i.e. ¢ is unprovable in T

49

7 What Q can prove

In this chapter, we explore something of what Q can establish. Unavoidably, the
detailed arguments get a bit fiddly; and so you are welcome to skip the proofs
of stated results (you won’t miss anything of conceptual interest). But you will
need to carry forward to later chapters an understanding of some key concepts
we’ll be introducing: so do at least skim through.

Here’s a quick guide through the sections of this chapter.

1. We first show that the wif Iv(v + x = y) not only expresses but captures
the relation less-than-or-equal-to in Q (cf. Section 4.4, (b)). This motivates
our adding the symbol ‘<’ to Q so that £ < (is a definitional abbreviation
of v(v+E&=().

2. We then show that Q can formally prove a range of expected results about
the less-than-or-equals-to relation.

3. Consider a bounded universal quantification, as in e.g. (¥x < n)p(x) when
read in the obvious way. That quantification is equivalent to the finite con-
junction ¢(0) A (1) A ... Ap(n). Likewise a bounded existential quantifi-
cation is equivalent to a finite disjunction. ‘Simple’ L 4 sentences (or in the
official jargon, Ay sentences) that are built up with bounded quantifiers
are therefore like the quantifier-free sentences which they are equivalent
to: it is a simple matter of mechanical calculation to determine whether
they are true or not.

4. We show that Q knows enough about bounded quantifiers to be able to
correctly decide every ‘simple’ sentence — i.e. prove it if it is true, disprove
it if it is false. And Q can also prove any true existentially quantified
‘simple’ wif (in the official jargon, can prove any true 3; sentence).

5. We finally note an intriguing corollary of that last result.

7.1 Capturing less-than-or-equal-to in Q

In this section, we’ll show that the less-than-or-equal-to relation is captured by
the wif Jv(v +x =y) in Q. That is to say, for any particular pair of numbers, Q
can prove that the first is less than or equal to the second (if it is) or prove that
it isn’t (if it isn’t).

Proof sketch Suppose m < n, so for some k > 0, kK +m = n. Q can prove
everything BA proves and hence, in particular, can prove every true equation. So

50

Capturing less-than-or-equal-to in Q

we have QF k+m =n.But k+m =n F 3Jv(v+ m = n) by existential quantifier
introduction. Therefore Q F Jv(v + m = n), as was to be shown.

Suppose alternatively m > n. We need to show Q F —=3v(v+ m =n). We’'ll
first demonstrate this in the case where m = 2, n = 1. Then it will be be easy
to see that the style of proof will work more generally.

Now, we were very free-and-easy about the style of proof-system we gave to Q.
However, if we are to give illustrative proofs, we’ve got to plump for one definite
proof-system or another. Because it is well-known (but also simple to follow if
you don’t know it), we will work with a standard Fitch-style natural deduction
system. This has two features. First, we use symbols to act as temporary names
(‘parameters’): you can think of these as recruited from our stock of unused
variables. Second, we indent sub-proofs while a new temporary assumption is in
force.

So consider the following laborious argument with some inference steps slightly
compressed (LL of course indicates the use of Leibniz’s Law):

1. 3v(v + SS0 = S0) Supposition
2. a+SS0 =50 Supposition
3. a+ SS0 = S(a+S0) From Axiom 5
4. S(a+S0) =S0 From 2, 3 by LL
5. (a+5S0) =S(a+0) From Axiom 5
6. SS(a+0) =S50 From 4, 5 by LL
7. (a+0)=a From Axiom 4
8. SSa = S0 From 6, 7 by LL
9. SSa=S50—5a=0 From Axiom 2
10. Sa=0 From 8, 9 by MP
11. 0=>Sa From 10
12. 0 # Sa From Axiom 1
13. Contradiction! From 11, 12
14. Contradiction! JE 1, 2-13
15. —3v(v + SS0 = SO) RAA 1-14.

The only step to explain is at line (14) where we use a version of Existential
Elimination: the idea is that if the supposition ¢(a) leads to contradiction, for
arbitrary a, then Jvp(v) also leads to contradiction. Inspection of our proof
immediately reveals that we can indeed use the same basic pattern of argument
to show that Q + —=3v(v + m = n) whenever m > n. So we are done. X

Given that result, it is evidently appropriate now to add the standard sym-
bol ‘<’ to L4, defined so that (whatever we put for ‘¢’ and ‘C’), € < (=get
Jv(v + & = ¢).! Since it greatly helps readability, we’ll henceforth make very free
use of this symbol.

L Actually, we really need to be a bit more careful than that in stating the rule for unpacking
the abbreviation, if we are to avoid any possible clash of variables. But we’re not going to fuss
about the details.

51

7. What Q can prove

And while we are at it, let’s adopt two further abbreviatory conventions.
We will very often want to express bounded quantifications, i.e. to say that all
or some numbers less than or equal to a given number satisfy some particular
condition. Hence we’ll be making frequent use of wifs of the form VE(€ < k —)
and (€ <k A). It is standard to abbreviate such wifs by (V¢ < k)p and
(3¢ < k) respectively.

7.2 Eight simple facts about what Q can prove

We could now go on to prove, example by example, that various other properties
and relations can be captured in Q. However, it just isn’t worth treating more
examples in a piecemeal way because — as we said at the end of the previous
chapter — we are later going to be able to show that Q can capture all decidable
properties and relations. In fact Q is custom designed to be about the weakest
tidy theory that has this property.

In this section, then, we’ll note some basic general facts about what Q can
prove, chosen with an eye to what we need for the later proof that Q is indeed
‘sufficiently strong’. Here’s eight:

1. For any n, Q - Vx(Sx + n = x+ Sn).
2. Foranyn, QFW¥x({x=0vx=1V...Vx=n} —->x<n).
3. Foranyn, QFWx(x<n—-{x=0Vx=1V...Vx=n}).

4. For any n, if Q- ¢(0), Q F (1), ..., Q F ¢(n),
then Q F (Vx < n)p(x).

5. For any n, if Q F ¢(0), or Q F (1), ..., or Q F p(n),
then Q F (Ix < n)p(x).

6. Foranyn, QVx(x<n — x<n+1).
7. Foranyn, QFVx(n<x — (n=x V Sn <x)).
8. Foranyn, QFVx(x<n V n<x).

Some of these facts are just a bit tiresome to demonstrate: but none of the proofs
is very exciting or involves anything deep. If you have a taste for logical brain-
teasers, then see how many of the results you can establish before reading on.
If you don’t, just make sure that you understand the content of these results;

We should remark, by the way, that some presentations treat ‘<’ as a primitive symbol
built into our formal theories from the start, governed by its own additional axiom(s). Nothing
important hangs on the difference between that approach and our policy of introducing the
symbol by definition. And nothing hangs either on our policy of introducing ‘<’ rather than
‘<’, which can be defined by £ < ¢ =ger IV(Sv+ £ = ().

52

Eight simple facts about what Q can prove

and then feel free to skim the following proofs very lightly, or even skip them
altogether.?

Proof for (1) The following holds for arbitrary a:

n times n+1 times n times

— — —
Sa+n=S5a+S55...50 = SS...Sa =a+S5S55...50 = a+5n

Each of the middle two equations is proved by the repeated use of Axiom 5 (to
shift around, one by one, the occurrences of ‘S’ after the plus signs) and then
one appeal to Axiom 4. Since a was arbitrary, we can universally generalize to
get the desired result. X

Proof for (2) Suppose we are given a = k, for some k < n. Then

Suppose a = k (where k < n). Then, since Q proves all true equations, it proves
(n —k)+a=n, and hence 3v(v+a =n), i.e. Q proves a < n. So, now suppose
a=0Va=1V...Va=n. We've just shown each disjunct entails a < n. Hence,
arguing by cases, Q proves a=0Va=1V...Va=n — a<n, and then the
result is immediate. X

Proof for (3) This is trickier: we’ll argue by an informal induction. That’s to
say, we’'ll show that (a) the given wff is provable for n = 0. Then we show that
(b) if it is provable for n = k it is provable for n = k + 1. We can conclude that
it is therefore provable for all n.3

(a) To show the wif is provable for n = 0, we need a proof of ¥x(x < 0 — x = 0).
It is enough to suppose, inside a Q proof, that a < 0, for arbitrary a, and deduce
a = 0. So suppose a <0, i.e. Gv(v+ a = 0). Then for some b, b+ a = 0. Now by
Axiom 3, either (i) a = 0, or (ii) a = Sa® for some a°. But (ii) implies b + Sa°® = 0,
so by Axiom 5 S(b + a°) =0, contradicting Axiom 1. That rules out case (ii).
Therefore a = 0 as we needed to show.

(b) We assume that Q proves ¥x(x < k — {x=0Vx=1V...Vx=k}). We
want to prove that Q proves ¥x(x < k+1— {x=0Vvx=1V...Vx=k+1}).
It is enough to suppose, inside a Q proof, that a < k + 1, for arbitrary a, and
then deducea=0Vva=1V...Va=k+ 1.

Our supposition, unpacked, is Iv(v +a = k + 1). By Axiom 3, (i) a = 0 or (ii)
a = Sa°, for some a°. In case (i), the desired long disjunction follows immediately.
While in case (ii), we have Jv(v 4+ Sa® = Sk): hence, by Axiom 5 and Axiom
2, we can derive Jv(v + a° = k); i.e. a® < k. So, using our given assumption,
a®=0Vva®=1Vv...va®°=k.Sincea=Sa°,a=1va=2VvV...Va=k+1.So
putting (i) and (ii) together, a=0vVa=1vVa=2V...Va=k+1. X

2‘He has only half learned the art of reading who has not added to it the more refined
art of skipping and skimming.” (A. J. Balfour, one-time British Prime Minister.) This remark
applies in spades to reading mathematical texts!

3You need to be very clear what is going on here. We are not using an inductive argument
inside Q; we can’t because Q lacks induction axioms (compare PA in the next chapter, which
does have induction axioms). Rather, we are standing outside Q and using an everyday informal
— or ‘metalogical’ — reasoning to show something about what Q can prove.

53

7. What Q can prove

Proof for (4) Assume Q proves each of ©(0), ©(1), ..., ¢(n). Then, suppose
a <n, for arbitrary a. By Result 3, we have a=0Va=1V...Va=n. Now
we argue by cases: each disjunct separately — combined with one of our initial
suppositions — gives ¢(a); so we can conclude ¢(a). Discharging our temporary
supposition, a < n — ¢(a). Generalize, and we are done. X

Proof for (5) Assume Q proves ¢(k) for some k < n. Since Q captures less-
than-than-or-equal-to, we have k < n A ¢(k), hence Ix(x < n A ©(x)). X

Proof for (6) Suppose a <n for arbitrary a. Then a=0Va=1V...Vn by
Result 3. So by trivial logic,ca=0Va=1V...Va=nVa=n+ 1. So by Result
2, a < n+ 1. Which gives us what we want. X

Proof for (7) Suppose n < a for arbitrary a. So for some b, b + n = a. By Axiom
3, either (i) b =0 or (ii) b = Sb° for some b°. If (i), then 0 +SS...S0 = a, and
applying Axiom 5 n times and then Axiom 4 gives us n = a. If (ii), Sb® + n = a,
so by Result 1 we have b® 4+ Sn = a, hence Jv(v + Sn = a), i.e. Sn < a. Therefore
either way we get n = aV Sn < a, and we are done. X

Proof for (8) We show that (a) the given wif is provable for n = 0, and that (b)
if it is provable for n = k it is also provable for n = k4 1. We can then conclude
by another informal induction that the wif is provable for all n.

(a) Note that for any a, a+ 0 = a. Hence, Iv(v+ 0 = a), i.e. 0 < a. So a for-
tiori, 0 <a Vv a < 0. Generalizing gives us the desired result for n = 0.

(b) We’ll suppose that the result holds for n = k, and show it holds for
n = k + 1. Hence, for arbitrary a,

i a<kVk<a By our supposition
ii. a<k—a<k+1 By Result 6
iii. k<a—k=aVvVk+1<a By Result 7

And since Q captures less-than-or-equal-to, we know it proves k < k + 1, hence
iv. a=k—a<k+1

But (i) to (iv) immediately entail
V. a<k+1VvVk+1<a

Since a is arbitrary, generalizing gives us what we needed to show. X

7.3 Defining the Ag, >1 and II; wffs

(a) Why did we bother to prove all those slightly tedious elementary results?
Because they enable us easily to show that Q can prove every truth in the class
of so-called %1 wifs.

But why do we care about that class of wifs (whatever it is)? Because later
we’ll also be able to show that these are just the wifs we need for expressing

54

Defining the Ag, X1 and II; wffs

decidable properties or relations. So we’ll be able to use the fact that Q copes
with ¥y truths to prove that Q can indeed case-by-case capture each decidable
property and relation and hence is sufficiently strong.

So what are these ¥; wifs? The headline news is that they are (equivalent to)
existentially quantified wils, where what follows one or more initial existential
quantifiers is ‘simple’, i.e. lacks unbounded quantifiers.

More carefully, the ‘simple’ kernel is built up using the successor, addition,
and multiplication functions, identity, the less-than-or-equal-to relation, plus the
familiar propositional connectives and/or bounded quantification.* As we’ll soon
see, just as Q can prove all true equations and disprove all false ones, it can also
correctly decide all ‘simple’ wifs about particular numbers. So it can also prove
the existential quantifications of the true ones. Which is why Q can prove all the
true ¥ wifs.

So much for the headline news. In the rest of this section we’ll pause to define
the ‘simple’ wifs carefully: more officially, these are the Ay wils. Then we define
the Xy wifs which existentially quantify ‘simple’ wifs, and also the II; wifs which
universally quantify them.® And in the next section we’ll show that Q can indeed
prove all true 1 sentences. You are very welcome to skim and skip.

(b) Recall, a term of L4 is an expression built up from ‘0’ and/or variables
by zero or more applications of the successor, addition and/or multiplication
functions (see Section 4.3, (a)). We then say:

i. An atomic Ay wif is a wif of one of the forms ¢ = 7, 0 < 7, where ¢ and
T are terms.

So S0 < S000, x = S000 + y, and SS(y x SO0) =y x y, are examples of atomic Ag
wils. And now the full class of Ay wifs can be defined as follows:

4‘Hold on! What is meant by “bounded” quantification here? After all, a bounded quantifi-
cation like (3x < 2)Fx is just short for 3x(x < 2 A Fx), which involves an ordinary quantifier,
running over all the domain. So, when abbreviations are unpacked, all quantifiers are on a
par.” Well, in one sense, that’s true enough! So let’s be more careful and say that an exis-
tential quantifier, say 3x, has a bounded occurrence when it occurs in a subformula of the
form 3x(x < k A ¢(x)), for some numeral or variable x and some open wif ¢(x) with at least
‘x’ free. Similarly, a universal quantifier, say Vx, has a bounded occurrence when it occurs in a
subformula of the form Vx(x < k — ¢(x)). Then the idea is that a ‘simple’ wff, if it involves
quantifiers at all, involves only quantifiers with bounded occurrences.

5The ‘¥’ in the standard label ‘X1’ comes from an old alternative notation for the existential
quantifier, as in Yz Fz. Likewise the ‘IT’ in ‘II;’ comes from corresponding notation for the
universal quantifier, as in IIxFz. And the subscript ‘1’ in ‘37’ and ‘II;’ indicates that we
are dealing with wffs which start with one block of similar quantifiers, respectively existential
quantifiers and universal quantifiers.

In this book, we won’t be much concerned with more complex wifs. But for the record,
in the same notation, a (strictly) X, wif starts with n blocks of quantifiers of alternating
types, a block of existential quantifiers followed by a block of universals followed by a block
of existentials, etc, followed by a ‘simple’ kernel. Likewise a II,, wff begins with n blocks of
quantifiers of alternating type, but with a block of universals first.

Note that a ¢ wif will therefore be one in which a ‘simple’ kernel is preceded by no
quantifiers at all — so the X wifs are none other than the Ay wifs (as we’ve dubbed them).
And in fact both labels are current.

55

7. What Q can prove

ii. 1) Every atomic Ag wif is a Ay wif;

2) If ¢ and ¢ are Ag wifs, so are =g, (p A), (¢ V), (¢ —) and
(¢ <) (assuming all those connectives are either basic or defined
in LA)
3) If pis a Ag wif, so are (V& < k) and (F€ < k)p, where £ is any
variable free in ¢, and & is a numeral or a variable distinct from &.°
4) Nothing else is a Ay wif.
Hence, e.g., (Jy < S000)(x = SO0 +y) and —(Vy < x)(y < S0 + z) are A wifs.
Evidently, we can work out the truth or falsity of any closed Ag sentence by

a simple mechanical calculation, because we only have to look through a finite
number of cases when we have to deal with a bounded quantification.

(¢) That defines the ‘simple’ wifs. Then, as we said, X1 wifs are wifs equivalent
to (unbounded) existential quantifications of simple wifs. So we can continue our
bunch of definitions as follows:

iii. A wiff is strictly X, if it is of the form 3¢3C. .. Inp, where ¢ is Ay and
&,(,...,n are one or more distinct variables free in ¢. A wif is 3; if it is
logically equivalent to a strictly X wif.

Finally, for future use, here’s a parallel definition:

iv. A wif is strictly II; wit if it is of the form VEV(...Vne where ¢ is Ag. A
wif is II; if it is logically equivalent to a strictly II; wif.

(d) Three mini-facts are worth noting immediately:
1. The negation of a Ay wif is also Ay.
2. The negation of a 3 wif is II;, and the negation of a II; wif is ¥;.
3. A Ag wif is also both ¥; and II;.

The first is just trivial. The second is almost as trivial given the familiar equiv-
alence of ‘=3x’ with ‘Vx—’; etc. And for the third fact, suppose that the Ag
wil ¢ doesn’t have e.g. the variable ‘z’ free. Then (¢ Az =2z) is also Ag, and
Jz(p Az = z) is strictly ¥; and Vz(p Az = z) is strictly II;. But each of those is
logically equivalent to the original y; hence ¢ also counts as both ¥, and II;.

7.4 Qs X; complete

Two more definitions. Suppose I' is some class of wifs, and T is an interpreted
theory. Then we say

SWhy that distinctness requirement? Because, e.g., (¥x < x)@(x) =dof Vx(x < x — (%)) is
trivially equivalent to Vx¢(x), which is unbounded and so not what we want.

56

Q is X1 complete

i. T is I'-sound if, whenever p € I and T F ¢, then ¢ is true.
ii. T is I'-complete if, whenever ¢ € I' and ¢ is true, then T F .

(Here, ‘true’ of course means true on the standard interpretation built into T'.)
With that jargon to hand, we can state the following simple but very impor-
tant theorem:

Theorem 9 Q is X1 complete.

And we can demonstrate this by proving in turn that

1. Q correctly decides every atomic Ay sentence.”

2. Q correctly decides every Ag sentence.
3. Q proves every true ¥; sentence.

We already know that Q can correctly decide every quantifier-free sentence (i.e.
every sentence it shares with BA: see the opening remark of Section 6.4). So (2)
extends that simple result to cover sentences with bounded quantifiers.

Proof for (1) An atomic Ay sentence — i.e. a Ay wif without variables — is
either an equation 7 = 75 or else a wif of the form 7 < 75, where 71 and 75 are
closed terms. If the first, we are done, because we know that Q correctly decides
every equation. If the second, again because Q correctly decides every equation,
we know Q can prove a couple of wifs correctly evaluating the terms, i.e. can
prove 71 = t; and 7o = tp with numerals on the right. But since ‘<’ captures
the less-than-or-equal-to relation, Q correctly decides whether t; < t,. Hence,
plugging in the identities, Q correctly decides whether 71 < 7. X

Proof for (2) Let’s say that a A sentence has degree k if it is built up from
atomic wifs by k applications of connectives and/or bounded quantifiers.

The degree 0 sentences are the atomic sentences, and we now know that they
are correctly decided by Q. So let’s assume Q correctly decides all Ag sentences
of degree up to k. We’ll show that it correctly decides x, an arbitrary degree
k + 1 sentence. There are three cases to consider.

(i) x is built using a propositional connective from ¢ and/or v, sentences of
lower degree which by assumption Q correctly decides. But by elementary logic,
if Q correctly decides ¢ and v, it correctly decides —p, (p AY), (pV), (o — 1)
and (¢ < ¢). And so Q correctly decides .

(iia) y is of the form (V€ < n)p(€).8 If x is a true sentence, then ¢(0), p(1), ...,
(n) must all be true sentences. Being of lower degree, these are — by hypothesis
— all correctly decided by Q; so Q proves ¢(0), ¢(1), ..., ¢(n). Hence, by Result

"We defined ‘correctly decides’ in Section 3.4. Q correctly decides ¢ just in case, if ¢ is
true, Q F ¢, and if ¢ is false, Q F —p.

8Given x is a sentence, it can’t be of the form (V&€ < v)p(€) with v a variable dangling
free.

57

7. What Q can prove

4 of Section 7.2, we can conclude (V€ < n)p(§). On the other hand, if y is false,
(k) is false for some k < n, and — being of lower degree — this is correctly
decided by Q, so Q proves —p(k). Hence, by Result 5, Q proves (Ix < n)—p(x),
which easily gives us =(¥x < n)—p(x). So Q correctly decides x, i.e. (V€ < n)p(€).

(iib) x is of the form (3¢ < n)p(&). Dealt with similarly to case (iia).

In sum, Q correctly decides all Aq sentences of degree 0; also, if it decides all
Ag sentences of degree up to k, it decides all sentences of degree up to k + 1.
Therefore, by an informal induction on k, it decides all Aj sentences, whatever
their degree. X

Proof for (3) Take, for example, a strictly X; sentence of the type IxIyp(x,y),
where p(x,y) is Ag. If this sentence is true, then for some pair of numbers (m, n),
the Ay sentence p(m,n) must be true. Therefore, by (2), Q proves ¢(m, n). Hence
IxTyp(x,y), by existential introduction. Evidently the argument generalizes for
any number of initial quantifiers, which shows that Q proves all true strictly X
sentences. So it will prove their logical equivalents too. X

7.5 An intriguing corollary

Let’s say a theory T extends Q if it can prove all Q’s theorems and retains the
same interpretation for those theorems.? Since Q is ¥; complete, so is any theory
T which extends Q.

It immediately follows that

Theorem 10 IfT extends Q, T is consistent iff it is Il;-sound.

Proof T is Il -sound if every II; wif that T proves is true. First, then, suppose T'
proves a false I11-wif . = will then be a true 31 wif. But since T extends Q and
so is Xp complete, T' will also prove —¢, making 7" inconsistent. Contraposing,
if T is consistent, it proves no false II;-wff.

The converse is trivial, since if T is inconsistent, it proves anything, including
false II; wifs and so isn’t II;-sound. X

This is, in its way, a remarkable observation. It means that we don’t have to
fully believe a theory T — accept all its theorems are true — in order to use it to
establish that some II; generalization is true. We just have to believe that T is
a consistent theory which extends Q.

Here’s an imaginary example. Like many interesting arithmetical claims, Gold-
bach’s conjecture that every even number greater than two is the sum of two
primes can be expressed by a II; sentence.!? As we’ve noted before, no proof of

9Perhaps T has a richer language than L 4; but at least in the region of overlap, it gives
the same interpretation to the shared wifs.
10Why so? Well, the property of being even can be expressed by the Ay wif

P(X) =der (v < x)(2 X v =x)
And the property of being prime can be expressed by the Ag wif

58

An intriguing corollary

the conjecture is currently known. But now suppose that some really ingenious
deduction of it is found within e.g. Zermelo-Fraenkel set theory plus the nega-
tion of the Axiom of Choice. It doesn’t matter for the current argument that you
understand what this set theory says. All you only need to know that (i) it is cer-
tainly strong enough to define arithmetical vocabulary and to prove what Q can
prove but also (ii) few people think that this is the ‘right’ set theory (whatever
exactly that amounts to). Still it just doesn’t matter whether or not we regard
ZF + —=AC as ‘right’. So long as we accept — as pretty much everyone does — that
this theory is consistent, a demonstration that it entails Goldbach’s conjecture
would be enough to establish that the conjecture is true-in-arithmetic.

We'll return to consider the force of this observation later, when we touch
on Hilbert’s programme again (cf. Section 1.6). But we’ll finish this chapter by
noting a corollary of Theorem 9, which is initially even more surprising;:

Theorem 11 Suppose T is a theory that extends Q, and ¢ is a
II; sentence such that T doesn’t decide . Then ¢ is true.

Proof If T doesn’t decide ¢, and so in particular we don’t have T+ —¢, then
the 31 wif —¢ can’t be true (for if it were true, 7" would prove it, since T extends
Q and so is ¥1-complete). But if - can’t be true, ¢ is true. X

X(X) =det x#1 A Vu<x)(W<x)(uxv=x — (u=1V v=1))

where we rely on the trivial fact that a number’s factors can be no greater than it. Then we
can express Goldbach’s conjecture as

Ux{(p(x) N4 <x) — By <x)(Fz <x)(x(y) Ax(z) Ay +z=x)}
which is IT; since what is after the initial quantifier is Ag.

59

8 First-order Peano Arithmetic

We put quite a bit of effort into discussing what Q can prove because (as we said)
it will turn out that Q — and therefore any richer theory — is ‘sufficiently strong’
in the sense of Section 5.1. But still, Q is in other ways a very weak theory. And
to derive elementary general truths like ¥x(0 4+ x = x) that are beyond Q’s reach,
we evidently need a formal arithmetic that incorporates some stronger axiom(s)
for proving quantified wifs. This chapter discusses the theory PA that we get
if we add the most natural induction axioms to Q. We also briefly touch on a
sub-theory of PA called Presburger Arithmetic.

8.1 Induction and the Induction Schema

(a) In informal argumentation, we frequently appeal to the following principle
of mathematical induction in order to prove general claims:

Suppose (i) 0 has the numerical property P. And suppose (ii) for
any number n, if it has P, then its successor n + 1 also has P.
Then we can conclude that (iii) every number has property P.!

In fact, we used informal inductions a number of times in the last chapter. For
example, to prove Result 8 in Section 7.2, we in effect said: let n have property
P if Q proves - Vx(x < n V n <x). Then we argued (i) 0 has property P, and
(ii) for any number n, if it has P, then n + 1 also has P. So we concluded (iii)
every number has P, i.e. Q proves that wif for every n.

Why are such inductive arguments good arguments? Well, suppose (i) and
(ii) hold. By (i) 0 has P. By (ii), if 0 has P so does S0. Hence SO has P. By
(ii) again, if SO has P so does SS0. Hence SS0 has P. Likewise, SSS0 has P.
And so on and so forth, through all the successors of 0. But the successors of
0 are the only natural numbers. So all natural numbers have property P. The
intuitive induction principle is therefore underwritten by the basic structure of

IMathematicians will be familiar with other ways of stating an induction principle. For
example, there is ‘course of values’ induction, which says that if (i) O has property P and
(ii’) the supposition that every number less than n has P implies that n has P, then (iii) every
number has property P. And there is ‘the method of infinite descent’, which is the principle
that if (iv) the supposition that n has P’ always implies there is a smaller number m < n such
that m has P’, then (v) no number has P’. It is an elementary exercise to show that these
informal principles are equivalent.

We are going to be adding to Q a schema that, in a natural way, reflects the principle of
induction as we’ve stated it above. We could, alternatively, add a schema that reflects course of
values induction or the method of infinite descent. We’d end up with exactly equivalent formal
theories. Which is why we’re not going to bother to mention these alternatives any further.

60

Induction and the Induction Schema

the number sequence, and in particular by the absence of ‘stray’ numbers that
you can’t get to step-by-step from zero.

(b) Now, our intuitive principle is naturally interpreted as a generalization
covering any genuine property of numbers P. Hence to frame a corresponding
formal version, we’d ideally like to use a language that enables us to generalize
over all numerical properties. But, as we announced at the very beginning of
Chapter 6, we are currently concentrating on formal theories built in languages
like L4 whose logical apparatus involves no more than the familiar first-order
quantifiers that range over the domain of numbers: we don’t have second-order
quantifiers available to range over properties of numbers. So how can we handle
induction?

Our only option is to use a schema again.? As a first shot, then, let’s try
the following: we’ll say that any closed wff that is an instance of the Induction
Schema

({(0) A ¥x(p(x) = ©(Sx))} — Vxp(x))

is to count as an axiom, where ¢(x) stands in for some open wff of L, with
just ‘X’ free (and ¢(0) and ¢(Sx) are, of course, the results of systematically
substituting ‘0’ and ‘Sx’ respectively for ‘x’).

Since ¢p(x) will be constructed from no more than the constant term ‘0’, the
successor, addition and multiplication functions, plus identity and other logical
apparatus, it surely will express a perfectly determinate arithmetical property.
Hence the intuitive principle will apply, and so the relevant instance of the
Induction Schema will be true.

(¢) So far, so good. But we now need to generalize a bit, because we will want
to use inductive arguments to prove general results about relations as well as
about monadic properties. How can we handle these?

Let’s take a simple illustrative example. Suppose ‘Rxyz’, for example, abbrevi-
ates some open wif L 4 wif with three free variables, which expresses the relation
R. Let’s arbitrarily pick objects a and b from the domain. And suppose just for
a moment that our logical apparatus allows these to be temporarily named ‘a’
and ‘b’. Then e.g. ‘Rxab’ now expresses a monadic property — the property of
standing in the R relation to a and b. So the intuitive induction principle will
again apply to this property as before. Hence the following will be true (where
rogue brackets are added for readability):

({R0Oab A Vx(Rxab — R(Sx)ab)} — VxRxab)

But we said that ‘a’ and ‘b’ denote arbitrary elements of the domain. Hence we
can generalize into the places temporarily held by these names, to get

2Compare BA where we had to use schemas because we then couldn’t even quantify over
objects: now we are using a schema because even in a full first-order language we can’t quantify
over properties.

61

8. First-order Peano Arithmetic

Vyvz({R0yz A Vx(Rxyz — R(Sx)yz)} — V¥xRxyz)

and this proposition is still warranted by our intuitive principle.

Now, what we have just arrived at is the universal closure of the result of
plugging ¢(x) = Rxyz into our original Induction Schema: i.e. it’s what you
get when you prefix universal quantifiers to bind the free variables left in the
instance of the Schema for Rxyz. And we’ve shown that this universal closure is
intuitively warranted as a new induction axiom.

(d) What goes for Rxyz will go quite generally. So this motivates the following
more expansive way of characterizing the family of intuitively sound induction
axioms expressible in L 4:

Any sentence that is the universal closure of an instance of the
Induction Schema ({¢(0) A ¥x(p(x) — ©(Sx))} — Vxp(x))

is to count as an axiom, where ¢(x) is now an open wif that may
also have variables other than X’ free.

(e) One quick comment before proceeding. Much later, we will in fact consider
arithmetics with a second-order Induction Axiom which does quantify over all
properties of numbers. But just what counts as ‘all’?

At the generous end of the spectrum of possible views here, we might hold —
naturally enough — that any arbitrary set of numbers ¥ corresponds to a genuine
monadic property Ps (where n has the property Py if and only if n €). But we
know from Theorem 1, comment (b), that there are non-enumerably many such
sets of numbers X. So, on the generous view, a second-order Induction Axiom
covers non-enumerably many monadic properties.

However, the open wifs ¢(x) of L4 (or of any properly formalized language)
are by contrast enumerable. So, the first-order Induction Schema covers only
enumerably many monadic properties. Hence we will expect an arithmetic that
uses the first-order Schema to be notably weaker than one that uses the full
second-order Axiom (at least if we take the generous view about properties).
This expectation will be confirmed in due course.

8.2 PA — First-order Peano Arithmetic

Our discussion of induction in the last section motivates moving on from Q —
and jumping right over a range of intermediate theories® — to adopt the much
richer formal theory of arithmetic that we can briskly define as follows:

3For a discussion of some intermediate theories of arithmetic with various restrictions on
the Induction Schema, e.g. with induction only allowed for Ag or ¥; wifs, see the wonderful
(Héjek and Pudldk, 1993). These theories are technically very interesting, but are not for the
moment particularly relevant for us, so we won’t delay over them.

62

PA — First-order Peano Arithmetic

PA — First-order Peano Arithmetic* — is the result of adding to the
axioms of Q the universal closures of all instances of the Induction
Schema.

Plainly, it is decidable whether any given wif has the right shape to be one of
the new axioms, so PA is a legitimate formalized theory.
Let’s immediately give three quick and easy examples of induction in action.

(a) First consider the wif ¥x(0 4+ x = x). We showed in Section 6.4 that this is
unprovable in Q. But we can prove it in PA by induction.

To establish this, we’ll again assume a Fitch-style natural deduction logic, with
the standard rules UI (Universal Instantiation), UG (Universal Generalization
on ‘arbitrary’ names) and CP (Conditional Proof). And to derive our target wif
¥x(0 + x = x), we will need to start with an instance of the Induction Schema
with ¢(x) replaced by (04 x = x). Then we aim to prove the two conjuncts in
the antecedent of that instance, so we can extract the desired conclusion by a
final modus ponens. Here’s a formal version:

I. {0+0=0A Vx(0+x=x—04Sx=5x)}

— ¥x(0+x =x)) Instance of Induction
2. Wx(x+0=x) Axiom 4
3. 0+0=0 From 2 by UI with 0
4. WxWy(x+Sy =S(x+vy)) Axiom 5
5. 0O+a=a Supposition
6. Vy(0+ Sy =S(0+y)) From 4, by UI with 0
7. 0+Sa=S(0+a) From 6 by UI with a
8. 0+ Sa=>Sa From 5, 7 by LL
9. 0+a=a > 0+Sa=>Sa From 5 to 8 by CP
10. Wx(0+x=x — 0+ Sx = Sx) From 9 by UG
11I. {0+0=0 A ¥x(0+x=x — 0+ Sx=5x)} From 3, 10 by A-intro.
12, ¥x(0 +x =x) From 10, 11 by MP

(b) Our deviant interpretation which makes the axioms of Q true while making
¥x(0 4+ x = x) false has Gwyneth as a self-successor. The axioms of PA, however,
rule out self-successors. Put ¢(x) =qer (X # Sx). Then PA entails ¢(0) (that’s
Axiom 1), and entails ¥x(¢(x) — ¢(Sx)) (by contraposing Axiom 2). So by in-
duction, we can conclude Vx¢(x), i.e. no number is a self-successor.?

(c) Next, more sketchily, here’s how to prove VxVy(x +y =y + x), another wiff
that is unprovable in Q (why?). Put ¢(x,y) =qef (x+y =y +x), and note we
have the following induction axiom:

4The name is conventional. Giuseppe Peano did indeed publish a list of axioms for arith-
metic in Peano (1889). But they weren’t first-order, only explicitly governed the successor
relation, and — as he acknowledged — had already been stated by Richard Dedekind (1888).

5Don’t be lulled into a false sense of security, though! While PA’s axioms may rule out
deviant interpretations based on self-successors, they don’t rule out some other deviant inter-
pretations, about which more anon.

63

8. First-order Peano Arithmetic

Yy({@(0,y) A Vx(p(x,y) — ¢(Sx,y))} — Vxp(x,y))

Now, we’ve in effect established Vyo(0,y) in (a). So to prove our target wif, i.e.
Yx¥yp(x,y), it is enough to show that ¥xVy(p(x,y) — ¢(Sx,y)). And we can show
this by another induction (change variables, put ¥ (x) =getr Yu(¢(u,x) — ¢(Su, x))
and then use the instance of the Induction Schema for this open wi).

Enough! Induction proofs like these very rapidly get tedious. But then the point
of the present exercise isn’t user-friendliness but austere formal rigour: the game
is to see what we really need by way of absolutely fundamental axioms in order to
get standard arithmetical results. And a little investigation and experimentation
should convince you at least of this much: PA does indeed have the resources
to establish all the familiar elementary general truths about the addition and
multiplication of numbers.

8.3 PA in summary

PA, then, is a much more powerful theory than Q, yet we have an entirely natural
motivation for accepting its unrestricted use of the Induction Schema. For this
reason, PA is the benchmark axiomatized first-order theory of basic arithmetic.
Just for neatness, then, let’s bring together all the elements of its specification
in one place.

But first, a quick observation. Suppose we this time put

P(x) =det (x# 0 — Jy(x = Sy))

Then ¢(0) is a trivial PA theorem. Likewise, Vxp(Sx) is also a trivial theorem,
and that entails Vx(p(x) — ¢(Sx)). So we can use an instance of the Induction
Schema to derive Vxp(x). But that’s just Axiom 3 of Q.% So our original presen-
tation of PA — as explicitly having all the Axioms of Q plus the instances of the
Induction Schema — involves a certain redundancy. Bearing that in mind, here’s
our summary overview:

First, the language of PA is L, a first-order language whose non-logical vo-
cabulary comprises just the constant ‘0’, the one-place function symbol ‘S’, and
the two-place function symbols ‘+’, ‘x’, and whose given interpretation is the
obvious one.

Second, PA’s deductive proof system is some standard version of classical first-
order logic with identity (differences between versions aren’t significant).

And third, its azioms — eliminating the redundancy from our original statement
of the axioms — are the following sentences (closed wifs)

6As we saw in Section 7.2, Axiom 3 enables us to prove some important general claims in
Q, despite the absence of the full range of induction axioms. It, so to speak, functions as a
very restricted surrogate for induction in certain proofs.

64

A very brief aside: Presburger Arithmetic

Axiom 1 Vx(0 #£ Sx)

Axiom 2 YxVy(Sx = Sy — x =y)
Axiom 3 Yx(x + 0 = x)

Axiom 4 WxVy(x 4+ Sy = S(x +y))
Axiom 5 Vx(x x 0 = 0)

Axiom 6 VxVy(x x Sy = (x X y) + x)

plus every sentence that is the universal closure of an instance of the following
Induction Schema ({p(0) A Vx(p(x) — ¢(Sx))} — ¥xp(x))

where ¢(x) is an open wif of L4 that has at least ‘x’, and perhaps other variables,
free.

8.4 A very brief aside: Presburger Arithmetic

As we said, unlike the case with Q, exploration doesn’t readily reveal any ele-
mentary and familiar arithmetical truths of L4 that PA can’t prove. So we might
reasonably have hoped — at least before we ever heard tell of Gédel’s Theorems
— that PA would turn out to be complete.

Here’s another fact that might well have encouraged that hope, pre-Godel.
Suppose we define the language Lp to be L4 without the multiplication sign.
Take P to be the theory couched in the language Lp, whose axioms are Q’s
now familar axioms for successor and addition, plus the universal closures of all
instances of the Induction Schema that can be formed in Lp. So P is PA minus
multiplication. Then P is a negation-complete theory of successor and addition.

We are not going to be able to prove that last claim in this book. The argument
uses a standard model-theoretic method called ‘elimination of quantifiers’ which
isn’t hard, but it would just take too long to explain.” Note, though, that the
availability of a complete theory for successor and addition was proved as early
as 1929 by Mojzesz Presburger.®

So the situation is as follows, and was known before Godel got to work.
(i) There is a complete theory BA whose theorems are exactly the quantifier-free
truths expressible using successor, addition and multiplication (and the connec-
tives). (ii) There is a complete theory (in fact equivalent to PA minus multipli-
cation) whose theorems are exactly the first-order truths expressible using just

"Enthusiasts will find an accessible outline of the proof in (Fisher, 1982, Ch. 7), which can
usefully be read in conjunction with (Boolos et al., 2002, Ch. 24).

8To be strictly accurate, Presburger — then a young graduate student — proved the com-
pleteness not of P but of a rather different theory (whose primitive expressions were just ‘0°, ‘1’
and ‘4’). But a few years later, Hilbert and Bernays (1934) showed that his methods could be
applied to the much neater theory P, and it is the latter which is these days typically referred
to as ‘Presburger Arithmetic’.

65

8. First-order Peano Arithmetic

successor and addition. Against this background, Gédel’s result that adding mul-
tiplication to get PA gives us a theory which is incomplete (and incompleteable)
comes as a rather nasty surprise. Why on earth should adding multiplication
make all the difference?”

8.5 Is PA consistent?

As we said, PA proves a great deal more than Q. But it wouldn’t be much joy
to discover that PA’s strength is due to the theory’s tipping over into being
inconsistent and so entailing every wff. So let’s finish this chapter by briefly
considering the issue of consistency — not because we think that there’s a sporting
chance that PA might really be in trouble, but because it gives us an opportunity
to mention themes that will occupy us later.

Take the given interpretation Z4 which we built into PA’s language L4 =
(L4,Z4). On this interpretation, ‘0’ has the value zero; ‘S’ represents the suc-
cessor function, etc. Hence, on Z4, (1) the first two axioms of PA are evidently
core truths about the operation that takes one number to its successor. And
the next four axioms are equally fundamental truths about addition and multi-
plication. (2) We have already argued that the informal induction principle for
arithmetical properties and relations is warranted by our understanding of the
structure of the natural number sequence (and in particular, by the lack of ‘stray’
numbers outside the sequence of successors of zero). So since complex open wifs
of L 4 straightforwardly express genuine numerical properties and relations, (the
closures of) all the instances of PA’s Induction Schema will also be true on Z4.
But (3) the classical first-order deductive logic of PA is truth-preserving so —
given that the axioms are true and PA’s logical apparatus is in good order — all
its theorems are true on Z4. Hence (4), since all PA theorems are true on Z4,
there cannot be pairs of theorems of the form ¢ and —p (for these of course
couldn’t both be true together). So (5) the theory is consistent.

Now, this argument looks pretty compelling. But on second thoughts, how are
we supposed to interpret it? Well, we could read the argument as an outline of
a formal proof that we could set out in a background theory T rich enough to
talk about wifs of PA and to incorporate a version of Z4. The trouble is that if
T is going to use this argument to show that the theorems of PA are all true,
then T is going to have to be at least as rich as PA. Why? Well, if T" incorporates
T4, it can prove for example that ‘Vx(0 # Sx)’ is true iff Va(0 # Sz). But to go
on to prove that PA’s first Axiom actually is true, T" will then itself need to
prove Vz(0 # Sz). And so on through all the other axioms. But then, if there’s
any kind of issue about PA’s consistency, there will be the same issue about 1’s
consistency, and we haven’t got anywhere.

9And by the way, it isn’t that multiplication is in itself somehow intrinsically intractable.
In 1931, Thoraf Skolem showed that there is a complete theory for the truths expressible in a
suitable first order language with multiplication but lacking addition.

66

Is PA consistent?

However, perhaps our sketched argument for PA’s consistency is intended in
a rather different way. Perhaps the idea isn’t to invoke some further theory but
to appeal more directly to our intuitive grasp of the natural numbers: we are
supposed just to see that (1) and (2) — and hence (3) to (5) — are true. But
then critics will want to emphasize the point that an argument for a theory’s
consistency which appeals to our supposed intuitive grasp of an intended inter-
pretation can lead us badly astray. And to support their point, they will refer
to one of the most famous episodes in the history of logic, which concerns the
fate of the German logician Gottlob Frege’s The Basic Laws of Arithmetic.'?

Frege aimed to construct a formal system in which first arithmetic and then
the theory of the real numbers can be rigorously developed by deducing them
from logic-plus-definitions. He has a wide conception of what counts as logic,
which embraces axioms for what is in effect a theory of classes,!! so that the
number sequence can be identified as a certain sequence of classes, and then
rational and real numbers can be defined via appropriate classes of these classes.
Frege takes as his fifth Basic Law the assumption, in effect, that for every well-
constructed open wff o(x) of his language, there is a class (possibly empty) of
exactly those things that satisfy this wff. And indeed, what could be more plausi-
ble? If we can coherently express some condition, then we should surely be able
to talk about the (possibly empty) collection of just those things that satisfy
that condition.

But, famously, the assumption is disastrous. As Bertrand Russell pointed out
in a letter which Frege received as the second volume of Basic Laws was going
through the press, the plausible assumption leads to contradiction.'? Take for
example the condition R expressed by ‘...is a class which isn’t a member of
itself’. This is, on the face of it, a perfectly coherent condition (the class of
people, for example, satisfies the condition: the class of people contains only
people, so it doesn’t contain any classes, so doesn’t contain itself in particular).
And certainly condition R is expressible in the language of Frege’s system. So
on Frege’s assumption, there will be a class of things that satisfy R. In other
words, there is a class X i of all the classes which aren’t members of themselves.
But now ask: is ¥ g a member of itself? A moment’s reflection shows that it is
if it isn’t, and isn’t if it is: contradiction! So there can be no such class as X g;
hence Frege’s assumption cannot be right, despite its intuitive appeal, and his
formal system which embodies that assumption is inconsistent.

This sad tale brings home to us vividly that intuitions of consistency can be
mistaken. But let’s not rush to make too much of this: the fact that we can make
mistakes in arguing for the cogency of a formal system on the basis of our sup-

10T he first volume of Basic Laws was published in 1893, the second in 1903. For a partial
translation, see Frege (1964).

HWhen talking about the views of Frege and Russell, it seems more appropriate to use
Russell’s favoured term ‘class’ rather than ‘set’, if only because the latter has become so very
closely linked to a specific post-Russellian idea, namely the iterative conception of sets (as
explained, e.g., in Potter, 2004, §3.2).

12See (Russell, 1902).

67

8. First-order Peano Arithmetic

posed grasp of an intended interpretation isn’t any evidence that we have made
a mistake in our argument for the consistency of PA. For a start, Peano Arith-
metic and many stronger theories that embed it have been intensively explored
for a century and no contradiction has been exposed.

‘But can’t we do better,” you might still ask, ‘than make the negative point
that no contradiction has been found (yet): can’t we prove that PA is consistent
in some other way than by going round in circles or by appealing to our supposed
grasp of an interpretation?’

Yes, there are other proofs. However, we’ll have to put further discussion of
this intriguing issue on hold until after we have said more about Godel’s Second
Incompleteness Theorem. For that Theorem is all about consistency proofs (see
Section 1.5). It puts some interesting limits on the possibilities here. But that
will all have to wait until Chapter 16.3.

68

9 Primitive recursive functions

The formal theories of arithmetic that we’ve looked at so far have (at most) the
successor function, addition and multiplication built in. But why on earth stop
there? School arithmetic acknowledges many more numerical functions. This
chapter describes a very wide class of such functions, the so-called primitive
recursive ones. Then in Chapter 11, we’ll be able to show that Q and PA in fact
already have the resources to deal with all these functions.

9.1 Introducing the primitive recursive functions

We'll start with two more functions that are familiar from elementary arithmetic.
Take the factorial function y!, where e.g. 4! =1 x 2 x 3 x 4. This can be defined
by the following two equations:

0=50=1
(Sy)t =yl x Sy

The first clause tells us the value of the function for the argument y = 0; the
second clause tells us how to work out the value of the function for Sy once we
know its value for y (assuming we already know about multiplication). So by
applying and reapplying the second clause, we can successively calculate 1!, 2!,
3!, Hence our two-clause definition fixes the value of ‘y!’ for all numbers .

For our second example — this time a two-place function — consider the ex-
ponential, standardly written in the form ‘z¥’. This can be defined by a similar
pair of equations:

2% =50
25 = (2¥ x x)

Again, the first clause gives the function’s value for a given value of x and y = 0,
and — keeping x fixed — the second clause gives the function’s value for the
argument Sy in terms of its value for y.

We’ve seen this two-clause pattern before, of course, in our formal Axioms for
the multiplication and addition functions. Informally, and now presented in the
style of everyday mathematics (i.e. without explicit quantifiers), we have:

zx0=0
xx Sy=(xxy)+a

r+0==zx
z+4 Sy=5S(z+y)

69

9. Primitive recursive functions

Three comments about our examples so far:

i. In each definition, an instance of the second clause can invoke the result
of its own previous application (to a smaller number), a kind of procedure
that is standardly termed ‘recursive’. So this sort of two-clause definition
of a function is called a definition by recursion.

ii. Note, for example, that (Sn)! is defined as n! x Sn, so it is evaluated by
evaluating n! and Sn and then feeding the results of these computations
into the multiplication function. This involves, in a word, the composition
of functions, where evaluating a composite function involves taking the
output(s) from one or more functions, and treating these as inputs to
another function.

iii. Our series of examples illustrates two chains of definitions by recursion
and functional composition. Working from the bottom up, addition is
defined in terms of the successor function; multiplication is then defined
in terms of successor and addition; and then the factorial (or on the other
chain, exponentiation) is defined in terms of multiplication and successor.

Here’s another little definitional chain:

P(0)=0
P(Sz) ==
r=-0==zx

= Sy=Pla =)

z—yl=(z =y + =~
‘P’ signifies the predecessor function (with zero being treated as its own prede-
cessor); ‘=’ signifies ‘subtraction with cut-off’, i.e. subtraction restricted to the
non-negative integers (so m = n is zero if m < n). And |m — n| is of course
the absolute difference between m and n. This time, our third definition doesn’t
involve recursion, only a simple composition of functions.
These examples motivate the following initial gesture towards a definition:

A primitive recursive function is one that can be similarly charac-
terized by a chain of definitions by recursion and composition.?

That is a rather quick-and-dirty characterization, and it should be enough to
get across the basic idea. However, we really need to pause to do better. In
particular, we need to nail down more carefully the ‘starter pack’ of functions
that we are allowed to take for granted in building a definitional chain.

IStrictly speaking, we need a proof of the claim that recursive definitions really do well-
define functions: such a proof was first given by Richard Dedekind (1888, §126). Logic students,
of course, are very familiar with a related kind of recursive definition, as illustrated e.g. by our
definition of a ‘term’ in Section 4.3.

2The basic idea is there in Dedekind and highlighted by Thoralf Skolem (1923). But the
modern terminology ‘primitive recursion’ seems to be due to Résza Péter (1934); and ‘primitive
recursive function’ was first used in Stephen Kleene’s classic (1936a).

70

Defining the p.r. functions more carefully

9.2 Defining the p.r. functions more carefully

(a) Consider the recursive definition of the factorial again:

ol=1

(Sy)t =yl x Sy
This is an example of the following general scheme for defining a one-place
function f:

f0)=g
f(Sy) = h(y, f(y))

Here, g is just a number, while h is — crucially — a function we are assumed
already to know about prior to the definition of f (maybe because h is an ‘initial’
function that we are allowed to take for granted like the successor function; or
perhaps because we’ve already given recursion clauses to define it; or perhaps
because it is a composite function constructed by plugging one known function
into another — as in the case of the factorial, where h(y,u) = u x Sy).

Likewise, with a bit of massaging, the recursive definitions of addition, mul-
tiplication and the exponential can all be treated as examples of the following
general scheme for defining two-place functions:

f(:L‘, O) = g(fL‘)
f(x,Sy) = h(z,y, f(z,y))

where now g and h are both functions that we already know about. Three points
about this:

i. To get the definition of addition to fit this pattern, we have to take g(x)
to be the trivial identity function I(z) = =.

ii. To get the definition of multiplication to fit the pattern, g(z) has to be
treated as the even more trivial zero function Z(z) = 0.

iii. Again, to get the definition of addition to fit the pattern, we have to take
h(zx,y,u) to be the function Su. As this illustrates, we must allow h not to
care what happens to some of its arguments. One neat way of doing this
is to help ourselves to some more trivial identity functions that serve to
select out particular arguments. Suppose, for example, we have the three-
place function I(x,y,u) = u to hand. Then, in the definition of addition,
we can put h(z,y,u) = SI(z,y,u), so h is defined by composition from
previously available functions.

So with that motivation, we will now officially say that the full ‘starter pack’ of
initial functions contains, as well as the successor function S, the boring zero
function Z(z) = 0 and all the k-place identity functions, IF (21,22, ...,7x) = 2;
for each k, and for each i, 1 <14 < k.3

3The identity functions are also often called projection functions. They ‘project’ the vector
with components 1, x2, ...,z onto the i-th axis.

71

9. Primitive recursive functions

(b) We next want to generalize the idea of recursion from the case of one-place
and two-place functions. There’s a (standard) notational device that helps to
put things snappily: we’ll henceforth write & as short for the array of k variables
r1,T2,...,Tr. Then we can generalize as follows:

Suppose that the following holds:

f(Z,0) = g()
f(fa Sy) = h(f7y7f(f’ y))

Then f is defined from g and h by recursion.

If we allow Z to be empty, so ¢g(Z) is a constant, that subsumes the case of
one-place functions like the factorial.

(¢) Finally, we need to tidy up the idea of definition by composition. The basic
idea, to repeat, is that we form a composite function f by treating the output
value(s) of one or more given functions g, ¢’, ¢’ as the input argument(s) to
another function h. For example, we set f(z) = h(g(z)). Or, to take a slightly
more complex case, we set f(z,y,z) = h(g(z,y),9 (v, 2)).

There’s a number of equivalent ways of covering the manifold possibilities of
compounding multi-place functions. But one standard way is to define what we
might call one-at-a-time composition (where we just plug one function g into
another function h), thus:

If g(7) and h(Z,u,) are functions — with & and Z possibly empty
— then f is defined by composition by substituting g into h just if
f(&,9,7) = h(Z,9(9), 7).

We can then think of generalized composition — where we plug more than one
function into another function — as just iterated one-at-a-time composition. For
example, we can substitute the function g(z,y) into h(u,v) to define the function
h(g(z,y),v) by composition. Then we can substitute ¢’(y,z) into the defined
function h(g(z,y),v) to get the composite function h(g(x,y), g'(y, 2))

(d) We informally defined the primitive recursive functions as those that can
be defined by a chain of definitions by recursion and composition. Working back-
wards down a definitional chain, it must bottom out with members of an initial
‘starter pack’ of trivially simple functions. At the start of the chapter, we high-
lighted the successor function among the given simple functions. But we’ve since
noted that, to get our examples to fit our official account of definition by prim-
itive recursion, we’ll have to acknowledge some other, even more trivial, initial
functions.

Putting everything together, we can now offer this more formal characteriza-
tion of the p.r. functions (as we’ll henceforth call them for short):*

4Careful! Some books use ‘p.r.’ to abbreviate ‘partial recursive’, which is a quite different
idea we’ll meet much later. Our abbreviatory usage is, however, the more common one.

72

An aside about extensionality

The initial functions S, Z, and IF are p.r.;

2. if f can be defined from the p.r. functions g and h by com-
position, substituting g into h, then f is p.r.;

3. if f can be defined from the p.r. functions g and h by primitive
recursion, then f is p.r.;

4. nothing else is a p.r. function.

Note, by the way, that the initial functions are total functions of numbers (i.e.
are defined for every numerical argument); and that primitive recursion and
composition both build total functions out of total functions. Which means that
all p.r. functions are total functions, defined for all natural number arguments.

9.3 An aside about extensionality

We’d better pause for a clarificatory aside, a general point about the identity
conditions for functions, which is then applied to p.r. functions in particular.

If f and g are one-place total numerical functions, we count them as being
the same function iff, for each n, f(n) = g(n). More generally, we count f and
g as the same function iff they have the same extension, i.e. just so long as they
pair up arguments with values in the same way. In a word, we construe talk of
functions extensionally.’?

Of course, one and the same function can be presented in different ways, e.g.
in ways that reflect different rules for calculating it. For a trivial example, the
function 2n+ 1 is the same function as (n+1)? —n?; but the two different modes
of presentation indicate different routines for evaluating the function.

Now, a p.r. function, in particular, is by definition one that can be specified
by a certain sort of chain of definitions. And so the natural way of presenting one
will be by giving a definitional chain for it (and thereby making it transparent
that the function is indeed p.r.). But the same function can be presented in other
ways; and some modes of presentation can completely disguise the fact that the
given function is recursive. For a dramatic example, consider the function

fermat(n) = n if there are solutions to 2"+3 4 y"+3 = 2"*+3 (with
x,y, z positive integers);
fermat(n) = 0 otherwise.

This definition certainly doesn’t reveal whether the function is primitive re-
cursive. But we know now — thanks to Andrew Wiles’s proof of Fermat’s Last

5Compare Section 4.2 where we said that P and Q as the same property if they have
the same extension. If you accept the thesis of Frege (1891), then we have to treat properties
and functions in the same way. For Frege urges us to treat properties as just a special kind
of function — so a numerical property, in particular, is a function that maps a number to the
truth-value true (if the number has the property) or false (otherwise) — which comes very close
to identifying a property with its characteristic function.

73

9. Primitive recursive functions

Theorem — that fermat is in fact p.r., for it is none other than (i.e. has the same
extension as) the trivially p.r. function Z(n) = 0.

Note too that other modes of presentation may make it clear that a function is
p.r., but still not tell us which p.r. function is in question. Consider, for example,
the function defined by

j(n) = n if Julius Caesar ate grapes on his third birthday;
j(n) = 0 otherwise.

There is no way (algorithmic or otherwise) of settling what Caesar ate on his
third birthday! But despite that, the function j(n) is plainly primitive recursive.
Why so? Well, either it is the trivial identity function I(n) = n, or it is the zero
function Z(n) = 0. So we know that j(n) must be a p.r. function, though we
can’t determine which function it is from this mode of presentation.

In sum, primitive recursiveness is a feature of the function itself (identified
extensionally), not a feature of its mode of presentation.

9.4 The p.r. functions are computable

To repeat, a p.r. function f must be specifiable by a chain of definitions by
recursion and composition leading back ultimately to initial functions. But (a)
the initial functions S, Z, and I¥ are trivially computable. (b) The composition of
two computable functions g and h is computable (you just feed the output from
whatever computer routine evaluates g as input into the routine that evaluates
h). And (c) — the key point — if g and h are computable, and f is defined by
primitive recursion from g and h, then f is computable too. So as we build up
longer and longer chains of definitions for p.r. functions, we always stay within
the class of computable functions.

To illustrate (c), return once more to our example of the factorial. Here’s its
p-r. definition again:

0=1
(Sy)t =yl x Sy

The first clause gives the value of the function for the argument 0; then you
can repeatedly use the second recursion clause to calculate the function’s value
for S0, then for SS0, SSS0, etc. So the definition encapsulates an algorithm
for calculating the function’s value, and corresponds exactly to a certain simple
kind of computer routine.

Thus compare our definition with the following schematic program:

1. fact:=1

2. Fory=0ton—-1

3. fact := (fact x Sy)
4. Loop

74

The p.r. functions are computable

Here fact is a memory register that we initially prime with the value of 0!. Then
the program enters a loop: and the crucial thing about a ‘for’ loop is that the
total number of iterations is fixed in advance. The program numbers the loops
from 0, and on loop number k the program replaces the value in the register
with Sk times the previous value: we’ll assume the computer already knows how
to find the successor of k and do that multiplication. When the program exits
the loop after a total of n iterations, the value in the register fact will be n!.

Generalizing, for a one-place function f defined by recursion in terms of g and
the computable function h, the same program structure always does the trick
for calculating f(n). Thus compare

f0)=g
f(Sy) = h(y, f(y))
with the corresponding program
1. func:=g
2. Fory=0ton—-1
3. func := h(y, func)
4. Loop

So long as h is already computable, the value of f(n) will be computable by the
use of a ‘for’ loop that terminates with the required value in the register func.

Similarly, of course, for many-place functions. For example, the value of the
two-place function f(m,n) is calculated by

1. func:= g(m)

2. Fory=0ton-—1

3. func := h(m,y, func)
4. Loop

which again fixes a value so long as ¢ and h are computable.

Now, our mini-program for the factorial calls the multiplication function which
can itself be computed by a similar ‘for’ loop (invoking addition). And addition
can in turn be computed by another ‘for’ loop (invoking the successor). So re-
flecting the downward chain of recursive definitions

factorial = multiplication = addition = successor

there’s a program for the factorial containing nested ‘for’ loops, which ultimately
calls the primitive operation of incrementing the contents of a register by one (or
other operations like setting a register to zero, corresponding to the zero function,
or copying the contents of a register, corresponding to an identity function).

The point obviously generalizes: primitive recursive functions are computable
by a series of (possibly nested) ‘for’ loops.

Importantly, the converse point also holds. Take a ‘for’ loop, which calls on
two known p.r. functions g and h (with g being used to fix the initial value(s) of a

75

9. Primitive recursive functions

new function f, and h being used on each loop to fix the next value of f as some
key argument is incremented). Then this plainly corresponds to a definition by
recursion of f in terms of g and h. So if a function can be computed by a program
using just ‘for’ loops as its main programming structure — with the program’s
‘built in’ functions all being p.r. — then the newly defined function will also be
primitive recursive.

This gives us a quick-and-dirty way of convincing ourselves that a new function
is p.r.: sketch out a routine for computing it and check that it can all be done
with a succession of (possibly nested) ‘for’ loops which only invoke already known
p.7. functions: then the new function will be primitive recursive.’

9.5 Not all computable numerical functions are p.r.

We have seen that any p.r. function is mechanically computable. But not all
computable numerical functions are primitive recursive. In this section, we first
make the claim that there are computable-but-not-p.r. numerical functions look
plausible. Then we’ll actually cook up an example.”

First, then, some plausibility considerations. We’ve seen that a primitive re-
cursive function f can be computed by a program involving ‘for’ loops as its
main programming structure. Each loop goes through a specified number of it-
erations. So, just by examining the program for f, we can derive a function sy,
where sy(n) gives the number of steps it takes to compute f(n). Moreover, to put
it crudely, sy will be definable in terms of repeated additions and multiplications
corresponding to the way that ‘for’ loops are chained together and/or embedded
inside each other in the program for f: so sy will itself be a p.r. function. In sum,
the length of the computation of a p.r. function is given by a p.r. function.

However, back in Section 2.1 we allowed procedures to count as computational
even when don’t have nice upper bounds on the number of steps involved. In
particular, we allowed computations to involve open-ended searches, with no

SWe can put all that a bit more carefully. Imagine a simple programming language LOOP.
A particular LOOP program operates on a finite set of registers. At the most basic level, the
language has instructions for setting the contents of a register to zero, copying contents from
one register to another, and incrementing the contents of a register by one. And the only
important programming structure is the ‘for’ loop. Such a loop involves setting a register
with some initial contents (at the zero-th stage of the loop) and then iterating a LooP-defined
process n times (where on each loop, the process is applied to the result of its own previous
application), which has just the effect of a definition by recursion. Such loops can be nested.
And sets of nested LOOP commands can be concatenated so that e.g. a loop for evaluating
a function g is followed by a loop for evaluating h: concatenation evidently corresponds to
composition of functions. Even without going into any more details, it is very easy to see that
every LOOP program will indeed define a p.r. function, and every p.r. function is defined by a
LOOP program. For a proper specification of LOOP and proofs see Tourlakis (2002); the idea of
such programs goes back to Meyer and Ritchie (1967).

"Probably no one will regard our cooked-up example as one that might be encountered
in ordinary mathematical practice: in fact, it requires a bit of ingenuity to come up with a
‘natural’ example, though we’ll give one later, in the Section ?? where we introduce so-called
Ackermann functions.

76

Not all computable numerical functions are p.r.

prior bound on the length of search. We made essential use of this permission
in Section 3.6, when we showed that negation complete theories are decidable —
for we allowed the process ‘enumerate the theorems and wait to see which of ¢
or - turns up’ to count as a computational decision procedure.

And standard computer languages of course have programming structures
which implement just this kind of unbounded search. Because as well as ‘for’
loops, they allow ‘do until’ loops (or equivalently, ‘do while’ loops). In other
words, they allow some process to be iterated until a given condition is satisfied
— where no prior limit, and so in particular no p.r. limit, is put on the the number
of iterations to be executed.

If we count what are presented as unbounded searches as computations, then it
looks very plausible that not everything computable will be primitive recursive.

However, that is as yet only a plausibility consideration: for all we’ve so far
strictly established, it might still be the case that computations presented as
unbounded searches can always somehow be turned into procedures with a p.r.
limit on the number of steps. But in fact that’s false:

Theorem 12 There are algorithmically computable numerical func-
tions which aren’t primitive recursive.

Proof sketch The set of p.r. functions is effectively enumerable. That is to say,
we can mechanically produce a list of functions fy, f1, f2, ..., such that each of
the f; is p.r., and each p.r. function appears somewhere on the list.

This holds because, by definition, every p.r. function has a ‘recipe’ in which it
is defined by recursion or composition from other functions which are defined by
recursion or composition from other functions which are defined ... ultimately
in terms of some primitive starter functions. So choose some standard formal
specification language for representing these recipes. Then we can effectively

0 1 2 3
fo | fo(0) fo(1) fo(2) fo(3)
fi | A0) AQ) fi2) f1(3)
f2] 2000 fo(1) f2(2) f2(3)
fs | f30) f3(1) f3(2) f5(3)
N

generate ‘in alphabetical order’ all possible strings of symbols from this language;
and as we go, we select the strings that obey the rules for being a recipe for a
p.r. function (that’s a mechanical procedure). That generates a list of recipes
which effectively enumerates the p.r. functions, repetitions allowed.

Now take such an effective enumeration fy, f1, f2, ..., of the p.r functions
and construct a corresponding diagonal function, defined as d(n) = f,(n) +1

77

9. Primitive recursive functions

(cf. Section 2.2, and compare the table above). Down the table we list off the
p.r. functions. An individual row then gives the values of the p.r. function f,
for each argument. To compute d(n), we just run our effective enumeration of
the p.r. functions until we get to f,,. We evaluate that function for the argument
n. We then add one. Each step is an entirely mechanically one. So our diagonal
function is algorithmically computable. By construction, however, the function
d can’t be primitive recursive. For suppose otherwise. Then the function d must
appear somewhere in the enumeration of p.r. functions, i.e. be the function fy
for some index number d. But now ask what the value of d(d) is. By hypothesis,
the function d is none other than the function fg, so d(d) = f4(d). But by the
initial definition of the diagonal function, d(d) = f4(d) + 1. Contradiction.
Hence d is a computable function which is not primitive recursive. X

‘But hold on! Why is the diagonal function not a p.r. function?” Well, as we just
noted, if f is a p.r. function, then — as we compute f(n) for increasing values of
n — the lengths of the successive computations will be given by the successive
values of some function sf(n), where s; is also primitive recursive. Now contrast
evaluating d(n) for increasing values of n. For each new argument, we will have
to evaluate a different function f,, for that argument (and then add 1). We have
no reason to expect there will be a nice pattern in the lengths of these successive
computations of all the different functions f,. In particular, we have no reason to
expect there will be a single p.r. function that gives the length of those different
computations. And our diagonal argument in effect shows that there isn’t one.

9.6 Defining p.r. properties and relations

The p.r. functions then are a large and important class of computable func-
tions. We now want to extend the idea of primitive recursiveness and introduce
the ideas of p.r. (numerical) properties and relations. These form a large and
important class of decidable properties and relations.

Now, we can tie talk of functions and talk of properties/relations together by
using the very simple but crucial notion of a characteristic function. Here’s a
definition.

The characteristic function of the numerical property P is the one-
place function c¢p such that if m is P, then c¢p(m) = 0, and if m
isn’t P, then cp(m) = 1.

The characteristic function of the two-place numerical relation R is
the two-place function cg such that if m is R to n, then cg(m,n) =
0, and if m isn’t R to n, then cg(m,n) = 1.

And similarly for many-place relations. The choice of values for the characteristic
function is, of course, entirely arbitrary: any pair of distinct numbers would do.
Our choice is supposed to be reminiscent of the familiar use of 0 and 1, one way

78

Some more examples

round or the other, to stand in for true and false. And our selection of 0 rather
than 1 for true is simply for later convenience.

The numerical property P partitions the numbers into two sets, the set of
numbers that have the property and the set of numbers that don’t. Its corre-
sponding characteristic function cp also partitions the numbers into two sets,
the set of numbers the function maps to the value 0, and the set of numbers the
function maps to the value 1. And these are the same partition. So in a good
sense, P and its characteristic function cp contain exactly the same information
about a partition of the numbers: hence we can move between talk of a property
and talk of its characteristic function without loss of information. Similarly, of
course, for relations.

In what follows, we’ll frequently use this link between properties and relations
and their characteristic functions in order to carry over ideas defined for functions
and apply them to properties/relations. For example:

1. We can now officially say that a numerical property is decidable — i.e. a
suitably programmed computer can decide whether the property obtains
— just if its characteristic function is (total and) computable.®

2. And without further ado, we can now introduce the idea of a p.r. property,
meaning — of course — a property with a p.r. characteristic function, and
likewise a p.r. relation is a relation with a p.r. characteristic function.

9.7 Some more examples

(a) We'll finish the chapter by giving some more examples of p.r. functions,
properties and relations, and then proving that they are p.r.

Strictly speaking, you can cheerfully skip all this section since we only pick up
its details in other sections that you can also skip. On the other hand, in proving
Godel’s Theorems, we will need to claim that some key functions and relations
are p.r; and our claims will seem a lot more plausible if you have already worked
through some simpler cases. It is therefore probably worth at least skimming
through this section: but you needn’t do more than skim.

Here, then, are our examples — and we choose cases mostly to do with primes
and prime factorization because such cases will be of key importance later.

1. Let sg(n) = 0 for n = 0, and sg(n) = 1 otherwise. Then sg is primitive
recursive. And let sg(n) = 1 for n =0, and sg(n) = 0 otherwise. Then sg
is also primitive recursive.

2. The relations m = n, m < n and m < n are primitive recursive.

3. The relation m|n that holds when m is a factor of n is primitive recursive.

8Compare Section 2.1. The characteristic function needs to be total because it needs to
deliver a verdict about each number as to whether it has the property in question.

79

9. Primitive recursive functions

4. Let Prime(n) be true just when n is a prime number. Then Prime is a
p.r. property.9

5. List the primes as mg, 1, m2,.... Then the function m(n) whose value is
T 18 p.T.

6. Let ezp(n,i) be the — possibly zero — exponent of the prime number 7; in
the factorization of n.Then exp is a p.r. function.

7. Let len(0) = len(1) = 0; and when n > 1, let len(n) be the ‘length’ of n’s
factorization, i.e. the number of distinct prime factors of n. Then len is
again a p.r. function.

You might well want to pause here to convince yourself that all these are indeed
p.r. by the quick-and-dirty method of sketching out how you compute the rele-
vant (characteristic) functions without doing any open-ended searches, just by
using ‘for’ loops.

(b) We’'ll now show more carefully that those examples are, as claimed, all
primitive recursive. However — like the arguments in Section 7.2 — the mini-
proofs that follow don’t involve anything deep or illuminating. In giving them,
we are just solving a few light-weight brain-teasers. So don’t let yourself get
bogged down: when you find your enthusiasm for this sort of thing waning, skim
on quickly to the next chapter. And note, by the way, that we are doing informal
everyday mathematics here (i.e. we aren’t producing proofs in a formal system,
though for brevity’s sake we borrow some formal symbols like the connectives).

Proof for (1) We just note that

sg(0) =0
s9(Sy) = SZ(sg(y))

where SZ(u) is p.r. by composition, and SZ(sg(y)) = S0 = 1. We prove sg(y)
is p.r. similarly (exercise!). X

Proof for (2) The characteristic function of m = n is sg(|m —n|), where |m —n)|
is the absolute difference function we showed to be p.r. in Section 9.1. The
characteristic functions of m < n and m < n are sg(Sn ~ m) and sg(n ~m)
respectively. These are all compositions of p.r. functions, and hence themselves
p-r. X

(¢) Those were easy warm-ups. Now things get just a little more interesting.
We begin by listing three useful general facts that we’ll use in our remaining
proofs:

A. If f(%) is an n-place p.r. function, then the corresponding relation ex-
pressed by f(Z) =y is an n + l-place p.r. relation.

9Remember the useful convention: capital letters for the names of predicates and relations,
small letters for the names of functions.

80

Some more examples

B. Any truth-functional combination of p.r. properties and relations is p.r.

C. Any property or relation defined from a p.r. property or relation by
bounded quantifications is also p.r.

And now suppose we introduce the minimization operator ‘ux’, to be read: ‘the
least x such that ...’. Much later, we’ll be considering the general use of this
operator, but here we will be concerned with bounded minimization. So we write

f(n) = (px < n)P(x)

when f takes the number n as argument and returns as value the least number
x < n such that P(x) if such an z exists, or returns n otherwise. Then we have
a fourth useful fact:

D. If Pis a p.r. property, then the function f(n) = (uz < n)P(x) is p.r. And
generalizing, suppose that g(n) is a p.r. function, and P is a p.r. property;
then f'(n) = (ux < g(n))P(x) is also p.r.

On a moment’s reflection, these claims (A) to (D) should all look plausible
(why?): but we’d better prove them.

Proof for (A) We illustrate with the case where f is a one-place function. The
characteristic function of the relation expressed by f(x) = y — i.e. the function
c(x,y) whose value is 0 when f(x) =y and is 1 otherwise — is given by

c(z,y) = sg(|f(z) —yl)
Again, the right-hand side is a composition of p.r. functions. X

Proof for (B) Suppose p(z) is the characteristic function of the property P. It
follows that sg(p(x)) is the characteristic function of the property not-P, since
sg simply flips the two values 0 and 1. But by simple composition of functions,
sg(p(x)) is p.r. if p(z) is. Hence if P is a p.r. property, so is not-P.

Similarly, suppose that p(x) and ¢(z) are the characteristic functions of the
properties P and @ respectively. p(n) x g(n) takes the value 0 so long as either n
is P or n is @, and takes the value 1 otherwise. So p(z) x ¢(x) is the characteristic
function of the disjunctive property of being either P or); and by composition,
p(z) x g(z) is p.r. if both p(x) and g(x) are. So the disjunction of p.r. properties
is another p.r. property.

But any truth-functional combination of properties is definable in terms of
negation and disjunction. Which completes the proof. X

Proof for (C) Just reflect that checking to see whether e.g. (3x < n) Pz involves
using a ‘for’ loop to check through the cases from 0 to n to see whether Pn holds.
Likewise, if f is p.r., checking to see whether (3z < f(n))Pz involves calculating
f(n) and then using a ‘for’ loop to check through the cases from 0 to f(n) to
see whether Pn holds. It follows that, if f is p.r., then so are both of

81

9. Primitive recursive functions

K(n) =get (3 < n)Pzx
K'(n) =get (3 < f(n))Px

Putting that more carefully, suppose that p(x) is P’s p.r. characteristic func-
tion. And by composition define the p.r. function h(u,v) = (p(Su) x v). We
put

k(0) = p(0)
k(Sy) = h(y, k(y))
so we have

k(n) =p(n) x p(n —1) x ... x p(1) x p(0)

Then k is K’s characteristic function — i.e. the function such that k(n) = 1 until
we get to an n such that n is P, and then k(n) goes to zero, and thereafter stays
zero. Since k is p.r., K is p.r. by definition.

And to get the generalized result, we just note that K’'(n) = K(f(n)) so is p.r.
by composition. We also have similar results for bounded universal quantifiers;
we can apply the bounded quantifiers to relations as well as monadic properties;
and the bounded quantifiers can equally use ‘<’ rather than ‘<’. X

Proof for (D) Again suppose p is the characteristic function of P, and define k
as in the last proof. Then consider the function defined by

f(0)=0
f(n)=k(n—1)+k(n—2)+... 4+ k(1) + k(0), for n > 0

Now, k(j) = 1 for each j that isn’t P, and k(j) goes to zero and stays zero as
soon as soon as we hit a j that is P. So f(n) = (px < n)P(z), i.e. f(n) returns
either the least number that is P, or n, whichever is smaller. So we just need to
show that f so defined is indeed primitive recursive. Well, use composition to
define the p.r. function h'(u,v) = (k(u) + v), and then put

f(0)=0
f(Sy) =n(y, f(v))

Which proves the first, simpler, part of Fact D. For the generalization, just note
that by the same argument we have f(g(n)) = (uz < g(n))P(x) is p.r. if ¢ is, so
we can put f'(n) = f(g(n)) and we are done. X

(d) Given those general facts (A) to (D), we can now prove that the five
remaining claims about various properties and functions to do with primes and
factorization being primitive recursive:

Proof for (3) We have

min— Fy<n)(0<y AO<m A mxy=n)

82

Some more examples

The relation expressed by the subformula after the quantifier is a truth-functional
combination of p.r. relations (multiplication is p.r., so the last conjunct is p.r.
by Fact A). So that relation is p.r. by Fact B. Hence m|n is a p.r. relation by
Fact C. X

Proof for (4) The property of being Prime is p.r. because

Prime(n) o> n#1 A Mu<n)(Vv<n)(uxv=n
— (u=1vv=1))

and the r.h.s is built up from p.r. components by truth-functional combination
and restricted quantifiers. (Here we rely on the trivial fact that the factors of n
cannot be greater than n.) X

Proof for (5) The function m,, whose value is the n-th prime (counting from
zero), is p.r. — for consider the definition

7T0:2

Tsn = (pr < nl+1)(m, <z A Prime(z))

where we rely on the familiar fact that the next prime after n is no greater than
n! 4+ 1 and use the generalized version of Fact D. X

Proof for (6) This function is well-defined because by the so-called Fundamental
Theorem of Arithmetic, which says that numbers have a unique factorization into
primes.

No exponent in the prime factorization of n is larger than n itself, so we have

exp(n,i) = (pz < n){(nfn) A ~(77 " |n)}

That is to say, the desired exponent of 7; is the number = such that 77 divides n
but 7rf+1 doesn’t: note that exp(n, k) = 0 when 7, isn’t a factor of n. Again, our
definition of exp is built out of p.r. components by operations that yield another
p.r. function. X

Proof for (7) (Prime(m) A m|n) holds when m is a prime factor of n. This a
p.r. relation (being a conjunction of p.r. properties/relations). So it has a p.r.
characteristic function we’ll abbreviate pf(m,n). Now consider the function

p(m,n) = sg(pf(m,n))

Then p(m,n) =1 just when m is a prime factor of n and is zero otherwise. So
len(n) =p(0,n) +p(l,n)+...+p(n—1,n) + p(n,n)

So to give a p.r. definition of len, we can first put

I(z,0) = p(0,)
I(z,Sy) = (p(Sy,) +(z,y))

83

9. Primitive recursive functions

And then finally put len(n) = i(n,n). X

Well, all good clean fun if you like that kind of thing. But as I said before, don’t
worry if you don’t! For having shown that these kinds of results can be proved,
you can now very cheerfully forget the details of how to do it.

84

10 Capturing functions

In this chapter we work up to the important idea of a p.r. adequate theory of
arithmetic, i.e. one that can capture all p.r. functions, properties and relations.
Then, in the next chapter, we will show that Q and hence PA is p.r. adequate.

However, we haven’t yet explained what is involved in capturing a function
as opposed to a property or relation, and there is a slight wrinkle here. We
therefore need to spend a little time explaining that idea, which is (I'm afraid)
rather boring housekeeping.

10.1 Expressing and capturing functions

Suppose f is a one-place (total) numerical function. And suppose m has the
relation Ry to n just in case f(m) = n. Then we'll say Ry is f’s corresponding
relation. Functions and their corresponding relations match up pairs of things
in exactly the same way: so f and Ry have exactly the same extension, namely
the set of ordered pairs (m, f(m)).!

And just as the characteristic function trick (Section 9.6) allows us to take
ideas defined for functions and apply them to properties and relations, this very
simple tie between functions and their corresponding relations allows us to carry
over ideas defined for relations and apply them to functions.

For a start, consider how we can use this tie to extend the idea of expressing a
relation to cover the idea of expressing a function using an open wff. Here again
is the familiar definition for relations, now applied to Ry:

A two-place numerical relation R is expressed by ¢(x,y) in an
(interpreted) arithmetical language L just if, for any m,n,

if m has the relation Ry to n, then ¢(m,n) is true,

if m doesn’t have relation Ry to n, then —p(m,n) is true.

Moving from the relation R to the function f, this naturally becomes:

A one-place numerical function f is expressed by p(x,y) in an
(interpreted) arithmetical language L just if, for any m,n,

if f(m) = n, then p(m,n) is true,

if f(m) # n, then —p(m,n) is true.

The generalization to many-place functions is immediate.

LFor that reason, many logicians would simply identify a function and its corresponding
relation. We won’t pause to argue the pros and cons of taking that line.

85

10. Capturing functions

Similarly, we can extend the idea of capturing from relations to functions.
Here is the definition again for a two-place relation Ry:

A two-place numerical relation Ry is captured by ¢(x,y) in theory
T just if, for any m,n,

if m has the relation R to n, then 7'+ ¢(m,n),

if m does not have the relation Ry to n, then T'F —¢(m,n).

And we can naturally say that a one-place function f (i.e., by abuse of notation,
the function f(x) = y) is captured by ¢(x,y) in theory T so long as that wff
captures the corresponding relation Ry. Which comes to the following:

A one-place numerical function f is captured by ¢(x,y) just if, for
any m,n,

if f(m) =mn, then T+ ¢(m,n),

if f(m) # n, then T F —p(m, n).

Again, the generalization to many-place functions is immediate.

10.2 ‘Capturing as a function’

So far so good. However, although our definition above is the natural analogue
of our definition of what it takes to capture a relation, it is convenient and
nowadays standard to work with a stronger notion of capturing a function. This
section explains the stronger notion.

Our previous definition might be said to be weak in the following sense. It tells
us that T' captures a function f if there is some ¢ which captures the relation
that holds between m and n when f(m) = n. But it doesn’t require that ¢ — so
to speak — captures the function as a function, i.e. it doesn’t require that 1" can
prove that the capturing wif ¢ relates a given m to exactly one value n. We will
now impose this extra requirement, and say:

The one-place function f is captured as a function by ¢(x,y) in
theory T just if

(i) for every m, T F 3lyp(m,y)
and for any m,n:

(ii) if f(m) =n then T F ©(m,n),

(iii) if f(m) # n, then T F —p(m,n).

Here ‘Jlu’ is the standard uniqueness quantifier, to be read ‘there is exactly one
u such that ...".2 So the new clause (i), as we want, insists that the putative cap-
turing relation can be proved to relate each numerical argument to some unique
value: in a phrase, the relation is (provably) functional. Again, the generalization
to many-place functions is immediate.

2Let ‘3" be defined by taking ‘Jlup(u)’ as short for ‘Ju(p(u) A Yw(p(v) — v =u))’. We
won’t fuss about how to handle any potential clash of variables.

86

‘If capturable, then capturable as a function’

Note however that, even for very modest theories like Q, conditions (i) and
(ii) in fact imply (iii).
Proof Suppose f(m) # n because f(m) = k, where n # k. Suppose further that
(i) and (ii) hold, so ¢(x,y) is provably functional, and also T+ ¢(m,k). Then
by simple logic, (i) and (ii) imply that T F n # k — —p(m,n). But as we saw
in Section 6.1, even when T is mere Baby Arithmetic, if n # k, then T F n # k.
Hence, if T' contains Baby Arithmetic, (iii) if f(m) # n then T F =p(m,n). X

Therefore, to confirm in particular that ¢ captures f as a function in Q or any
stronger theory, we only need to check that conditions (i) and (ii) hold. That
is why capturing-as-a-function is very often defined just in terms of (i) and (ii)
holding.

And to link up with a third common definition also found in the literature,
assume that 7" contains Baby Arithmetic and is consistent. Then the definition
in terms of conditions (i) and (ii) is easily seen to be equivalent to this:

The one-place function f is captured as a function by the ¢(x,y)
in theory T just if for any m,n:
if f(m)=mn, then T F Vy(p(m,y) <y =n).

Likewise, of course, for many-place functions.

10.3 ‘If capturable, then capturable as a function’

Trivially, if ¢ captures f as a function in T, then ¢ captures f in the weaker
sense of Section 10.1.

The strict converse doesn’t obtain. However, we have a result which is almost
as good. For suppose T is either Q or extends Q, so T proves everything that Q
does: then if ¢ captures the function f in 7', then there will always be a closely
related wif ¢ which does capture f as a function in T.

Let’s illustrate our claim for the case of a one-place function. So suppose ¢
captures f in T. And now consider the wif ¢ defined as follows:

(%, y) =det P(x,¥) A (VZ < y)(p(x,2) =z =1y)

Then, for a given m, @(m,x) is satisfied by a unique n, i.e. the smallest n such
that p(m,n) is true. It is easy to show that this wif not only also captures f
but captures it as a function (so long as T is at least as strong as Q). Why?
Essentially because, as we know from Section 7.2, Q is good at proving results
involving bounded quantifiers. In detail (just for enthusiasts!):

Proof Assume we are dealing with a theory T which proves everything Q proves.
Suppose that ¢ captures in T’ the one-place function f. We need to show

i. for every m, T + 3lyp(m,y),
ii. if f(m) =n then T F @(m,n).

87

10. Capturing functions

So suppose f(m) = n. Since the value of f(m) is unique, that means f(m) # k
for all k& < n. Because ¢ captures f in T, that means (a) T F ¢(m,n), and (b) for
k<mn, TkF =p(m,k). But (b) implies (¢): for k < n, T F ¢(m,k) — k =n. And
from (c) and Result 4 of Section 7.2, we get (d) T'F (Vx < n)(¢(m,x) — x = n).
Putting (a) and (d) together, that means T'F @(m, n), which establishes (ii).
Since T' F @(m,n), to establish (i) it is now enough to show that, for arbi-
trary a, T F @(m,a) — a = n. So, arguing in 7', suppose p(m,a), i.e. ¢(m,a) A
(Vz < a)(p(m,z) — z = a). By Result 8 of Section 7.2, a < nV n < a. If the first,
(d) yields ¢(m,a) — a =n, and so a = n. If the second, then ¢(m,n) — n=a,
so n = a. So either way a = n. Discharge the supposition, and we’re done. X

The result generalizes, of course, to the case where we are dealing with a wiff
(X, y) which captures a many-place function f(Z). Just define the corresponding
»(X,y) in the analogous way (replacing ‘x’ by ‘X’), and @ will capture f as a
function.

In sum — once we are dealing with arithmetics as strong as Q — if a function
is capturable at all it is capturable-as-a-function. Which is, of course, why many
treatments only bother to introduce the second notion.?

10.4 Capturing functions, capturing properties

Note that our various definitions hang together in the following rather convenient
way. Suppose T contains quantifiers, and (like Q) can prove that 0 # 1; then a
property is capturable by T if and only if its characteristic function is capturable
as a function:

Proof Suppose P is captured in T' by the open wff ¢(x), and consider the wff
((p(x) =y =0) A (mp(x) <y =1))

It is easily seen that this two-place relational expressions captures cp, the char-
acteristic function of P, and captures it as a function. Conversely, suppose the
wif ¢(x,y) captures the characteristic function cp; then the wif ©(x,0) captures
the corresponding property P. X

So instead of laying down separate conditions for properties/relations and func-
tions being capturable, we could have initially just given conditions for the case
of functions, and then let properties and relations look after themselves by saying
that they are capturable if their characteristic functions are.

3] have laboured a bit over these variant definitions in part to help comparison with
the ideas in other books. Again terminology varies widely. For the pair of ideas ‘capturing
a function’ and ‘capturing a function as a function’ we find e.g. ‘weakly defines’/‘strongly
defines’ (Smullyan, 1992, p. 99), ‘defines’/‘represents’ (Boolos et al., 2002, p. 207), ‘repre-
sents’/‘functionally represents’ (Cooper, 2004, pp. 56, 59). While those who only highlight the
idea of capturing-as-a-function sometimes use e.g. ‘defines’ for that notion (Lindstrom, 2003,
p- 9), though plain ‘represents’ seems most common (Mendelson, 1997, p. 171), (Epstein and
Carnielli, 2000, p. 192).

88

The idea of p.r. adequacy

10.5 The idea of p.r. adequacy

(a) Our three formal arithmetics BA, Q, and PA, have function symbols for
successor, addition and multiplication built in. Plainly BA can’t capture those
three functions as functions (for that requires the use of wifs with quantifiers,
which BA lacks) — though it does capture those functions in the weaker sense.
For example S¢ = ¢ captures the successor function.* However, in Q (and so PA)
successor, addition and multiplication are captured as functions. To take just
one example, x +y = z captures addition as a function in Q. To establish this,
we need to confirm that

i. for every m,n, Q F 3lz(m +n = 2)

which is trivial by the logic of identity. We also need to confirm that for any
m,n,o,

ii. fm4+n=o0,thenQFm+n=o0
But we’ve already seen that Q can prove any true (unquantified) equation.

(b) Of course, we want any reasonably competent formal arithmetic to be able
to deal with more than addition, multiplication and successor. Recall, the value
of a p.r. function for any given argument(s) is computable — in p.r. bounded
time — in accordance with a step-by-step algorithm. But, as we’ve said before,
the whole aim of formalization is to systematize and regiment what we can
already do. And if we can informally calculate the value of a p.r. function for
a given input in an entirely mechanical way — ultimately by just repeating lots
of school-arithmetic operations — then we will surely want to aim for a formal
arithmetic which is able to track these informal calculations. So it seems that
we will want a formal arithmetic worth its keep to be able to express any p.r.
function and prove, case-by-case, the correct results about the function’s values
for specific arguments.® That motivates a pair of definitions:

A theory T is weakly p.r. adequate if, for every p.r. function f,
there is a corresponding ¢ in T that captures it.

A theory T is p.r. adequate if for every p.r. function f, there is a
corresponding ¢ in T' that captures it as a function.

(¢) Now, there’s an easy, brute-force, way of constructing a weakly p.r. ad-
equate theory. Start again from BA, our theory of Baby Arithmetic (see Sec-
tion 6.1). This, recall, is a quantifier free theory which has schemas which reflect

4Here we take up the permission we gave ourselves in Section 4.4, fn. 4 to read the variables
in the official definitions of expressing/capturing as serving as placeholders when necessary.

5Compare the informal idea of being ‘sufficiently strong’ that we met in Section 5.1. The
informal idea was about capturing any decidable property, i.e. any property with a computable
characteristic function: while being p.r. adequate is a matter of capturing primitive recursive
functions. And we know that there are computable functions which aren’t p.r. So, at least on
the face of it, the informal idea is stronger.

89

10. Capturing functions

the p.r. definitions of addition and multiplication. As we showed, we can use in-
stances of these schemas to prove any true equation or inequation using successor,
addition and multiplication. Hence BA is adequate for those three functions in
the sense that it can evaluate them correctly case-by-case for specific arguments.

So far, so good. And next suppose we start expanding BA by adding new
vocabulary and new schemas. As a first step, we can add the symbol ‘1’, intended
to express the exponential function, and then say that all numeral instances of
the following are axioms too:

Schema 7 (70=1
Schema 8 (1S{=(C1¢&) x¢

Instances of those schemas enable us to prove the correct result for the value of
the exponential function for any arguments. So that makes four functions which
can be captured in our expanded BA.

For tidiness, let’s resymbolize these using the function symbols ‘fy’, ‘f1’, ‘f2’,
‘f3”. And now let’s keep going: we will add a symbol ‘f,” for each n, with the
plan that ‘f,” should express the n-th p.r. function f,, in a ‘good’ effective enu-
meration of the recipes for p.r. functions (where an enumeration is ‘good’ if the
p.r. definition of f,, only involves functions earlier in the enumeration). Then for
each ‘f,’, we write down schemas involving that function expression which reflect
fn’s definition in terms of earlier functions. Call the resulting theory PRAg.%

PRAy is still a properly axiomatized theory, because it will be effectively de-
cidable whether any given wif is an instance of one of axiom schemas. Plainly,
its language is much richer than BA’s, since it has a separate function expression
for each primitive recursive function: but for all that, its language remains im-
poverished in other ways — for it still can’t express any general claims. Because
it is quantifier-free, we can show that PRAg is a negation-complete theory like
BA (in fact we just generalize the argument we used to show BA can either prove
or disprove every sentence in its limited language). And by construction, PRAg
can capture all p.r. functions” — though, lacking quantifiers, it of course can’t be
p-r. adequate in the stronger sense.

(d) In sum, we can readily construct a (weakly) p.r. adequate arithmetic by
the high-cost method of infinitely expanding the vocabulary of arithmetic and
throwing in axioms for every p.r. function. But do we actually need to do this?

We don’t. In fact, we only need the language of basic arithmetic in order to
frame a (strongly) p.r. adequate theory. To put it very roughly, the ground we lose
by restricting ourselves to a language with successor, addition, and multiplication
as the only built-in functions, we can make up again by having quantification
available for definitional work. Indeed, even the induction-free arithmetic Q is
p.r. adequate. Proving that is work for the next chapter.

SThat’s short for ‘quantifier-free Primitive Recursive Arithmetic’. Full PRA is (roughly)
PRA(plus a weak induction schema.
"Footnote 4 above applies again!

90

11 Q is p.r. adequate

We are going to show that any p.r. function — and hence (via its characteristic
function) any p.r. property and relation — can be captured in Q. In a phrase, Q
is p.r. adequate. And it will later turn out that this result takes us most of the
way to showing that Q is ‘sufficiently strong’.

This chapter is unavoidably proof-packed. So here’s a local road-map of the
line of argument. Recall the idea of a 31 wif which was introduced in Section 7.3.
A ¥, wif is the existential quantification of a ‘simple’ kernel wif (where being
‘simple’ or Ay means lacking unbounded quantifications). Define a ¥; function
as one that can be expressed by a ¥; wff. Then we can prove two Big Results:

1. Ewvery Xy function can be captured as a function in Q. We show this in
the first section below, building on Theorem 9, which told us that Q is
Y1-complete.

2. Every p.r. function is a X1 function. This takes us the next four sections
to establish. (i) We first use the so-called ‘G-function’ trick which Godel
invented to prove that L4 has the resources to express any p.r. function.
Then (ii) we look at the details of our proof to extract the more detailed
information that a ¥; wif is always enough to do the expressive job.

Putting those two Big Results together immediately gives us the target result
that Q is p.r. adequate. It trivially follows that PA is p.r. adequate too.

Perhaps we should note, though, that the new proof ideas which we need in
this chapter to establish the two Big Results are not used again in this book. It
is therefore not necessary to master all the fine details of the proofs in order to
grasp what follows in later chapters.

11.1 Q can capture all 3¢ functions

(a) We start with a trio of definitions — definitions which for the moment are
being applied to total numerical functions:

fis a Ag function if it can be expressed by a Ag wif.
f is a ¥ function if it can be expressed by a X1 wil.
f is a II; function if it can be expressed by a IT; wif.

Since a %1 wif is, by definition, always equivalent to some strictly ¥; wif, it is
trivial that for any X; function there’s a strictly X1 wif which expresses it — a
point we’ll later use repeatedly.

91

11. Qis p.r. adequate

Note the ‘can’ in our definitions. A function f might be expressible by some
other kinds of wff too, but it is II; (for example) so long as it can also be
expressed by some II; wff. Here’s a little result that illustrates the point.

The %1 /Ty lemma. If a function is Xq it is also IIj.

Proof Suppose the one-place function f can be expressed by the strictly 3
wif p(x,y). Since f is a function, and maps numbers of unique values, we have
f(m) = n if and only if Vz(f(m) = z — 2z = n). Hence f(m) = n if and only
if Vz(¢(m,z) — z = n) is true.! In other words, f is equally well expressed by
Vz(p(x,z) — z=y). But it is a trivial exercise of moving quantifiers around to
show that if ¢(z,y) is strictly Xq, then Vz(¢(x,z) — z =y) is II;. X

(b) 1In Section 7.4, we showed that Q can correctly decide every A sentence —
i.e. prove it if it is true, refute it if it is false. We’ve also shown in Section 10.3
that if Q captures a function by some wif ¢, it can capture it as a function by a
corresponding wff ¢. And these facts entail

The Q/A lemma. Q can capture any Ap function as a function.

Proof Suppose the one-place function f is expressed by the Ay wif o(x,y).
Then by definition of ‘expressing’, if f(m) = n, then ¢(m,n) is true, and hence
— since Q correctly settles every Ag wif, Q F ¢(m,n). Likewise, if f(m) # n,
then ¢(m, n) is false, and hence Q F —=p(m, n). So ¢(x,y) not only expresses but
captures f in Q. Hence @(x,y) captures f as a function in Q. But it is easy to
check that, by the construction of @, this wif is still Ag if ¢ is. (The argument
for many-place functions is, of course, exactly parallel.) X

(¢) The rest of this section beefs up that last very easy lemma by using a really
delightful bit of sheer ingenuity to establish

Theorem 13 Q can capture any X1 function as a function.

What does this mean? It means that once we've found a X1 wif which expresses
a function f, then we know that there is some wif or other which captures f as
a function (it will in fact still be a X1 wit but needn’t be the same one).

Our proof falls into two stages. First (the ingenious stage), we show that a
31 function is equivalent to a composition of Ay functions. And then second
(the straightforward stage), we show that Q can capture any composition of Ag
functions.

Proof: first stage Take a total one-place function f expressed by a strictly X,
open wif with two free variables. Suppose this wif is of the form JzR(x,y,z) with
just one quantifier, where R(x,y,z) is Ag. (The case where the A kernel of the
wif is preceded by more than one existential quantifier can be dealt with very
similarly.)

ITo avoid clash of variables, assume ‘z’ doesn’t appear in .

92

Q can capture all X1 functions

R will, of course, express some three-place relation R, where R(m,n,0) is true
just when Rmno. And then f(m) = n just when 3z2Rmnz.
Now for the clever trickery!? First we define a couple more functions:

g(x) is the least y such that (Fu < y)(Fv < y)Rruv;
h(x,y) is the least z < y such that (v < y)Rzzv if such an
z exists, or is 0 otherwise.

Since f is total, for every x there are values u,v such that Rruv, and so g is
well-defined. And then what’s going on here is that g(m) puts a ceiling ¢ on the
numbers we need to search through before finding a pair n, o such that Rmno is
true. And h(m, ¢) looks for a number n under the ceiling ¢ such that for some o
also under that ceiling Rmno is true. Which means, of course, that

f(m) = h(m,g(m))

And the point about this redefinition of f as a composition of functions is that
both g and h are Ay functions.
Why so? Because our two functions are expressed by, respectively,

G(x,y) =det (Ju <y)(3Fv < y)R(x,u,v)
A (Vw <y)w #y — =(Fu <w)(Iv < w)R(x, u, V)]
H(x,y,2z) =aet [(v < y)R(X,2,v) A =(Fu < 2)(3v < y)(u # z AR(x,u,v))]
Vz=0

and those wifs are evidently Ag.

Proof: second stage So we’ve shown that a one-place 3 function can be treated
as a composition of two Ay functions; and the generalization to many-place
functions is straightforward. Now we show that Q not only captures any Ag
function (as we’ve already seen) but also any composition of two Ag functions.

We'll take the simplest case (again, generalizing the argument is easy). So
suppose that f is a one-place ¥ function, and suppose

f(m) = h(m, g(m))

where g and h are A(functions as in the first stage of the proof. So g and h
are captured as functions by Ay wffs which we’ll abbreviate a(x, y) and ﬁ(x, Y, 2)
respectively. Then we’ll show that the function f(x) = h(x,g(r)) is not only
expressed but captured by the X1 wif F(x,y) =qer 32(G(x,2) A H(x,z,y)).

For suppose that f(m) = n. Then for some o, g(m) = o, and h(m,0) = n.

Then by the capturing assumption, the following are provable in Q:

Vy(G(m,y) <>y = o)

Vz(H(m,0,z) < z =n)

But by elementary logic, those two imply

2Credit where credit is due: I first learnt this neat dodge from (Boolos et al., 2002, p. 206).

93

11. Qis p.r. adequate

Vy(Jz(G(m,z) A H(m,z,y)) <y = n)
But that means we have
If f(m) = n, then Vy(F(m,y) <y =n)
Which shows that F captures f. X

In sum, then, every ¥; functions is a composition of two Ay functions, and such
a composition of functions can be captured in Q; so Q can capture as a function
every Y function. Which gives us Theorem 13.

11.2 Ly can express all p.r. functions: starting the proof

Our next main aim — we are at step 2(i), as described in the preamble to this
chapter — is to prove

Theorem 14 FEvery p.r. function can be expressed in L 4.

The overall proof strategy Suppose that the following three propositions are all
true:

1. L4 can express the initial functions.

2. If L4 can express the functions g and h, then it can also express a function
f defined by composition from g and h.

3. If L4 can express the functions g and h, then it can also express a function
f defined by primitive recursion from g and h.

Now, any p.r. function f can be specified by a chain of definitions by composition
and/or primitive recursion, building up from initial functions. So as we follow
through the chain of definitions which specifies f, we start with initial functions
which are expressible in L4, by (1). And — by (2) and (3) — each successive
definitional move takes us from expressible functions to expressible functions.
So, given (1) to (3) are true, f must be expressible in L4. Hence: in order to
prove our theorem, it is enough to to prove (1) to (3).

Proof for (1) This step is trivial. First, the successor function Sz = y is ex-
pressed by the open wif Sx = y. Second, the zero function Z(x) = 0 is expressed
by the wif Z(x,y) =gt (x =x Ay =0).

Finally, the three-place identity function I3(x,vy,2) = y, to take just one ex-
ample, is expressed by the wif 13(x,y,z,u) =get (x =x Ay = uAz=2z). Likewise
for all the other identity functions. (Note, all the initial functions are Ay, i.e.
are expressible by a Ay wil.) X

Proof for (2) Suppose g and h are one-place functions, expressed by the wifs
G(x,y) and H(x,y) respectively. Then, the function f(z) = h(g(x)) is expressed
by the wif 3z(G(x,z) A H(z,y)). Other cases where g and/or h are multi-place
functions can be handled similarly. X

94

The idea of a B-function

Starting the proof sketch for (3) Now for the fun part. Consider the primitive
recursive definition of the factorial function again:

ol=1
(Sz)! = Sz x !

The multiplication and successor functions involved on the right of the second
equation here are of course expressible in L 4: but how can we express our defined
function in L 47

Think about the p.r. definition for the factorial in the following way. It tells us
how to construct a sequence of numbers 0!, 1!, 2!, ... z!, where we move from the
u-th member of the sequence (counting from zero) to the next by multiplying
by Su. Putting x! = y, the p.r. definition thus says

A. There is a sequence of numbers kg, k1, ...,k such that: kg = 1, and if
u < x then kg, = Su x k,, and k; = y.

So the question of how to reflect the p.r. definition of the factorial inside L 4
comes to this: how can we express facts about finite sequences of numbers using
the limited resources of L 4?7

11.3 The idea of a (B-function

Let’s pause the proof sketch for (3), and think first about the kind of trick we
could use here.

Suppose mg, 71, T, T3, ... is the series of prime numbers 2,3,5,7, Now
consider the number

bzwgo -w’fl .77’2“2 oo qrhn
This single number b can be thought of as encoding the whole sequence kg, k1, k2,
...y kn. And we can extract the coded sequence again by using the (primitive
recursive) decoding function exzp(b,i) which we met in Section 9.7; for this func-
tion returns the exponent of the prime number m; in the factorization of b. By
the construction of b, then, exp(b,i) = k; for i < n.
Now let’s generalize. We’ll say

A two-place B-function is a function of the form S(b,¢) such that,
for any finite sequence of natural numbers kg, k1, ks, ..., ky, there
is a code b such that for every i <n, B(b,i) = k;.

So the idea is that — for any finite sequence of numbers you choose — you can
select a corresponding code number b to be the first argument for 3, and then
the function will decode it and spit out the members of the required sequence in
order as its second argument is increased.?

3Referring to such a function as a ‘beta-function’ is absolutely standard. The terminology
was introduced by Godel himself in his Princeton Lectures (1934, p. 365).

95

11. Qis p.r. adequate

We’ve just seen that there is nothing in the least bit magical or mysterious
about the idea of a [S-function: exp is a simple example. And evidently, we’ll
be able to use code numbers and a decoding g-function to talk, in effect, about
finite sequences of numbers. However, our first example of a G-function is defined
in terms of the exponential function which isn’t built into L4.* So the obvious
next question is: can we construct a S-function just out of successor, addition
and multiplication which are built into L 4?7

It turns out to simplify things if we liberalize our notion of a S-function just
a little. So we’ll now also consider three-place (-functions, which take two code
numbers ¢ and d, as follows:

A three-place -function is a function of the form ((c,d,4) such

that, for any finite sequence of natural numbers kg, k1, ko, ..., ky
there is a pair of code numbers c¢,d such that for every ¢ < n,
ﬂ(ca da 7’) = kz

A three-place S-function will do just as well as a two-place function to help us
express facts about finite sequences.

Even with this liberalization, it still isn’t obvious how to define a (-function
in terms of the functions built into basic arithmetic. But Gédel neatly solves our
problem as follows. Put

B(c,d, i) =ger the remainder left when c is divided by d(i + 1) + 1.

Then, given any sequence kg, k1, ..., k,, we can find a suitable pair of numbers
¢, d such that for i <mn, 8(c,d,i) = k;.

This claim should look intrinsically plausible. As we divide ¢ by d(i+1)+1 for
different values of i (0 < ¢ < n), we’ll get a sequence of n+ 1 remainders. Vary ¢
and d, and the sequence of n + 1 remainders will vary. The permutations as we
vary ¢ and d without limit appear to be simply endless. We just need to check,
then, that appearances don’t deceive, and we can always find a big enough ¢ and
a smaller d which makes the sequence of remainders match a given n + 1-term
sequence of numbers.?

4Way back, we could have started by taking our fundamental language of arithmetic to
be not L4 but LTZ, i.e. the language you get by adding the exponential function to L4. And,
correspondingly, we could have taken as our basic theories QT and PAT, which you get from
Q and PA by adding the obvious recursion axioms for the exponential. Then we’d have a very
easily constructed (-function available and could have avoided the fuss in the rest of this
section, and the need for the argument of the next footnote.

5Here is how to check that claim (this is just an exercise in elementary arithmetic, which
is why we relegate it to a footnote for enthusiasts). First some notation and jargon. We write
a = rm(c,d) when a is the remainder when c is divided by d. We write D for a sequence of
n numbers do,d1,d2,...d, which are relatively prime, i.e. no two of them have a common
factor other than 1. We write Rm(c, D) for the sequence of remainders rm(c,do), rm(c,d1),
rm(c,dz2), ..., rm(c,dn). And we put |D| for the product do - di -d2 - ... dn. Then we have

The Chinese Remainder Theorem For any sequence D, then as ¢ runs from 0
to |D| — 1, the sequences Rm(c, D) are all different from each other.

96

L4 can express all p.r. functions: finishing the proof

But now note that the concept of a remainder on division can be elementarily
defined in terms of multiplication and addition. Thus consider the following:

B(c,d,i,y) =aet (Ju < c)[c={S(d x Si) xu} +y Ay < (dx Si)]

This, as we want, expresses our Godelian G-function in L4 (and shows that it is
a Ag function).

11.4 L4 can express all p.r. functions: finishing the proof

Continuing the proof sketch for (3) Suppose we have some three-place S-function
to hand. So, given any sequence of numbers kg, k1, ..., k;, there are code num-
bers ¢, d such that for ¢ <z, 8(c,d,i) = k;. Then we can reformulate

A. There is a sequence of numbers kg, k1, ...,k such that: kg = 1, and if
u < x then kg, = Su x k,,, and k; =y,

as follows:

B. There is some pair ¢,d such that: 3(c,d,0) = 1, and if u < z then
Ble,d, Su) = Su x f(c,d,u), and B(c,d,z) = y.

But we've seen that there’s a particular Gédelian (B-function which can be ex-
pressed in L4 by the open wif we abbreviated B. So fixing on this §-function,
we can translate (B) into L4 as follows:

Proof Suppose otherwise. Then there are numbers 0 < ¢1 < ¢2 < |D|, such that Rm(c1, D) =
Rm(c2, D). Put ¢ = c2 — c¢1. Trivially, ¢ < |D|. Now, it’s another trivial fact that if ¢; and ¢
leave the same remainder when divided by some d, then ¢ must exactly divide by d. So, since
— by hypothesis — ¢; and ¢z leave the same remainders for each d; in the sequence D, ¢ divides
by each d;. And since the d; have no factors in common that means that ¢ must divide by
their product | D], contradicting the fact that ¢ < |D]. X

Now, there are dg different possible remainders a number might have when divided by do (i.e.
0,1,2,...do — 1), d1 possible remainders when divided by di, and so on. So there are |D|
different possible sequences of remainders Rm(c, D). Hence, by our theorem, as ¢ runs from 0
to |D| — 1, we get every possible sequence of remainders.

And now we can use this to show Goédel’s claim that for any ko, k1, ..., kn, we can find a
pair of numbers ¢, d such that for i < n, (¢, d,i) = k;, where B(c,d,i) = rm(c,d(i + 1) + 1).
Proof Put s to be greatest of n, ko, k1,...,kn. Put d = s! Then first note that for 0 < i <n
the numbers d; = d(i + 1) + 1 are relatively prime. For suppose otherwise, i.e. for some j, k
where 1 < j <k <n-+1,dj+1 and dk + 1 have a common prime factor p. Plainly, p > s
(since any number up to s leaves a remainder 1 when dividing s!j 4+ 1). But also since p divides
dj +1 and dk + 1, it divides their difference d(k — j). But p can’t divide d because it then
wouldn’t divide dj + 1. So p must divide (k — j), which is less than n and so less than s. So
p < s Contradiction!

Thus the d; are relatively prime. So by the Chinese Remainder Theorem, as we run through
the sequences of remainders Rm(c, D) for ¢ = 0 to |D| — 1 we get every possible different
sequence of remainders. And one of these sequences must be ko, k1,...,kn (because each of
those k; is less than s so is a potential remainder on division by the corresponding d;). X

97

11. Qis p.r. adequate

C. 3c3d{B(c,d,0,1) A
(Vu < x)[u # x — IvIw{(B(c,d,u,v) A B(c,d,Su,w)) Aw = Su x v}] A
B(c,d,x,y)}

Abbreviate all that by ‘F(x,y)’, and we’ve arrived! For this evidently expresses
the factorial function.

Let’s summarize so far. We first noted that the p.r. definition of the factorial n!
tells us that there is a sequence of (n+ 1) numbers satisfying a certain condition.
Then we used the elegant S-function trick to re-write this as the claim that there
is a code number for the sequence — or rather, two code numbers — satisfying
a related condition. Using Gdédel’s particular S-function, we can then render
this re-written version into L4 to give us a wif which expresses the recursive
definition of the factorial.

So to finish the proof for (3), we just need to show that we can use the same
B-function trick to express any function f defined by recursion from functions g
and h which are already expressible in L4.

Concluding the proof sketch for (3) Here, just for the record, is the entirely rou-
tine generalization we need. Suppose the function f is defined from the functions
g and h by the standard p.r. recursion equations:

f(fv 0) = g(f)
(@, Sy) = h(Z,y, f(Z,y))

This definition amounts to fixing the value of f(Z,y) = z thus:

A* There is a sequence of numbers ko, k1, .. ., k, such that: kg = ¢g(Z), and if
u <y then kyt41 = h(Z,u, ky), and k, = z.

So using a three-place B-function again, that comes to

B* There is some ¢, d, such that: 8(c,d,0) = g(Z), and if u < y then
Ble,d, Su) = h(Z,u, B(c,d, u)), and B(c,d,y) = 2.

Suppose we can already express the n-place function g by a (n + 1)-variable
expression G, and the (n+2)-variable function h by the (n+3)-variable expression
H. Then — using ‘X’ to indicate a suitable sequence of n variables — (B*) can be
rendered into Q by

C* 3c3d{3K[B(c,d,0,k) A G(X,w)] A
(Vu <y)[u#y— Fvaw{(B(c,d,u,v) AB(c,d,Su,w)) A H(X, u,v,w)}] A
B(c,d,y,2)}

Abbreviate this defined wif p(X,y,z); it is then evident that ¢ will serve to
express the p.r. defined function f. Which gives us the desired result (3). X

So, we've shown how to established (1), (2) and (3). But this amounts, as we
wanted, to a proof that every p.r. function can be expressed in L 4. We're done:
Theorem 14 is in the bag!

98

The p.r. functions are X1

11.5 The p.r. functions are >4

Reviewing the proof we’ve just given, it’s fairly easy to see that we’ve in fact
already got all the materials to hand to show something stronger — namely that
every p.r. function can be expressed in by a strictly 31 wff. Hence

Theorem 15 FEvery p.r. function is ¥ .

Before giving the official argument, here’s the basic idea. We’ve just seen how to
build up wifs for expressing p.r. functions with more and more complex defini-
tions. We start with the A initial functions. Compositions are expressed using
existential quantifiers: so they don’t take us beyond what can be expressed with
¥, wifs. And functions defined by recursion are expressed by wifs like (C*) .
Now, (C*) does have a lot of existential quantifiers inside it (including some
buried inside the embedded wifs G and H). But we can — using a simple little
trick — drag all those internal existential quantifiers to the front, ending up with
a Yq wif which still expresses the same function as (C*). So defining functions
by recursion applied to other ¥; functions still keeps us inside the class of ¥
functions.

Now we’ll check those claims (but by all means skip the rest of this section
with the fiddly details: we are just joining up the dots). To prove our theorem
it is enough to show the following:

1’. The initial functions are X;.

2'. If the functions g and h are X1, then so is the function f defined by
composition from g and h.

3’. If the functions g and h are X1, then so is the function f defined by
primitive recursion from g and h.

Proof for (1) We saw that the initial functions can be expressed using Ag wils,
hence are Ay functions. But as we noted at the end of Section 7.3, every Ag
function is trivially a ¥; function too. X

Proof for (2) Let’s suppose, to take a simple case, that g and h are ¥; one-
place functions, expressed by the strictly 37 wifs G(x,y) = JuG(x,y,u) and
H(x,y) = 3vH(x,y, v) respectively, where G and H are Ay.

Now suppose f is defined by composition, so f(m) = g(h(m)). Then, f is
expressed by 3z(G(x,z) A H(z,y)), i.e. 3z(3uG(x,z,u) A IvH(z,y,v)). But that’s
equivalent to 3z3u3v(G(x,z,u) A H(z,y,v)) which is another strictly ¥; wff. So
f can be expressed by a strictly ¥, wif, which was to be shown.

The argument now generalizes in the obvious ways to (i) more complex cases
of composition, and (ii) cases where the ¥; functions being compounded are
expressed by wifs with more than one existential quantifier at the front. X

Proof sketch for (3) Here’s a preliminary observation to introduce the simple
‘quantifier shift’ trick we now need. Take the sample wff

99

11. Qis p.r. adequate

i (Vu <n)3IvK(u,v).

If (i) is true, then for each u < n, there is a corresponding witness w,, which
makes K(u,w,,) true. Now, take w to be the largest of those n 4 1 witnesses w,.
Then (Yu < n)(3x < w)K(u,x) is true. And therefore

. Fv(Vu < n)(3x < v)K(u,x)

is true. So if (i) is true, so is (ii); and obviously if (ii) is true, so is (i). Hence we
can find a wif which expresses the same as (i) — because it is true just when (i)
is — but which brings the unbounded existential quantifier Iv out in front of the
bounded universal quantifier (Vu < n), leaving behind — as it were, as its shadow
— a new bounded existential quantifier.

Now to make use of this quantifier shift trick. Suppose f is defined by recursion
from the ¥ functions g and h which are expressed by G(X,w) and H(X, u,v,w),
where both those wifs are strictly ;. Then, as we saw, f is expressed by the
corresponding

C* 3c3d{3K[B(c,d,0,k) A G(X,w)] A
(Vu <y)[u#y— Ivaw{(B(c,d,u,v) AB(c,d,Su,w)) A H(X, u,v,w)} A
B(c,d,y,2)}

where B, remember is Ag. So now consider the wff (C**) constructed as follows.
First we drag the quantifier 3k and any existential quantifiers embedded in G to
the front.” We then use the quantifier shift trick to drag the quantifers Ju3v plus
any existential quantifiers embedded in H to the front, moving them past the
bounded universal (Yu <vy), leaving behind bounded existential quantifiers as
their shadows. The resulting open wif (C**) will then have a block of existential
quantifiers at the front, followed by a Ag kernel. So it follows that (C**) is strictly
Y1, while it still expresses just the same function f as (C*) as it is satisfied by
just the same numbers.

Hence, as we wanted, we’ve shown that a function defined by recursion from
Y1 functions is itself Xy. X

11.6 The adequacy theorem

Now we can simply put together the Big Results Theorem 13 (established in
Section 11.1) and Theorem 15.

Theorem 13 Q can capture any X1 function as a function,

Theorem 15 Every p.r. function is X1,

SNB: To drag an existential quantifier forwards across an unbounded universal quantifer
is to commit a horrible quantifier shift fallacy. But here we are dragging across a bounded
universal quantifier, and that makes all the difference!

7Changing variables, of course, if that’s what it takes to avoid clashes.

100

The adequacy theorem

to get the Really Beautiful Big Theorem that we’ve been aiming for.® Q can
capture all p.r. functions as functions, i.e.

Theorem 16 Q is p.r. adequate.

And this implies that Q can capture every p.r. property and relation (and by a
¥y wif). That’s because a property is p.r. if it has a p.r. characteristic function;
and this characteristic function, being p.r., can be captured in Q. But by the
trivial result we noted in Section 10.4, if a property’s characteristic function is
capturable by the X7 wif ¢(x,y), so is that property itself by the X7 wif ¢(x,0).
Likewise for relations.

Since PA can prove everything Q proves, that (of course) means that PA is
p-r. adequate too. And it is worth noting that we have in fact proved somewhat
more than we set out to do. For we’ve shown not only that every p.r. function is
captured in Q and PA, but that every such function is captured by a wif which
reveals it to be a p.r. function.

To repeat once more, a p.r. function f can always be defined by a chain of
definitions by composition and primitive recursion, starting from some initial
functions. And we’ve just shown that we can express and indeed capture f by
a corresponding wil which is built up by steps which recapitulate the definitions.
Then we can refine our theorem: Q and PA can capture every p.r. function in
this kind of perspicuous way. (And we’ll take it henceforth that when we talk of
a p.r. function being captured by a wif in a formal arithmetic, we have in mind
this sort of revealing representation.)

80f course, Godel in 1931 didn’t know about Q, which was first isolated as a minimal
p.r. adequate arithmetic in 1952. So Goédel didn’t himself have the theorem in our form. He
did, however, indicate a proof of the adequacy of a richer system, using the absolutely key
B-function trick: and it was then relatively (though only relatively!) easy to show that the
proof goes through even in such a weak system as Q.

101

Interlude: a very little about Principia

In the last Interlude, we gave a five-stage map of our route to Godel’s First
Incompleteness Theorem. The first two stages we mentioned (namely, looking at
Q and PA, then defining the p.r. functions and proving Q’s p.r. adequacy) are
now behind us. We have already mentioned one neat idea from Goédel’s epoch-
making 1931 paper, the S-function trick; but most of his proof is still ahead
of us — and at the end of this Interlude, we’ll review the stages that remain.
But before getting down to details, let’s pause to take in a little scene-setting
historical background.

(a) We'll say rather more about the historical context in a later Interlude
on Hilbert’s Programme. For now, let’s just say enough to explain at least the
title of Godel’s great paper, ‘On formally undecidable propositions of Principia
Mathematica and related systems I’.! What is being referred to here?

As we noted in Section 8.5, Frege aimed in The Basic Laws of Arithmetic to
reconstruct arithmetic on a secure footing by deducing from logic plus defini-
tions. But — in its original form — his overall logicist project flounders on Frege’s
fifth Basic Law, which postulates the existence of so many classes as to lead to
contradiction. And the fatal flaw that Russell exposed in Frege’s system was not
the only contradiction to beset early treatments of the theory of classes (Georg
Cantor had already found other paradoxes).

Various responses to these paradoxes were proposed at the beginning of the
twentieth century. One suggestion is, in effect, to keep much of Frege’s logic but
to avoid making the further move that gets him into disastrous trouble.

To explain: Frege’s general logical system involves a kind of type hierarchy.
It very carefully distinguishes ‘objects’ (things, in a broad sense) from prop-
erties from properties-of-properties from properties-of-properties-of-properties,
etc, and insists that every item belongs to a determinate level of the hierarchy.
Then the claim is — plausibly enough — that it only makes sense to attribute
properties which belong at level [to items at level [— 1. For example, the prop-
erty of being wise is a level 1 property, while Socrates is an item at level 0; and it
makes sense to attribute that property to Socrates, i.e. to claim that Socrates is
wise. Likewise, the property of having some instances is a level 2 property, and
it makes sense to attribute that property to the level 1 property of being wise,
i.e. to claim that the property of being wise has some instances. But you get
nonsense if, for example, you try to attribute that level 2 property to Socrates

IThat’s a roman numeral one at the end of the title! Gédel originally planned a Part II,
fearing that readers would not, in particular, accept the very briskly sketched Second Theorem
without further elaboration. But Gddel’s worries proved groundless and Part II never appeared.

102

A very little about Principia

and claim that Socrates has some instances.

Note that this strict stratification of items into types blocks the derivation of
the property analogue of Russell’s paradox about classes. The original paradox,
recall, concerned the class of all classes that are not members of themselves.
So now consider the putative property of being a property that doesn’t apply to
itself. Does this apply to itself? It might seem that the answer is that it does if
it doesn’t, and it doesn’t if it does — contradiction! But on Frege’s hierarchical
theory of properties, there is no real contradiction to be found here: (i) Every
genuine level [property belongs to some particular level of the hierarchy, and
only applies to items at the next level down. A level [property therefore can’t
sensibly be attributed to any level [property, including itself. (ii) However, there
is no generic property of ‘being a property that doesn’t apply to itself’ shared
by every property at any level. No genuine property can be type-promiscuous in
that way.

One way to avoid class-theoretic paradox, then, is to stratify the universe
of classes into a type-hierarchy in the way that Frege stratifies the universe of
properties. So suppose we now distinguish classes from classes-of-classes from
classes-of-classes-of-classes, and so forth; and on one version of this approach we
then insist that classes at level [can only have as members items at level [— 1.2
Frege himself doesn’t take this line: his disastrous Basic Law V in effect flattens
the hierarchy for classes and puts them all on the same level. However, Bertrand
Russell and Alfred North Whitehead do in a sense adopt the hierarchical view of
classes in their monumental Principia Mathematica (1910-13). They retain and
develop Frege’s stratification of properties and then link this to the stratification
of classes in a very direct way, by treating talk about classes as in effect just
lightly disguised talk about their corresponding defining properties. The resulting
system is — as far as we know — consistent.

(b) Having established their paradox-blocking logical framework, Russell and
Whitehead set out in Principia — like Frege in his Basic Laws, and following a
broadly similar strategy — to derive all of arithmetic from definitional axioms.?
Indeed, the project is even more ambitious: the ultimate aim (as Russell de-
scribed it a decade earlier) is to prove that

all mathematics deals exclusively with concepts definable in terms
of a very small number of logical concepts, and ... all its propo-
sitions are deducible from a very small number of fundamental
logical principles. (Russell, 1903, p. xv, my emphases.)

But let’s concentrate on the more modest but still ambitious project of deriving
just arithmetic from logic plus definitions.

2 An alternative approach — the now dominant Zermelo-Fraenkel set theory — is more liberal:
it allows sets formed at level [to contain members from any lower level. In the jargon, we get
a cumulative hierarchy. But this is still enough to block paradox.

3Compare the intuitively appealing project we described right at the outset, in Section 1.1.

103

Interlude

This isn’t the place to review the details and differences of the Frege-Russell
constructions, their successes and its failures. Still, for those who haven’t en-
countered this logicist project before, perhaps we should give a quick taster of a
few of the ingredients involved, so you get some sense of how the dish might be
cooked. So ...

i

ii.

iii.

iv.

104

We’ll say that the F's and Gs are equinumerous just in case there is a
one-one correspondence between the F's and the Gs. To take a hackneyed
example, the knives and forks are equinumerous if you can pair them up,
one to one, with none left over.

Now, the idea of there being a one-one correspondence between the F's
and the Gs surely is a logical one: it can be defined using quantifiers and
identity. In words: there’s such a correspondence if there is a relation R
such that every F' has relation R to a unique G, and for every G there is
a unique F' which has relation R to it. In symbols:

AR{Vz(Fz — 3ly(Gy A Rxy)) AVy(Gy — Jlz(Fz A Rxy))}

Here, ‘3!" is the familiar uniqueness quantifier (see Section 10.2, fn. 2); and
the initial quantifier is a second-order quantifier ranging over two-place
relations.

Intuitively, the number of Fs is identical to the number of Gs just in
case the F's and Gs are equinumerous in the logical sense just defined.
This claim is nowadays — with only tenuous justification — called Hume’s
Principle. Any attempt to identify the numbers should surely respect it.

Here’s another, equally intuitive, claim — call it the Successor Principle:
the number of F's is the successor of the number of Gs just in case there
is an object o which is an F', and the remaining things which are F-but-
not-identical-to-o are equinumerous with the Gs.

What though are numbers? Here’s a brute-force way of identifying them
while respecting Hume’s Principle. Take the number of F's to be the class
of all classes equinumerous with the class of F's, where classes are equinu-
merous, of course, if their members are equinumerous. Then, as we want,
the number of F's is identical with the number of Gs just if the class of all
classes with as many members as there are F's is identical with the class
of all classes with as many members as there are Gs, which holds just if
the F's and Gs are indeed equinumerous.

Taking this brute-force line on identifying numbers, we can immediately
define zero to be the class of all classes equinumerous with the non-self-
identical things. For assuredly, zero is the number of x such that = # .
And, on the most modest of assumptions, zero will then exist — it is the
class of all empty classes; but there is only one empty class since classes

A very little about Principia

with the same members are the same class; so zero is the class of the
empty class.

vi. And now — a very cunning trick! — let’s define one to be the class of all
classes equinumerous with the class containing just zero. Which makes it
the case that one is the number of z such that z = 0. And also makes
it the case that one is the successor of zero. Likewise, we can now go on
to define two to be the class of all classes equinumerous with the class
containing just zero and one. Which makes it the case that two is the
number of x such that + = 0V z = 1. We can go on to define three to be
the class of all classes equinumerous with the class containing just zero
and one and two. Which makes it the case that three is the number of x
such that t =0V =1V z = 2. And so it goes.

vii. Finally, we need an account of what the finite natural numbers are (for
note that our basic definition of the number of F's applies equally when
there is an infinite number of F's). Well, let’s say that a property F is
hereditary if, whenever a number has it, so does its successor. Then a
number is a natural number if it has all the hereditary properties that
zero has. Which in effect defines the natural numbers as those for which
the familiar induction principle holds.

We have a story, then, about what numbers themselves are. We have a story
about zero, one, two, three and so on. We have a story about what it is for one
number to be the successor of another (you can readily check e.g. that one is the
successor of zero and two the successor of one etc. by our definition of succession).
We have a story about which numbers are natural numbers (again, you can check
that one, two, three and so on are natural numbers on our definition). So suppose
that you buy the (big!) assumption that the talk about ‘classes’ in the story so
far still counts as logical talk, broadly construed. Then we are at least launched
on our way towards (re)constructing arithmetic in logical terms. And the logicist
hopes to continue the story in a way that would reveal all arithmetical truths to
be derivable (in a consistent system!) from what could be regarded as broadly
logical apparatus plus definitions.

Now, you might well wonder, for example, whether the cunning trick that gets
us the natural number sequence is a bit too cunning: you might think it smacks
of conjuring the numbers into existence. However, it would take us far to far
afield to pause to consider whether the logicist project already founders at this
point. I just hope to have said enough to give you a hint of how Frege and the
authors of Principia could sensibly think that there was a possible enterprise
here. But now enter Godel

(¢) What the First Incompleteness Theorem shows is that, despite its great
power, Russell and Whitehead’s construction still can’t capture even all truths
of basic arithmetic, at least assuming it is consistent. As Godel puts it in the
opening words of his paper:

105

Interlude

The development of mathematics toward greater precision has led,
as is well known, to the formalization of large tracts of it, so that
one can prove any theorem using nothing but a few mechanical
rules. The most comprehensive formal systems that have been set
up hitherto yet are the system of Principia Mathematica on the
one hand and the Zermelo-Fraenkel axiom system for set theory

. on the other. These two systems are so comprehensive that in
them all methods of proof today used in mathematics are formal-
ized, that is, reduced to a few axioms and rules of inference. One
might therefore conjecture that these axioms and rules of infer-
ence are sufficient to decide any mathematical question that can
at all be formally expressed in these systems. It will be shown be-
low that this is not the case, that on the contrary there are in the
two systems mentioned relatively simple problems in the theory of
integers which cannot be decided on the basis of the axioms. This
situation is not in any way due to the special nature of the systems
that have been set up, but holds for a very wide class of formal
systems; (Godel, 1931, p. 145)

Now, to repeat, Russell and Whitehead’s system is built on a logic that allows
quantification over properties, properties-of-properties, properties-of-properties-
of-properties, and so on up the hierarchy. Hence the language of Principia is
immensely richer than the language L4 of first-order PA (where we can only
quantify over individuals, and which has no way of representing properties-of-
properties-of-properties or higher types). It perhaps wouldn’t be a great surprise,
then, to learn that Russell and Whitehead’s modest collection of axioms doesn’t
settle every question that can be posed in their very rich formal language. What
18 a great surprise is that there are ‘relatively simple’ propositions which are
‘formally undecidable’ in Principia — by which Gédel means just that there are
wifs ¢ of basic arithmetic such that we can’t prove either ¢ or —¢ from the
axioms. Even if we buy all the assumptions of Principia, and can e.g. quiet our
worries about the appearance of a conjuring trick in constructing the number
series, we still don’t get what the logicist hoped to get, i.e. a complete theory of
arithmetic. And similarly, there are arithmetical propositions which are ‘formally
undecidable’ in ZF set theory.

(d) As Godel himself notes, his incompleteness proof only needs to invoke some
fairly elementary features of the full-blooded theories of Principia and of ZF, and
these features are equally shared by PA. So let’s now forget about Principia: it
will do little harm, for our purposes, to indulge henceforth in a historical fiction
and pretend that Godel was really talking about PA all along.

In what follows, there are also some other deviations from the details of his
original proof; but the basic lines of argument in the next three chapters are all
in his great paper. Not surprisingly, other ways of establishing his results (and
generalizations and extensions of them) have been discovered since 1931, and we

106

A very little about Principia

will be mentioning some of these later. But there remains a good deal to be said
for introducing the incompleteness theorems by something close to Godel’s own
arguments.4

()

Here, then, is an abbreviated reminder of the three stages in our Godelian

proof which remain ahead of us:

1.

Next, we look at Godel’s great innovation — the idea of systematically as-
sociating expressions of a formal arithmetic with numerical codes. We'll
stick closely to Godel’s original type of numbering scheme. With a coding
scheme in place, we can reflect key properties and relations of strings of
symbols of PA (to concentrate on that theory) by properties and relations
of their Goédel numbers. For a pivotal example, we can define the numeri-
cal relation Prfseq(m,n) which holds when m codes for a sequence of wifs
that is a PA proof, and n codes the closed wif that is thereby proved. And
Godel proves that such arithmetical properties and relations are primitive
recursive. (Chapter 12)

Since Prfseq(m,n) is p.r., it can be expressed — indeed, can be captured
—in PA. We can now use this fact to construct a sentence G that, given
the coding scheme, ‘says’ there is no number which is the Gédel number
of a PA proof of the wif which results from a certain construction — where
the wif which results is none other than G itself. So in effect G ‘says’
of itself ‘I am unprovable in PA’. We can then show that G is indeed
unprovable, assuming no more than that PA is consistent. So we’ve found
an arithmetical sentence which is true but unprovable in PA. (And given
a slightly stronger assumption than PA’s consistency, =G must also be
unprovable in PA.) Moreover, it turns out that this unprovable sentence
is in one respect a pretty simple one: it is in fact a II; wif. (Chapter 13)

As Godel notes, the true-but-unprovable sentence G for PA is in fact
generated by a method that can be applied to any other arithmetic that
satisfies some modest conditions. Which means that PA is not only incom-
plete but incompletable. Indeed, any properly axiomatized that contains
the weaker theory Q is incompletable. (Chapter 14)

So, to work ...!

4Here’s one small advantage of approaching things this way: it emphasizes that Godel’s
1931 incompleteness results do not depend on the general theory of what makes of a computable
function (a general theory which didn’t become settled until the later 1930s).

107

12 The arithmetization of syntax

We now introduce Gdédel’s simple but wonderfully powerful idea of associating
numbers (the ostensible subject matter of the wifs of a formal arithmetic) with
the wffs and proofs from a formal theory.

We'll fix on a particular coding scheme. This device enables us to correlate
PA’s expressions and proofs with code numbers. Then, corresponding to the
syntactic property of being a wif, we can define the numerical property WIf,
where Wff(n) holds when n is code number in our scheme for a wff of PA. And
it will be easy to see that Wff will be primitive recursive.

More excitingly, we can define the numerical relation Prfseq(m,n) which holds
just when m is the number in our scheme of a PA-proof of the sentence with
number n. Moreover, it will also be easy to see — at least in an informal way —
that this relation too is primitive recursive. So given what was shown in the last
chapter, Prfseq will itself be capturable in PA.

We can also introduce the idea of the diagonalization of a wif. Roughly speak-
ing, this is the idea of taking a wif ¢(y), and substituting its own code number
in place of the free variable. Now, think of a code number as a way of referring
to a wif. Then the operation of ‘diagonalization’ allows us to form a wiff that
(as it were) refers to itself. We will use this trick in the next chapter to form a
Godel sentence that encodes, roughly speaking, ‘I am unprovable in PA’.

These, then, are the basically straightforward ideas to carry away from this
chapter. However, we really ought to outline a proper proof of the key claim that
Prfseq is primitive recursive. That’s the business for the last section.

12.1 Godel numbering

We’ve already encountered one numbering device in Section 3.5; we mapped sym-
bols from the alphabet of a theory’s language to (base ten) digits, and associated
a concatenation of symbols with (the number expressed by) the corresponding
concatenation of digits. This sort of thing would work for our present purposes
too, but we’ll in fact use something more like Godel’s original numbering scheme.
We'll start by thinking about how to encode expressions of L 4.

Suppose that our version of L4 has the usual logical symbolism (connectives,
quantifier symbols, identity, brackets), and symbols for zero and the successor,
addition and multiplication functions: associate all those with odd numbers (dif-
ferent symbol, different number, of course). L 4 also has an inexhaustible supply
of variables, which we’ll associate with even numbers. So, to pin that down, let’s
fix on this preliminary series of symbol codes:

108

Godel numbering

- AV - < V¥V I = () 0 S 4+ x x vy z
1 3 5 7 9 11 13 15 17 19 21 23 25 27 2 4 6

Our Goédelian numbering scheme for expressions e is now defined in terms of
this table of preliminary symbol codes as follows:

Let e be a sequence of k + 1 symbols sg, s, So,...,S,. Then its
Godel number (g.n.) is calculated by taking the symbols’ correlated
code-numbers, using them in turn as exponents for the first k£ + 1
prime numbers g, 71, 72, - . . , Tk, and then multiplying the results.

For example:

i. The single symbol ‘S’ has the g.n. 223 (the first prime raised to the ap-
propriate power as read off from our correlation table of symbol codes).

ii. The standard numeral SSO has the g.n. 223 .- 322 . 521 (the product of the
first three primes raised to the appropriate powers).

iii. The wif
Jy (S0 +y) =SSO
has the g.n.
913 g4 517 723 11211325174 .1919.9315.9923 . 3123 . 3721

That last number is, of course, enormous. So when we say that it is elementary
to decode the resulting g.n. by taking the exponents of prime factors, we don’t
mean that the computation is quick and easy. We mean that the computational
routine required for the task — namely, repeatedly extracting prime factors —
involves no more than the mechanical operations of school-room arithmetic.

Three remarks. First, we’ve earlier allowed the introduction of abbreviatory
symbols into PA’s language (for example, ‘<’ and ‘3’); take the g.n. of an ex-
pression including such symbols to be the g.n. of the unabbreviated version.

Second, we will later be assuming there are similar numbering schemes for
the expressions of other theories with possibly different languages L. We can
imagine each of these numbering schemes to be built up in the same way but
from a different table of preliminary symbol codes to cope with the different
basic symbols of L. We won’t spell out the details.

Third, we are going to be introducing numerical properties like Wff and prov-
ing them them to be primitive recursive. But note, W(f(n) is to hold when n is
the code number of an Ly wff according to our Gddel numbering scheme. How-
ever, our numbering scheme was fairly arbitrarily chosen: we could, for example,
shuffle around the preliminary assignment of basic symbol codes to get a dif-
ferent numbering scheme, or (more radically) we could use a scheme that isn’t
based on powers of primes. So could it be that a property like Wff be p.r. when

109

12. The arithmetization of syntax

defined in terms of one arbitrarily chosen numbering scheme and not p.r. when
defined in terms of some equally sensible scheme?

No. Arguing informally, suppose S; and Ss are sensible numbering schemes.
And suppose S; assigns code nj to a certain L4 expression, and Sy assigns code
ng. Then consider the process of decoding my to find the original expression
and re-encoding to get mo. If the coding schemes are anything at all like our
simple-minded numbering device in Section 3.5 or the Godelian scheme we’ve
just introduced, then this process will involve a simple computation without any
open-ended loopings. The computation can be done just using ‘for’ loops. Hence,
there will be a primitive recursive function which maps ny to nq, and similarly
there will be another p.r. function which maps ny back to ns. So, in the light
of that informal argument, we can make the following formal stipulation. We’ll
say that a system of code numbering S is acceptable if there is a p.r. function
tr which ‘translates’ code numbers under our official Gédelian scheme into code
numbers under scheme S, and another reverse function tr—! which converts code
numbers under scheme S back into code numbers under our scheme.

With that stipulation, it is immediate that a property like Wff defined using
our scheme is p.r. if and only if the corresponding property Wiffs defined using
scheme S is p.r., for any acceptable scheme S. Why? Well, let the character-
istic functions of Wff and Wffs be wff and wffs respectively. Then wffs(n) =
tr(wff(n)), hence wffs will be p.r. by composition so long as wff is p.r.; and
similarly wff (n) = tr=1 (wffs(n)), hence wff is p.r. if wffs is.

In sum, given our stipulation of what counts as an acceptable coding scheme,
whether a property like Wff is p.r. is not dependent on our particular choice of
scheme.

12.2 Coding sequences

As we've already flagged up, the relation Prfseq(m,n) will be crucial to what
follows, where this relation holds just when m codes for an array of wiffs that
is a PA proof, and n codes for the closed wil' (sentence) that is thereby proved.
But how do we code for proof-arrays?

The details will depend on the kind of proof-system we’ve adopted for our
version of PA. To keep things simple, let’s assume that the proof-system is a
rather old-fashioned linear one (not a tree system), so proof-arrays are simply
sequences of wifs. Then a nice way of coding these is by what we’ll call super
Godel numbers. So, given a sequence of PA wifs or other expressions

€0,€1,€2,...,€En

we first code each e; by a regular g.n. g;, to yield a resulting sequence of regular
Godel numbers

90,91,92,---,9n

110

Prfseq is p.r.

We then encode this sequence of regular Goédel numbers into a super g.n by
repeating the trick of taking powers of primes to get a single super g.n.

g0 .391 .F929
290 .39t .5 o

Hence, decoding a super g.n. involves two steps of taking prime factors: first find
the exponents of the prime factors of the super g.n.; then treat those exponents as
themselves regular g.n., and take their prime factors to arrive back at a sequence
of PA expressions.!

We can now define more carefully the relation Prfseq which is going to concern
us so much:

Prfseq(m,n) holds just if m is the super g.n. of a sequence of wifs
that is a PA proof of a closed wif with regular g.n. n.

12.3 Prfseq is p.r.

We now need to convince ourselves of
Theorem 17 Prfseq(m,n) is primitive recursive.

And we have a much easier time of it than Godel did. Writing at the very
beginning of the period when concepts of computation were being forged, he
certainly couldn’t expect his audience to take anything on trust about what was
or wasn'’t ‘rekursiv’ or —as we would now put it — primitive recursive. He therefore
had to do all the hard work of explicitly showing how to define Prfseq(m,n) by
a long chain of definitions by composition and recursion.

However, assuming only a very modest familiarity with the ideas of algorithms
and computer programs, we can perhaps short-cut all that effort and be entirely
persuaded by the following:

A wvery sketchy argument To determine whether Prfseq(m,n), proceed as fol-
lows. First doubly decode m: that’s a mechanical exercise. Now ask: is the result
a sequence of PA wffs? That’s algorithmically decidable (since it is decidable
each separate string of symbols is a wif). If it does decode into a sequence of
wifs, ask: is this sequence a properly constructed proof? That’s decidable too
(check whether each wif in the sequence is either an axiom or is an immedi-
ate consequence of previous wifs by one of the rules of inference of PA’s logical
system). If the sequence is a proof, ask: is the last wff in the sequence, the wif
proved, a closed wif — i.e. does it lack free variables? That’s decidable. If it is
a sentence, ask: does that final wif have the g.n. n? That’s again decidable. So,
putting all that together, there is a computational procedure for telling whether
Prfseq(m,n) holds.

LOn our way of doing things, certain numbers can be both the regular g.n. of one expression
and the super g.n. of a sequence of other expressions. No matter. We always make it clear in
context whether a number is to be treated as one sort of code or the other.

111

12. The arithmetization of syntax

Moreover, at each and every stage, the computation involved is a straightfor-
ward, bounded procedure that doesn’t involve any open-ended search. In other
words, suppose that we set out to construct a program for determining whether
Prfseq(m,n). Then we will be able to do this using programming structures no
more exotic than bounded ‘for’ loops (in particular, we don’t need to use any
of those open-ended ‘do while’/‘do until’ structures that take us outside the
bounds of the primitive recursive). Now, most of the computations we’ve de-
scribed involve shuffling strings of symbols; but under the bonnet, so to speak,
that’s really just more operations on binary numbers. And if the whole computa-
tion can therefore be done ultimately with ‘for’ loops operating on numbers, the
numerical relation which is decided by the whole procedure must be primitive
recursive (see Section 9.4). X

That is indeed sketchy, but the argument may well strike you as quite convincing
enough. And if you are therefore happy to take it on trust that we can make all
this rigorous, that’s just fine: if you aren’t, then Section 12.7 begins to outline a
proper proof.

12.4 Some cute notation

Before proceeding, let’s introduce a really pretty bit of notation. Assume we are
dealing with a theory couched in some language L which has standard numerals.
And assume that we have chosen some system of Gédel-numbering. Then

If ¢ is an L-expression, then we’ll use ‘"¢ in our logicians’ aug-
mented English to denote p’s Gédel number.

Borrowing a species of quotation mark is appropriate because the number "¢
can be thought of as referring to the expression ¢ in our coding scheme.

We are also going to use this very same notation as a placeholder for numerals
inside our formal language, so that (in our second usage)

In abbreviated L-expressions, "V is shorthand for L’s standard
numeral for the g.n. of .

In other words, inside formal expressions ‘"™ stands in for the numeral for the
number "™,
A simple example to illustrate:

1. ‘SS0’is an L4 expression, the standard numeral for 2.
2. On our numbering scheme "SS07, the g.n. of ‘SS0’, is 22! - 321 . 519,

3. So, by our further convention, we can also use the expression ‘"SS0™"
inside (a definitional extension of) L 4, as an abbreviation for the standard
numeral for that g.n., i.e. as an abbreviation for ‘SSS...S0” with 22!.32%.
519 occurrences of ‘S’!

112

The idea of diagonalization

This double usage — outside a formal language to denote a g.n. of a formal
expression and inside a formal language to take the place of a standard numeral
for that g.n. — is a fairly common convention and should by this stage cause no
confusion at all.

12.5 The idea of diagonalization

Godel is going to tell us how to construct a formal wif G in PA that encodes ‘I
am unprovable’. We now have an inkling of how he can do that: wffs can contain
numerals which refer to Gédel-numbers which are in turn correlated with wifs.

So Godel’s construction involves taking a particular open wif that we’ll ab-
breviate U, or by U(y) when we want to emphasize that it contains just ‘y’ free.
This wif has g.n. "U™. And then Godel substitutes the numeral for U’s g.n. for
the free variable in U. So the key step involves forming the wif U("U™).

This involves something quite closely akin to the ‘diagonal’ constructions we
encountered in e.g. Sections 5.2 and 9.5. In the first of those cases, we matched
the index of a wif ¢,,(x) (in an enumeration of wifs with one free variable) with
the numeral substituted for its free variable, to form ¢, (n). In the second case,
we matched the index of a function f,, (in an enumeration of p.r. functions) with
the number the function takes as argument, to form f,(n). Here, in our Godelian
‘diagonal’ construction, we match U’s Gédel number — and we can think of this
as indexing the wff in a list of wffs — with the numeral substituted for its free
variable, and this yields the Gédel sentence G.

Now just note the following additional point. Given the wif U, it can’t matter
much whether we do the diagonalization construction by forming (i) U("U7) (as
Godel himself does) or by forming (i) Jy(y = "U7 A U(y)). For (i) and (ii) are
trivially equivalent. But it makes a few things go very slightly easier if we do
things the second way.

So with that motivation, here’s an official definition:?

The diagonalization of ¢ is Jy(y =" A).

12.6 Gdl and diag and are p.r.

(a) Diagonalization is, evidently, a very simple mechanical operation on expres-
sions. So there will be a corresponding simple computable function dealing with
numerical codes for expressions which ‘tracks’ the operation. In other words,

There is a p.r. function diag(n) which, when applied to a num-
ber n which is the g.n. of some wff, yields the g.n. of that wff’s
diagonalization.

2By the way there is no special significance to using the variable ‘y’ for the free variable
here! But we’ll keep this choice fixed, simply for convenience. Note our official definition of
diagonalization applies to any wiff, whether it contains ‘y’ free or not.

113

12. The arithmetization of syntax

Another very sketchy argument Decode the g.n. n ="y to get some expression
. Then form its diagonalization, Jy(y = "¢ A). Then work out the g.n. of
the result. This very simple mechanical procedure to compute diag(n) doesn’t
involve any unbounded searches. So we again we will be able to program the
procedure using just ‘for’ loops. Hence diag is p.r. X

(b) Now consider the following relation which will play a starring role in the
next chapter:

Gld(m,n) =get Prfseq(m, diag(n))
When does this relation hold? Evidently,

Gld(m,n) holds when m is the super g.n. for a PA proof of the
diagonalization of the wif with g.n. n.

Again, it is easy to see that Gld is intuitively decidable by a computation without
unbounded searches: so we’'d expect it to be primitive recursive. Given that
Prfseq and diag are indeed p.r., GId is p.r. by composition.?

12.7 Proving that Prfseq is p.r.

We have given a very informal but hopefully persuasive argument for Theo-
rem 17, the claim that Prfseq is primitive recursive. But Godel, as we said, gives
a cast-iron proof of this by showing how to define a sequence of more and more
complex functions and relations by composition and recursion. Inevitably, this
is a laborious job: Gddel does it with masterly economy and compression but,
even so, it takes him 45 steps of function-building to show that Prfseq is p.r.

We’ve in fact already traced some of the first steps in Section 9.7. We showed,
in particular, that extracting exponents of prime factors — the key operation
used in decoding Go6del numbers — involves the p.r. function ezp. We now need
to keep going in the same vein, defining ever more complex functions. What I
propose to do here is fill in the next few steps moderately carefully, and then
indicate much more briefly how the rest go. This should be just enough to give
you a genuine feel for Godel’s demonstration and convince you that it can be
completed, without going into too much horrible detail.*

However, although we are only going to give a partial proof that Prfseq is p.r.,
by all means skip even this cut-down discussion, and jump to the next chapter
where the real excitement starts. You’ll miss nothing of wider conceptual interest.
Godel’s Big Idea is that Prfseq is p.r.: checking that this Big Idea is right just
involves cracking some brain-teasers. (Look at it like this. We argued on general
grounds in the Section 12.3 that Prfseq is p.r.: hence there must be a LOOP

3Strictly: the characteristic function of Gld is definable by composition from the charac-
teristic function of Prfseq and the function diag. Check that claim!

4Masochists and ‘completists’ are quite welcome to struggle through e.g. (Mendelson, 1997,
pp. 193-198).

114

Proving that Prfseq is p.r.

program for determining whether Prfseq(m,n) holds for particular numbers m,
n. This section in effect begins to describe how to write the program. Which is
fun in its way, if you like that kind of thing. But once you are are convinced
that the programming tricks can be done, you can cheerfully forget how they
are done.)

Here’s a local road-map. First, in (a), we introduce a p.r. function that takes us
from the codes of two expressions to the code for their concatenation. This plays
a key role in what follows. Then (b) we put this function to work in a preliminary
way. In (c) we prove that the relation Termseq is p.r., where Termseq(m,n) holds
just when m is the super g.n. of a sequence of expressions which show how the
expression with g.n. n can be built up from ‘0’ and/or variables using successor,
addition and multiplication. In other words, Termseg(m,n) holds when m codes
the constructional history of the term with code n.

Now (d) this idea of coding up the constructional history of a term can mir-
rored by the idea of coding up the constructional history of a wif, and then (e)
mirrored again by the idea of coding up a sequence of wifs that forms a proof.
And that’s what we need to show that Prfseq(m,n) is indeed primitive recursive.

(a) The concatenation function If you are still reading, first quickly revisit
Section 9.7. Recall two facts in particular. Keeping the old numbering,

6. The function exp(n,) is p.r., where this returns the exponent of 7; in the
prime factorization of n.

7. The function len(n) is p.r., where this returns the number of distinct
prime factors of n.

Note that if n is the g.n. of an expression e which is a sequence of symbols
80,81, 82, - - - , Sk, then ezp(n, i) gives the symbol code of s;. And if n is the super
g.n. of a sequence of wifs or other expressions eq, e1, €9, ..., e, then exp(n,i)
gives the g.n. of e;. Further, note that if n is a g.n., then it consists in multiples
of the first len(n) primes (i.e. the primes from 7y to mjep(n)—1)-

We will now add another key p.r. function to our list:

8. There is a concatenation function such that (i) m x n is the g.n. of the
expression that results from stringing together the expression with g.n.
m followed by the expression with g.n. n, and (ii) this ‘star’ function is
primitive recursive.®

Proof for (8) Suppose m is the g.n. of the expression ‘Jy’; i.e. m = 2. 3% and
n is the g.n. of 'y = 0’, i.e. n = 2% - 313 . 519 Then we want m % n to deliver the
g.n. of the concatenation of those two expressions, i.e. the g.n. of ‘Jyy = 0’, so
we want mxn =21 .34 54. 713 . 1119,

Look at the pattern of exponents here and generalize. Suppose therefore that
m and n are Godel numbers, and that len(m) = j and len(n) = k. We want

5The use of the star symbol is traditional.

115

12. The arithmetization of syntax

the function m x n to yield the value obtained by taking the first j + k primes,
raising the first j to powers that match the exponents (taken in order) of the
J primes in the prime factorization of m and then raising the next k primes to
powers that match the k exponents in the prime factorization of n. Then m x n
will indeed yield the g.n. of the expression which results from stringing together
the expression with g.n. m followed by the expression with g.n. n.

Now recall that bounded minimization keeps us in the sphere of the primitive
recursive (Section 8.5(b)). It is then readily seen we can define a p.r. function
m *n which applies to Gédel numbers in just the right way. We put®

mxn = (pr < By, ,)[(Vi < len(m)){exp(z,i) = exp(m,i)} A
(Vi < len(n)){exp(x,i+len(m)) = exp(n,i)}]

where B,, ,, has to be a suitable primitive recursive function whose values keep
the minimization operator finitely bounded. B, , = ngz is certainly big

enough to cover all eventualities. X

(b) The concatenation function in use Here’s an introductory pair of mini-
examples of the star function at work. Suppose a is the g.n. of the wif Ixx = S0;
then "= x a is the g.n. of =IxSx = 0. Suppose b is the g.n. of ‘SO = 0’. Then
TMxa*"=Txb*")7is the gn. of (IxSx =0 — SO = 0).

Note, by the way, that ((m xn) xo0) = (m % (n % 0)), which is why we can
suppress internal bracketing with the star function.

And here’s a couple of results that we can easily prove now we have the star
function to hand:

9. The function num(n) whose value is the g.n. of the standard numeral for
n is p.r.

10. The function diag(n) is p.r.

Proof for (9) The standard numeral for Sn, for n > 0, is of the form ‘S’ followed
by the standard numeral for n. So we have

num(0) =07 =219

num(Sx) = "STx num(x) = 22t x num(z)
Hence num is primitive recursive. X

Proof for (10) The diag function maps n, the g.n. of ¢, to the gn. of ¢’s
diagonalization Jy(y = "¢ A ¢). So we can put

diag(n) ="Fy(y =" * num(n) * "ATxn*x)7
where num is as just defined. X

(¢) Showing Termseq(m,n), Term(n), and Atom(n) are p.r. Formal proofs in
PA are sequences of wifs; wifs are built up from atomic wifs. And since the only

6 A reality check: we are here doing informal mathematics. If we use the familiar quantifier
and conjunction symbols, that is for brevity’s sake. These aren’t formal wifs! Cf Section 4.1.

116

Proving that Prfseq is p.r.

primitive predicate of PA’s language L 4 is the identity relation, the atomic wifs
are all expressions of the kind ‘c = 7’ where o, 7 are terms. So let’s focus first
on the definition of terms.

A term is either ‘0’ or a variable, or is built up from those using the function-
symbols ‘S’, ‘+’, ‘X’ — to give us, for example, the complex term (SO x (SS0 + x))
(see Section 4.3, (a)).

Now, let’s say that a ‘constructional history’ for a term, or a term-sequence,
is a sequence of expressions (79, 71,...,7,) such that each expression 74 in the
sequence either (i) is ‘0’; or else (ii) is a variable; or else (iii) has the form
St;, where 7; is an earlier expression in the sequence; or else (iv) has the form
(i + 1), where 7; and 7; are earlier expressions in the sequence; or else (v) has
the form (7; x 7;), where 7; and 7; are earlier expressions. Since any well-formed
term must have the right kind of constructional history, we can adopt as our
official definition: a term is an expression which is the last expression in some
term-sequence.

That last observation motivates our being interested in the particular nu-
merical relation Termseq(m,n), which holds when m is the super g.n. for a
term-sequence, and n is the g.n. of the last expression in that term-sequence.
And we can fairly readily prove the following results:

11. The property Var(n) which holds when n is the g.n. of a variable is p.r.
12. The relation Termseq(m,n) is p.r.
13. The property Term(n) which holds when n is the g.n. of a term is p.r.

14. The property Atom(n) which holds when n is the g.n. of an atomic wif is
p.I.

Proof for (11) We just note that
Var(n) < (3z < n)(n = 2%)

For recall, the symbol code for a variable, on our scheme, always has the form
2z, and the g.n. for a single expression is 2 to the power of the symbol code. The
exponential function is p.r., and a definition by bounded quantification preserves
primitive recursiveness, so Var is p.r. too.” X

Proof for (12) We can define Termseq by something of the following shape:

Termseq(m,n) =qet exp(m,len(m) —1) =n A
(VE < len(m)){... exp(m,k) ...}

7Of course, this simple definition of Var depends on our particular coding scheme, and
on our treating all variables as single ‘symbols’ even if in fact built up from a more primitive
alphabet by using primes or whatever: alternative methodical schemes will generate other p.r.
functions.

117

12. The arithmetization of syntax

The first conjunct on the right ensures that, in the sequence with super g.n. m,
the last expression indeed has g.n. n. We now need to fill out the curly brackets
in the second conjunct in a way that reflects the fact for each k < len(m),
exp(m, k) — the g.n. of 7, in our putative term-sequence — is the g.n. of an
expression satisfying one of the five defining conditions for belonging to a term-
sequence. So, in those curly brackets, we therefore need to say that exp(m, k) is
either

(i) the g.n. of ‘0, so exp(m, k) ="07,
or (ii) the g.n. of a variable, so Var(ezp(m, k));
or (iii) the g.n. of ‘S7;” where 7; occurs earlier in the term sequence, so
(3 < k)(eap(m, k) = 7S eap(m,)
or (iv) the g.n. of ‘(7; + 7;)” where 7; and 7; occur earlier, so
(Fi < k)(Fj < k)(exp(m, k) =" ("% exp(m, i) x "+ x exp(m, j) x")7);
or (v) the g.n. of {(7; x 7;)" where 7; and 7; occur earlier, so
(Fi < k)(Fj < k)(exp(m, k) =" ("% exp(m,i) x"x " x exp(m, j)x")7)

All the clauses are p.r. conditions, so their disjunction is a p.r. condition, so
Termseq is p.r., as we wanted to show. X

Proof for (13) Since a term has to be the final member of some term sequence,
we can give the following definition:

Term(n) =qer (3x < By,) Termseq(xz,n)

where B, is a suitably large bound. Given a term with g.n. n, and hence with
I = len(n) symbols, its term-sequence will be at most [long: so the super g.n. of
any term-sequence constructing it must be less than B, = (m}")!. X

Proof for (14) In PA, the only atomic wifs are expressions of the kind 71 = 75.
So put

Atom(n) =des
(Fz <n)By < n)[Term(x) A Term(y) A n = (xx"="xy)]

It is then immediate that Atom(n) is p.r. X

(d) Showing Formseq(m,n), Wff(n), and Sent(n) are p.r. We can now proceed
to define the idea of a formula-sequence analogously to the idea of a term-
sequence. So: a formula-sequence is a sequence of expressions (@g, ©1,--.,®©n)
such that each ¢y in the sequence is either an atomic wif or built from previous
wifs in the sequence by using a connective or by prefixing any quantifier.® And
we’ll define Formseq(m,n) to be true when m is the super g.n. of a formula-
sequence, and n is the g.n. of the last expression in that sequence. This too is
primitive recursive. And to show that, we can obviously use exactly the same

8 A technical remark: things go easiest here if we give L4 a liberal syntax which allows wifs
with redundant quantifiers which don’t bind any variables in their scope.

118

Proving that Prfseq is p.r.

general strategy as in our proof that Termseq is p.r. We won’t spell out the
boring details here (we can explore how to do this in the exercises).

Since any wif by definition will be the final formula in a formula sequence,
then — again by choosing a new suitable bound B, — we can define the p.r.
property of numbering a wit:

Wi (n) =get (3z < B,,)Formseq(z,n).

And with a few more wrinkles, we can also give a similar construction to show
that Sent is p.r., where Sent(n) holds just when n is the g.n. of a sentence, i.e.
a closed wif with no free variables. Again we won’t give the tedious details here.

(e) Showing Prfseq(m,n) is p.r. And now the end is in sight: we can now outline
a proof that Prfseq is primitive recursive as claimed.

The details, though, will depend heavily on the type of proof system we are
dealing with. But remember, in order to keep things particularly simple, we’re
supposing that we have adopted a very old-fashioned linear proof-system for
PA (which therefore doesn’t allow temporary suppositions and sub-proofs). In
this kind of system there are logical axioms — e.g. instances of the schemas
(o ANp) —) and (V€p(E) — (7))’ — and we can manage with just one rule
of inference, modus ponens.” We can then define a PA proof as a sequence of
wifs, each one of which is either an axiom (a PA axiom or a logical axiom), or
follows from previous wffs in the sequence by modus ponens.

Now, the relation Modusponens(m,n, o) — which holds when the wff with g.n.
o follows from the wffs with g.n. m and n by modus ponens — is obviously p.r.,
for it is immediate that Modusponens(m,n, o) just when

m="(Txnx"="xo0x")7 A Wif(n) N Wff(o).

It’s trickier to prove the property Aziom(n) is p.r., where Axziom(n) holds
just when n numbers a wif which is an axiom (whether a specifically arithmeti-
cal axiom of PA or a logical axiom). That’s because, in order to deal with the
instances of the logical axiom schemas for quantification, we’ll have to arith-
metize facts about which variables are free in which wifs. And in order to deal
with the arithmetical induction axioms, we’ll need to be able to handle all the
numbers that code for the universal closures of instances of the induction axiom.
We won’t go into details (again we’ll explore in the exercises how we might go
about the task).

But if we can assume that Aziom(n) is p.r., it is easy to get to our final target
result: the relation Prfseq(m,n) is indeed p.r.:

Proof for the main result We echo the pattern of our definition of Termseq:

Prfseq(m,n) =4ot exp(m,len(m) — 1) = n and Sent(n) and also
VEk < len(m), exp(m, k) — i.e. the g.n. of the k-th expression of the
sequence — is either

9As in the system QS of (Hunter, 1971, pp.167-168).

119

12. The arithmetization of syntax

(i) the g.n. of an axiom, so Aziom(exp(m,k));
or (ii) the g.n. of a wif that follows from two earlier wffs by MP, so
(3i < k)(3j < k) Modusponens(exp(m,i), exp(m, j), exp(m, k));

Which is p.r. since it is built up in p.r. ways from p.r. components. X

(f) Provability So much, then, for our promised outline of the stages of a proof
that Prfseq(m,n) is primitive recursive. One comment before leaving this, how-
ever. Prfseq(m,n) holds when m is the super g.n. of a proof of the wff with g.n.
n: so Prov(n) =get Jv Prfseq(v,n) holds when the wif with g.n. n is provable.
Note, though, that we can’t read off from n some upper bound on the length of
possible proofs for the wif with g.n. n. So we can’t just define the provability
property by some bounded quantification of the kind (Jv < B)Prfseq(v,n). If
we could, then the provability probability would be p.r.: but it isn’t — as we will
show in Section 15.6.

120

13 PA is incomplete

The pieces we need are at long last all in place. So in this chapter we can finally
give Godel’s quite beautiful construction which delivers a true-but-unprovable
sentence for PA. Then in the next chapter, we show how this result can be
generalized to prove that PA — and any other formal arithmetic satisfying very
modest constraints — is not only incomplete but incompletable. Our discussion
in these two chapters fairly closely follows Godel’s own treatment in 1931. In
Chapter 15 we’ll dig a bit deeper and give a slightly more modern take on
Godel’s proof: but I think it is well worth taking the historical route first.

13.1 Constructing G

We've already trailed the headline news: Gédel constructs a PA sentence G that
‘says’, when read in the light of the Godel coding, ‘I am unprovable in PA’. But
how does he do this?

First, two reminders. Recall (from Section 12.5):

The diagonalization of ¢ is Jy(y ="¢' A), where ‘"™ here
stands in for the numeral for ¢’s g.n.

If p is a wif p(y) with ‘y’ as its sole free variable, then ¢’s diagonalization is
trivially equivalent to ¢("p™).
Next, recall another definition (from Section 12.6):

Gld(m,n) is true when m is the super g.n. for a PA proof of the
diagonalization of the wff with g.n. n.

As we saw, Gld can be simply defined by composition from the p.r. relation
Prfseq and the p.r. function diag, so is itself primitive recursive. Hence by The-
orem 14 (Section 11.2), there must be an open wff of Q, and hence of PA, which
expresses it. Indeed, by the stronger Theorem 16 (Section 11.6), there must be
an open wif of Q, and hence of PA, which captures it as a function.

More precisely, there will be a wif Gdl(x,y) built up by a chain of definitions
that recapitulate the relation’s — or rather, its characteristic functions’s — p.r.
definition. This wif, with definitions unpacked, will be ;. And it will both
express Gld and capture it as a function.

Consider, then, the PA wff

Vx—Gdl(x,y)

Abbreviate this wif as U — or as U(y) when we want to stress that it contains
just ‘y’ free. And now diagonalize U:

121

13. PA is incomplete

Jy(y ="UTAU(y))

This is the ‘Gddel sentence’ for PA which we’ve been aiming to construct: we’ll
abbreviate it G.

We immediately have the trivial logical equivalence of G with U("U™). Or
unpacking that a bit,

G is equivalent to Vx—GdI(x,"U™).

Consider, then, what it takes for G to be true, in the light of the fact that the
formal predicate Gdl expresses the numerical relation Gld. By our equivalence,
G is true if and only if there is no number m such that GIld(m,"U™). That is to
say, given the definition of Gld, G is true if and only if there is no number m
such that m is the code number for a PA proof of the diagonalization of the wff
with g.n. "U™. But by construction, the wif with g.n. "U™ is the wif U; and its
diagonalization is G. So, G is true if and only if there is no number m such that
m is the code number for a PA proof of G. But if G is provable, some number
would be the code number of a proof of it. Hence G is true if and only if it is
unprovable in PA. Wonderful!

13.2 Interpreting G

It is often claimed that G is not merely true if and only if unprovable in PA,
but it actually ‘says’ that it is unprovable in PA: indeed, for vividness, we have
occasionally put it that way. But we must be very cautious here!

The wif G is just another sentence of PA’s language L 4, the language of basic
arithmetic. It is an enormously long wif involving the first-order quantifiers,
the connectives, the identity symbol, and ‘S’, ‘+’ and ‘x’, which all have the
standard interpretation built into L4.! And on that interpretation, G is strictly
speaking a complex claim about the results of ordinary arithmetical operations,
no more and no less.

To emphasize the point, the semantics built into L 4 tells us that the various
terms in G (numerals and numerical function expressions) have numbers as val-
ues. In other words, their values aren’t non-numerical items like, e.g., linguistic
expressions. Hence, in particular, G does not straightforwardly refer to itself.

So what is going on if we summarily claim that G ‘says’ it is unprovable,
when read in the light of Gédel coding? Note that this is not to invoke some

IThe wff G embeds the standard numeral for U(y)’s Gédel number: and given our particular
numbering scheme this number will be huge. So writing out G in pure L o without abbreviations
would not be a practical possibility.

How significant is this fact? Well, the situation is actually not at all unusual in mathematics.
Given our limited cognitive powers, we need to use chains of abbreviations all the time, and we
very often work with propositions whose official definitional unpacking into the relevant ‘basic’
terms would be far too long to grasp. This general fact certainly isn’t without its interest and
its problematic aspects: for related discussion, see e.g. Isles (1992). However, the general fact
cuts right across mathematics. So we aren’t going to worry for the moment about its specific
application to the Godel sentence G.

122

G is undecidable in PA: the semantic argument

radical re-interpretation of its symbols (for doing that would just make the claim
quite trivial: if we are allowed radical re-interpretations — like spies choosing to
borrow ordinary words for use in a secret code — then any string of symbols can
be made to mean anything). No, it is because the symbols are still being given
their standard interpretation that we can recognize that Gdl (when unpacked)
will express Gld, given the background framework of Godel numbering which
is involved in the definition of the relation Gld. And therefore, knowing about
the Godel numbering, we can recognize from its construction that G will hold
when no number m is such that Gld(m,"U™). So we can then immediately see,
without further argument, that G is constructed in such as way as to make it
true just when it is unprovable in PA. That is the limited sense in which it ‘says’
— with heavy scare quotes — that it is unprovable.

13.3 G is undecidable in PA: the semantic argument

The argument that G is ‘formally undecidable’ now runs along the lines we
sketched right back in Section 1.2.

Assume that the axioms of PA are true on the standard interpretation built
into PA’s language L4 (which they are, of course). We know that PA’s logic —
i.e. some version of classical first-order logic — is necessarily truth-preserving.
Hence all its theorems are true: PA proves no falsehoods. But if G (which is true
if and only if it is unprovable) can be proved in PA, the theory does prove a false
theorem. Contradiction! Hence, G is not provable in PA. Hence G is true on the
standard interpretation. So —G is false. Hence =G cannot be proved in PA either.
In Godel’s words, G is a ‘formally undecidable’ wif of PA. So that gives us

Theorem 18 If PA has true axioms, then there is a closed wff ¢
of La such that neither PA + ¢ nor PA F —p.

And if we are happy with the semantic assumption that PA’s axioms are true
on interpretation, the argument for incompleteness is as simple as that, once we
have constructed G.2

Now, for reasons that will become clearer when we consider Hilbert’s pro-
gramme and related background in a later Interlude, it was very important to
Godel that incompleteness can be proved without supposing that PA is sound: as
he puts it, ‘purely formal and much weaker assumptions’ suffice. However, the
further argument that shows this is a bit tricksier (especially when we move to
Rosser’s enhanced version of the argument in Section 14.4, which is needed to
get the best non-semantic analogue for Theorem 18).

So don’t lose sight of our much simpler ‘semantic’ argument for incomplete-
ness.

2Note, then, that Theorem 18 only requires us to be able to construct G via a wff which
expresses Gdl. We haven’t yet invoked the stronger claim that the numerical relation Gdl can
be captured in PA.

123

13. PA is incomplete

13.4 ‘G is of Goldbach type'

Before showing how ‘weaker assumptions suffice’, let’s pause to remark that the
unprovable Godel sentence G, while in one way horribly complex (when spelt out
in unabbreviated L4), is in another way very simple. For the open wif Gdl(x,y)
is 31, and it expresses a p.r. relation. So Gdl(x,"U7) is also ¥, and expresses a
p.r. property. So its negation —Gdl(x,"U7) is II;: and that also expresses a p.r.
property, since the negation of a p.r. property is still p.r. (see Section 9.7). Hence
¥x—Gdl(x,"U7) is IT; too, and is a universal generalization about a p.r. property.
Its logical equivalent G is therefore also II;.

Which means that the Godel sentence G is on a par with e.g. a natural for-
mal statement of Goldbach’s conjecture, which is another II; wif and so is also
equivalent to a universal generalization about a p.r. property.3

So rather than talking of II; wifs, then, we can perhaps make things more
vivid by talking of a proposition being of Goldbach type, meaning that it is
equivalent to universal generalization about a p.r. property or relation. Then we
can strengthen our statement of Theorem 18, to give us

Theorem 18* IfPA has true axioms, then there is a closed L o-wff
@ of Goldbach type such that neither PA = ¢ nor PA F —p.

13.5 G is unprovable in PA: the syntactic argument

We'll show again that PA can’t prove G, but this time without assuming PA’s
soundness: we’ll just make an assumption of consistency. So we’ll prove

A. If PA is consistent, PA ¥ G.

Proof Suppose G is provable in PA. If G has a proof, then there is some super
g.n. m that codes its proof. But by definition, G is the diagonalization of the wff
U. Hence, by definition, Gld(m,"U7).

Now we use the fact that Gdl not just expresses but captures the relation Gld.
That implies (i) PA F GdI(m,"U™).

3See Section 7.5 for the demonstration that Goldbach’s conjecture is II;. It is therefore the
universal generalization of a Ag wif. And any Ag wif expresses a p.r. property or relation. For
evidently an atomic Ag wif expresses a p.r. property or relation, and we know that applying
propositional connectives and/or bounded quantifiers keeps us within the realms of the primi-
tive recursive — see Section 9.7, (c¢). Hence Goldbach’s conjecture is a universal generalization
about a p.r. property.

Generalizing this argument shows that any II; sentence is equivalent to a universal gener-
alization about a p.r. property or relation. And the converse holds too. Suppose we want to
express a universal generalization about some p.r. property or relation. Then we can always
use a II; wif to do the job. To take the simplest case, suppose we want to say that every
number has the p.r. monadic property P. Since P is p.r., its characteristic function cp will be
p.r., so cp is expressible by a X1 wff (by Theorem 14 again), and so also expressible by a II;
wil p(x,y) (by the X1 /II; lemma of Section 11.1). So then the IIy wif ¢(x,0) will express P
and the IT; wif Vxp(x,0) will express the claim that every number is P.

124

w-incompleteness, w-inconsistency

But since G is logically equivalent to Vx—Gdl(x,"U™), the assumption that G is
provable comes to this: PA F Vx=Gdl(x,"U™). The universal quantification here
entails any instance. Hence (ii) PA F =GdI(m,"U7).

So, combining (i) and (ii), the assumption that G is provable entails that PA
is inconsistent. Hence, if PA is consistent, there can be no PA proof of G. X

13.6 w-incompleteness, w-inconsistency

(a) G is unprovable in PA. So no number is the super g.n. of a proof of G. That
is to say, no number numbers a proof of the diagonalization of U. That is to say,
for any particular m, it isn’t the case that Gld(m,"U™). So, again by the fact
that Gdl captures Gld we have

1. For each m, PA F =GdI(m,"U7).
2. But, assuming consistency, PA ¥ G — i.e., PA ¥ ¥x~Gdl(x,"U7).
Now for a standard definition:

An arithmetic theory T is w-incomplete if, for some open wif p(x),
T can prove each ¢(m) but 7" can’t go on to prove Vxp(x).

(‘w’ is the logicians’ label for the natural numbers taken in their natural order.)
So the case where p(x) =gt ~Gdl(x,"U7) shows that PA is w-incomplete.

In Section 6.3, we noted that Q exhibits a radical case of what we are now
calling w-incompleteness: although it can prove case-by-case all true equations
involving numerals, it can’t prove many of their universal generalizations. For a
simple example, put Kx =g (0 4+ x = x); then for every n, Q F Kn; but we don’t
have Q F VxKx. In moving from Q to PA by adding the induction axioms, we
vastly increase our ability to prove generalizations. But we now see that some
w-incompleteness must remain even in PA.

(b) Here’s another standard definition:

An arithmetic theory T is w-inconsistent if, for some open wif ¢(x),
T F Ixp(x), yet for each number m we have T+ —p(m).

So compare and contrast. Suppose T can prove t(m) for each m. T is w-
incomplete if it can’t prove something we’'d like it to prove, namely Vxi(x).
While — putting 1 for = in our definition — 7" is w-inconsistent if it can actually
prove the negation of what we’d like it to prove, i.e. it can prove —Vxu(x), i.e.
Ix—h(x).

Note that w-inconsistency, like ordinary inconsistency, is a syntactically de-
fined property: it is characterized in terms of what wiffs can be proved, not in
terms of what they mean. Note too that w-consistency — defined of course as
not being w-inconsistent! — implies plain consistency. That’s because T’s being

125

13. PA is incomplete

w-consistent is a matter of its not being able to prove a certain combination of
wifs, which entails that T' can’t be inconsistent and prove all wifs.

Now, w-incompleteness is regrettable; but w-inconsistency in a theory of arith-
metic is a Very Bad Thing (not as bad as outright inconsistency, maybe, but still
bad enough). For suppose that the axioms of an arithmetic theory T are indeed
true when given a normal interpretation — by which we mean an interpretation
whose domain comprises just zero and its successors, on which 7”s standard nu-
merals are correctly assigned to the corresponding natural numbers, and logical
apparatus is treated as usual. Assuming 7" has a sound logic, T’s theorems will
then all be true on this interpretation. So now suppose that, for some ¢(x), T
does prove each of —(0), —(1),...,-¢@(n),.... By hypothesis, these theorems
will then be true on the given normal interpretation; so this means that every
natural number must satisfy —(x). Hence there is no object in the domain left
over to satisfy ¢(x). So Ixp(x) will be have to be false on this normal interpreta-
tion. Therefore it can’t be a theorem. Hence, contraposing, if 1" is w-inconsistent
— i.e. each of =p(n) is a theorem and yet Ixp(x) is a theorem too — then T’s
axioms can’t all be true on a normal arithmetic interpretation.

Given we want arithmetics to have axioms which are all true on a normal
interpretation, we must want w-consistent arithmetics. (And given we think PA
is sound on its normal interpretation, we are committed to thinking that it is
w-consistent.)

13.7 —G is unprovable in PA: the syntactic argument

We'll now show again that PA can’t prove the negation G, but this time with-
out assuming PA’s soundness: we’ll just make the syntactic assumption of w-
consistency.

B. If PA is w-consistent, PA ¥ —G.

Proof Suppose that PA is w-consistent but =G is provable in PA. That’s equiv-
alent to assuming (i) PA F IxGdl(x,"U7).

But if PA is w-consistent, it is consistent. So if =G is provable, G is not provable.
Hence for any m, m cannot code for a proof of G. But G is (again!) the wif you
get by diagonalizing U. Therefore, by definition, our assumptions imply not-
Gld(m,"U"), for each m.

So, by the requirement that Gdl captures Gld, we have (ii) PA F =Gdl(m,"U™)
for each m.

But (i) and (ii) together make PA w-inconsistent after all, contrary to hypoth-
esis. Hence, if PA is w-consistent, =G is unprovable.* X

4This is a meaty footnote for enthusiasts, embroidering our result in two related ways,
mainly to link up with presentations in other books. But do skip it on a first reading!
The first point to note is that the combination of (i) and (ii) is also ruled out by a weaker
assumption than PA’s w-consistency.

126

Putting things together

That means, by the way, that the theory PA + =G (which you get by adding -G
as a new axiom to Peano Arithmetic) must be w-inconsistent; yet this expanded
theory is consistent, by (A) from Section 13.5. Which confirms that w-consistency
is a stronger requirement than mere consistency.

13.8 Putting things together

Putting results (A) and (B) together with the fact that G is of Goldbach type,
we therefore have the following crucial result:

Theorem 19 There is an L 4-sentence ¢ of Goldbach type such
that, if PA is consistent then PA ¥ ¢; and if PA is w-consistent
then PA ¥ —p.

And we should immediately stress two points about all this. First, our exis-
tence claim is proved ‘constructively’. That is to say, we haven’t just given an
abstract existence-proof that there must be a formally undecidable sentence (as
in Section 5.3): we have now given a recipe for actually constructing a ‘formally
undecidable’ Godel sentence .

Second, we have in fact done more: we have given a recipe for producing arbi-
trarily many distinct undecidable sentences! Suppose we just fiddle around with
the details of our Godel-numbering scheme. Then, as we change the scheme, the
details of the corresponding p.r. relation Gld will change and the corresponding
capturing wif Gld will have to change too — and then we’ll get new undecidable
sentences modelled on G.

We’ll say a theory is 1-consistent if it is w-consistent, perhaps not across the board, but at
least at the level of X1 wffs. More carefully: an arithmetic theory T is 1-consistent if there is
no open X1 wif (x) such that T+ Ixp(x) yet for each m T + —p(m). But Gdl(x,y) is X1,
so IxGdI(x,"U7) is 3;. Hence, so long as PA is 1-consistent, we can’t have (i) and (ii) true
together.

We can therefore strengthen our result: if PA is 1-consistent, PA ¥ —G.

It is also worth noting that, if 7" contains Q, l-consistency is equivalent to Xi-soundness
(we defined that in Section 7.4: T is ¥1-sound if, whenever ¢ is 31 and T F ¢, then ¢ is true).

Proof sketch Note first that if T is inconsistent, it proves any ¥i-wff, and some of these
like Ix(Sx = 0) will be false, so T' can’t be X1-sound. So, contraposing, ¥1-soundness implies
consistency. Now suppose that T is Xq-sound. Then if T'F 3xi)(x), with ¥ (x) a Ag wif, Ixtp(x)
is true. So some (M) is true. But ¢ (M), being Ao, is therefore also ¥1; and so it is provable in
T (since T contains Q, and Q is ¥1-complete). Hence by T7s consistency, —(m) isn’t provable,
and therefore T is 1-consistent. Conversely, suppose T is not ¥1-sound, i.e. proves some 3xt)(x)
which is false (so Vx—1)(x) is true). Then every —t)(m) is true, and — being 31 — is provable in
T. Which makes T' 1-inconsistent. X

Which gives us another version of our strengthened result: if PA is ¥1-sound, then PA ¥ —G.

127

14 Godel's First Theorem

Back in Chapter 6, we introduced the weak arithmetic Q, and soon saw that
it is boringly incomplete. Then in Chapter 8 we introduced the much stronger
first-order theory PA, and remarked that we couldn’t in the same easy way show
that it fails to decide some elementary arithmetical claims. However, in the last
chapter it has turned out that PA is incomplete too.

Still, that result in itself isn’t yet hugely exciting, even it is a bit surprising.
After all, just saying that a particular theory T is incomplete leaves wide open
the possibility that we can patch things up by adding an axiom or two more, to
get a complete theory 7. As we said at the very outset, the real force of Godel’s
proof is that it illustrates a general method which can be applied to any theory
satisfying modest conditions to show that it is incomplete. And this reveals that
a theory like PA is not only incomplete but in a good sense incompletable.

The present chapter starts by explaining this quite crucial point. Then we
note an important strengthening of Gédel’s proof due to Rosser. The third main
theme of the chapter involves using a trick due to William Craig to widen the
import of our incompleteness results.

14.1 Generalizing the semantic argument

In Section 13.3, we showed that PA is incomplete on the semantic assumption
that its axioms are true (and its logic is truth-preserving). In this section, we
are going to extend this style of argument to other theories.

We begin with an important definition. We said in Section 3.3 that a theory T'
is an axiomatized formal theory if it is (a) effectively decidable what counts as a
T-wif and what counts as a T-sentence, (b) it is effectively decidable which wifs
are T-axioms, and (c) T uses a proof-system such that it is effectively decidable
whether an array of T-wffs counts as a well-constructed derivation. We’ll now
say that a theory T is p.r. aziomatized if (a’) the numerical properties of being
the g.n. of a T-wif and T-sentence are primitive recursive, and similarly (b’) the
numerical property of being the g.n. of an axiom is p.r., and likewise (¢’) the
numerical property of being the super g.n. of a properly constructed proof is p.r.
too.!

INote, by the way, our remark at the end of Section 12.1, where we explained why a numer-
ical property like being the g.n. a T-wff will be p.r. on any acceptable numbering scheme if it
is p.r. on our default Godel-style scheme. So the question whether a theory is p.r. axiomatized
is not embarrassingly relative to our particular numbering scheme.

128

Generalizing the semantic argument

Now looking again at our argument for Theorem 18, we can see that one
essential fact underpinning our ‘semantic argument’ for the incompleteness of
PA is:

1. There is an open wif Gdl which expresses the relation Gld — in other
words, GdI(m,7) is true just so long as Gld(m,n), i.e. just so long as m
numbers a proof in PA of the diagonalization of the wff numbered by n.

But, let’s not forget, we also need another fact:
2. We have quantification available.?

Quantification enables us to form the wif G which is true if and only if G is
unprovable in PA. And then, assuming PA is a sound theory, we can show that
neither G nor =G is provable.

Underpinning (1), we have in turn the facts that

3. The relation Gid is primitive recursive (see Sections 12.6, 12.7).
4. PA’s language L4 can express all p.r. functions (see Section 11.4).

But Gld can be defined in terms of Prfseq (and the trivially p.r. diag function).
And reviewing our proof that Prfseq is p.r. in Section 12.7, we see that it pivots
around the fact that

5. PA is p.r. axiomatized.

For it assumes that sent and aziom are p.r., and that the relations that holds
between the codes for the input and output of inference rules are p.r. too.

So, now to generalize. Suppose that we are dealing with any other theory T
such that

G1l. T is p.r. axiomatized;
G2. 7T’s language includes L4,

where we’ll say T’s language includes L 4 if (i) every L4 wif is also a wif of T,
perhaps allowing for some definitional extensions of T’s original language,® and
(ii) the copies of L4 wffs in T are true when their originals are true. Then (G1)
gives us the analogue of (3). And (G2) gives us the analogues of (4) and (2).

2That we need quantification here is important! In Section 10.5, we outlined the construc-
tion of the theory PRAg which expresses all p.r. functions, so it can express the version of Gdl
defined for that theory, so the analogue of (1) holds. However, the absence of quantifiers in the
language of PRA(blocks our going on to form a Gddel sentence for that weak theory. Which
is why the theory can, as we claimed, be negation-complete.

3There is a small wrinkle here. Suppose T is some non-arithmetic theory like set theory.
To extend T’s language to subsume L 4, we’ll need to allow the definition of new function ex-
pressions for the successor, addition and multiplication functions, even if the original language
lacks function expressions. But there are standard ways of handling this: see e.g. (Mendelson,
1997, pp. 103-105).

129

14. Godel's First Theorem

So there will be an open wif Gdlr which expresses the relation Gld, i.e. the
relation which holds just so long as m numbers a T-proof of the diagonalization
of the wiff numbered by n. And we can then form a corresponding new Godel
sentence G which ‘says’ that it is unprovable in T

Of course, when we move to consider a different theory T, the set of axioms
and/or the set of rules of inference will change (and if 7" involves new symbols,
then the scheme for Godel-numbering will need to be extended). So the details
of the corresponding relation Gid(m,n) will change too. Hence Gdlr will be
new, and likewise G. But still, we can construct this new Godel sentence along
just the same lines as before, needing to use only basic arithmetical vocabulary.

And now exactly the same easy argument as we used to establish Theorem 18
can be used to show

Theorem 20 If a theory T, whose language includes L4, is p.r.
aziomatized, and is sound (i.e. it has true axioms and a truth-
preserving logic), then there is an La sentence ¢ of Goldbach type
such that T ¥ ¢ and T ¥ —p.

14.2 Incompletability — a first look

Suppose T is a p.r. axiomatized, sound theory, whose language includes L 4; and
suppose ¢ is one of the undecided sentences such that neither T'+ ¢ nor T' F —p.
One of ¢, —¢p is true. Consider the result of adding the true one to T as a new
axiom. The new expanded theory T is still a p.r. axiomatized, sound theory,
whose language includes L 4. So, although T+ by construction does now decide
o the right way, it is still incomplete.

And so it goes. Throw as many new true axioms into 7' as you like, even
augment the truth-preserving deductive apparatus, and the result will still be
incomplete — unless it ceases to be p.r. axiomatized. In short, T is not just
incomplete, but it is incompletable (if we still want a sound, p.r. axiomatized
theory).

14.3 The First Theorem, at last

(a) So far, so good. Now we turn to generalizing the syntactic argument for in-
completeness. Looking at our proof for Theorem 19, we can see that the essential
facts underpinning this incompleteness proof are:

1’. There is an open wif Gdl which captures the relation Gld.
2. We have quantification available (as before).
And underpinning (1’), we have the facts that

3. The relation GId is primitive recursive (as before).

130

The First Theorem, at last

4’. PA can capture all p.r. functions (see Section 11.6).
But, to repeat, (3) depends essentially on the fact that
5. PA is p.r. axiomatized

And now recall another definition: a theory is p.r. adequate if it captures each
p-r. function as a function — where capturing as a function is defined using the
universal quantifier (see Sections 10.2, 10.5). So we can in fact can wrap up
conditions (2) and (4’) into one:

6. PA is p.r. adequate.

Suppose then that we are dealing with any other theory T such that
G1l. T is p.r. axiomatized.
G2'. T is p.r. adequate.

Then (G1) gives us the analogue of (3), i.e. there will be a p.r. relation Gld ¢
which holds just so long as m numbers a T-proof of the diagonalization of the
wif numbered by n. And (G2') gives us some arithmetic language involving
quantification and gives us the analogue of (4’). Hence there will be an open wif
Gdlr which captures the relation Gld . Hence, using the same construction, we
can again form a corresponding new Gdédel sentence G of Goldbach type; then
the line of argument will go exactly as before. Therefore

Theorem 21 If T is a p.r. adequate, p.r. axiomatized theory,
then there is an arithmetic T-sentence ¢ of Goldbach type such
that, if T s consistent then T ¥ ¢, and if T is w-consistent then
TF —p.

And it is this very general syntactic version of the incompleteness result which
probably has as much historical right as any to be called Gédel’s First Incom-
pleteness Theorem.* So we get there at last!

(b) Another definition. Let’s now call a theory simply nice if it is consistent,
p.r. axiomatized, and includes Q (i.e. can prove at least everything that Q can
prove).® Since we know — as Godel didn’t in 1931 — that even Q is p.r. adequate,
another version of the First Theorem is:

Theorem 21* If T is any nice theory then there is an arith-
metic T-sentence ¢ of Goldbach type such that neither T+ ¢ nor
(assuming T is w-consistent) T F —p.

4Not that the Theorem is stated quite like that in the original paper. We have put together
Theorem VI and VIII of Godel (1931), together with the generalizing gloss at the end of Section
2 of the paper.

5There doesn’t seem to be a standard bit of jargon for labelling such theories: so ‘nice’ is
just my own informal snappy shorthand.

131

14. Godel's First Theorem

Strictly speaking, these two versions are not quite equivalent because there are
actually some alternative very weak p.r. adequate arithmetics which neither
contain nor are contained in Q.6 But the little differences won’t matter to us,
and in fact — although it isn’t so historically accurate — we’ll henceforth take
Theorem 21* as our preferred standard form of the First Theorem.”

This obviously gives us another incompletability result. Suppose we beef up
some nice w-consistent theory T by adding new axioms. Then T" will stay incom-
plete — unless the theory becomes w-inconsistent or stops being nice.

Take the particular case where the sentence G, constructed as described in the
last chapter, is added to PA as a new axiom. PA + G trivially entails G. But we can
construct its own new Godel sentence G’. And assuming PA + G is w-consistent
(which it surely is, as all its axioms are surely true on the standard interpretation
built into L 4), neither G’ nor =G’ follows from our augmented theory. So neither
can follow from the unaugmented original theory. In particular, G’ will be another
true-but-unprovable sentence of PA, independent of the original Goédel sentence
G. Repeating the argument gives us an unending stream of such independent
unprovable sentences. And we can never ‘fix up’ PA by adding on enough new
axioms to get a p.r. axiomatized, w-consistent, negation-complete theory.

14.4 Rosser's improvement

So far, we’ve just been extracting results more or less directly to be mined from
Godel’s great 1931 paper (at least when combined with the later observation
that Q is p.r. adequate). In this section, however, we move on to note a clever
construction due to Barkley Rosser (1936). He replaces the Godel sentence G
with a more complex cousin R; and then he shows that neither R nor =R is prov-
able in PA, assuming just that PA is consistent. As with Gddel’s construction
the argument then generalizes. So Rosser improves Godel’s First Incomplete-
ness Theorem, by enabling us to weaken the assumption of w-consistency Godel
needed for half his Theorem and make do with plain consistency.

And frankly, that’s all you really need to know at this point. However, for
enthusiasts, we’d better tell more of the story (after all, the result is an important
one).

So first, recall the familiar definition:

Gld(m,n) holds when m is the super g.n. for a PA proof of the
diagonalization of the wff with g.n. n.

SFor some details, see (Boolos et al., 2002, §§16.2, 16.4), comparing the theories they call
Q and R. What’s crucial for p.r. adequacy is that Q and R both deliver the Results that we
listed in Section 7.2.

"If you worked through fn. 4 of the previous chapter, then you’ll realize that we can
immediately slightly sharpen Theorem 21/Theorem 21* with replacing talk of w-consistency
by talk of 1-consistency. But we won’t fuss about this, given that Rosser’s clever construction
in the next section enables us to get rid of even the requirement of 1-consistency and make do
with plain consistency.

132

Rosser's improvement

And now let’s next introduce a companion definition:

‘Gdl(m,n) holds when m is the super g.n. for a PA proof of the
negation of the diagonalization of the wif with g.n. n.

Both relations are p.r.; so b(ﬂ are capturable in PA, by a pair of wifs that we’ll
abbreviate by Gdl(x,y) and GdlI(x,y) respectively.
Now consider the wif

Gdl(x,y) — (3v < x)GdI(v,y)

Roughly, this wff says that if a number x codes a proof of a certain wif, then
there is a smaller number v that codes a proof of the negation of the same wif.

And, from this point, we simply echo the Godel construction. So, first step,
we quantify to get

¥x(Gdl(x,y) — (v < x)Gdl(v,y))

Abbreviate this open wff as S (or S(y) when we want to emphasize the free
variable), so its g.n. is "S™. Then, second step, diagonalize S to get

R =der Fy(y ="STAS(y))
This is the Rosser sentence; it is trivially equivalent to
Vx(Gdl(x,"S™) — (Iv < x)GdI(v,"ST))

Which reveals that the Rosser sentence is again of Goldbach type.®

Let’s consider what R ‘says’ in the light of the fact that the formal predicates
Gdl and Gdl express the numerical relations Gld and Gdl. Well, R is true when,
for every number m, if Gld(m,™S™) is true then there’s a smaller number n such
that Gdl(n,”S™). But by construction, Gld(m,"S") is true if m codes for a PA
proof of R (think about it!). Similarly, Gdl(n,"S") is true if n codes for a proof
of =R. Therefore R says that, for every number m, if m codes for a proof of R,
there’s a smaller number n that codes for a proof of —R.

In sum, R says ‘if R has a proof, there is also a “smaller” proof of =R’.

In the light of this interpretation, R must be unprovable, assuming PA has true
axioms and hence is consistent. For if R were provable, then it would be true.
In other words, ‘if R is provable, so is =R’ would be true; and this conditional
would have a true antecedent, and so we can infer that —R is provable, which
makes PA inconsistent, contrary to hypothesis. Therefore R is unprovable. Hence
the material conditional ‘if R is provable, so is =R’ has a false antecedent, so is
true. In other words, R is true. Hence its negation —R is false, and therefore also
unprovable (still assuming PA is sound). Hence R is another true-but-formally-
undecidable wif.

8See Section 13.4. For note, R is equivalent to a quantification of an open wff which ex-
presses a p.r. property — since both Gdl(x,™S7) and Gdl(x,™S™) separately express p.r. proper-
ties, and applying the conditional truth-function and bounded quantification preserves primi-
tive recursiveness (see Section 9.7).

133

14. Godel's First Theorem

However, to show that neither R nor =R is provable, we don’t need the se-
mantic assumption that PA is sound. And this time, as we said, we don’t even
need to assume that PA is w-consistent. Assuming the mere consistency of PA is
enough. So we have Rosser’s strengthening of Theorem 19:

Theorem 22 If PA is consistent, then there is an L 4-sentence
@ of Goldbach type such that neither ¢ nor —p is provable in PA.

The detailed proof of this theorem — often called the Gédel-Rosser Theorem —
is a cousin of Gddel’s proof in Section 13.5. However, it is a [ot messier and
less intuitive. I promise you won’t miss anything of mathematical importance by
entirely skipping the proof! But, for super-enthusiasts, here it is, in two parts.

Proof sketch: R is unprovable if PA is consistent Suppose R is provable. We’ll
prove a contradictory pair of propositions, (i) and (ii).

Given R is provable, some super g.n. m codes its proof. Hence, by definition,
Gld(m,"™S™). Hence, since Gdl captures Gld, we have PA - GdI(m,"S™). But by
assumption, R is provable, so PA F Vx(GdI(x,"S™) — (3v < x)GdI(v,"S™)).

Now instantiate the universal quantification by m, and then apply modus
ponens to get PA - (3v < m)GdI(v,”S™). By Result (3) about Q from Section 7.2,
it follows easily that

(i) PA F GdI(0,7S™) v GdI(T,"S™) v ...V GdI(m,"S")

However, given that PA is consistent, the same original assumption that R is
provable implies that —R is not provable. That is to say, for every number n,
Gdl(n,"S™). So, by the fact that Gdl captures Gdl, we have

(ii) for every n, PA - =GdI(n,"S™)
But (ii) directly contradicts (i). So R is unprovable. X

Proof sketch: =R is unprovable if PA is consistent Suppose =R is provable. Then
there is some number n such that Gdl(n,”S™). Hence, PA I GdI(7,"S™). Whence,
using an obvious shorthand, PA - (Vx > n)(3v < x)Gdl(v,"S™7); and that trivially
implies

(iii) PA F (¥x > 0)(GdI(x,”S™) — (3v < x)GdI(v,"S7))

But if =R is provable, then (by consistency) R isn’t. Hence for all numbers
m, it isn’t the case that Gld(m,"S™). So, for all m, PA F =GdI(m,"S™). Hence,
trivially, for all m, PA - GdI(m,"S™) — (3v < m)GdI(v,"S™). Take the first n+ 1
such results. Given these plus Result 4 about Q from Section 7.2, it follows that

(iv) PA I (¥x < 7)(GdI(x,7S7) — (3v < x)GdI(v,"ST))

But we can show, using Result 8 from Section 7.2, that if we have both PA
F (Yx < W)p(x) and PA F (¥x > 11)p(x), then PA F ¥xp(x). So from (iii) and (iv)
it follows that

134

Broadening the scope of the First Theorem

(v) PA F ¥x(Gdl(x,”S7) — (3v < x)GdI(v,"ST))

But this last claim is just PA F R, contradicting the joint assumptions that PA
is consistent and —R is provable. So, keeping the consistency assumption, =R is
unprovable. Phew! X

And, as with Gédel’s original result, the result generalizes. Thus,

Theorem 23 If T is a nice theory, then there is an arithmetic
T-sentence ¢ of Goldbach type such that neither Tt ¢ norT F —p.

So Rosser’s clever trick nicely sharpens the First Incompleteness Theorem.
However, it doesn’t really illuminate what is going on inside Godel’s proof. In
the next chapter, then, we turn to digging deeper. But first, ...

14.5 Broadening the scope of the First Theorem

Our intuitive characterization of a properly formalized theory T says, essentially,
that the property of being a T-proof must have a computable characteristic func-
tion (Sections 3.3 and 9.6). But we now know that not all computable functions
are p.r. (Section 9.5). So it looks as if we could have an axiomatized theory
(according to our intuitive characterization) which isn’t p.r. axiomatized. Does
this give us wriggle room to get around the First Theorem? Could there be a
consistent formalized theory of arithmetic which was complete because not p.r.
axiomatized?

True, a formalized theory T that isn’t p.r. axiomatized will certainly be a
rather peculiar beast. For checking that a putative T-proof is a proof will some-
how have to involve a non-p.r. open-ended search, which will make it very unlike
any familiar kind of axiomatized theory. Still, an oddly axiomatized theory which
is complete would be better than no complete theory at all. But we can’t achieve
that either. For consider the following result which we’ll prove in a moment:

Theorem 24 If T is a formalized theory, then there is a p.r.
aziomatized theory T' which has ezactly the same theorems.

This is an informal version of what’s called Craig’s Reaxiomatization Theorem:
it says that if a body of wifs is axiomatizable, then is p.r. axiomatizable.’

Suppose, then, that T is a consistent formalized theory which includes Q. Our
theorem tells us that there is a p.r. axiomatized theory 7" which has the same
theorems. But since it shares the same theorems, this p.r. axiomatized 7" must
also be consistent and include Q. So T” is nice, hence the Godel-Rosser version
of the First Theorem applies: there is an arithmetic sentence R such that 7' ¥ R
and 77 ¥ =R. Hence T ¥ R and T ¥ —R.

9 Jargon reminder: ¥ is (p.r.) axiomatizable if there is a (p.r.) axiomatized formal theory
T such that, for any wif ¢, ¢ € ¥ if and only if T ¢. For the original theorem, see Craig
(1953).

135

14. Godel's First Theorem

In short: given Craig’s theorem, Gddelian incompleteness infects any consis-
tent formalized theory including enough arithmetic, whether it is p.r. axiomatized
or not. And here’s why Craig’s theorem holds:

Proof sketch 1If T is a formalized theory, its theorems can be effectively enumer-
ated, by Theorem 2 (Section 3.5). So imagine stepping through some algorithmic
procedure which effectively lists these theorems, and let’s count the steps as we
go along executing one minimal step at a time. Most of these steps are interim
computations; just occasionally, the next theorem on the list will be printed
out. Suppose that the theorem ¢ is produced at the step numbered S(y) of our
algorithmic procedure.

Now for Craig’s ingenious trick. Consider the derivative theory T’ defined as
follows: (i) for each T-theorem ¢, T” has the axiom (@ A A p A ... A p), with
S(p) conjuncts; (ii) T"’s sole rule of inference is A-elimination.

Trivially, every T-theorem is a T"-theorem. And equally trivially, making the
sole assumption that 7" has the usual rule of A-introduction, every T'-theorem
is a T-theorem.

Now note that given a wif 1), we can tell whether it is a T’-axiom as follows.
Stage 1: examine 1t and see if it is the n-fold conjunction of some particular wif
® (that can be done with ‘for’ loops). If it passes that test, count the n conjuncts
and then move on to Stage 2: run the algorithm which lists theorems of T' for
steps 1 to n, and see if the algorithm then prints out that same ¢ (you can think
of that as executing one big ‘for’ loop). If at the end of the process ¢ is indeed
printed out, v is a T"-axiom, and otherwise it isn’t.

But this means that testing whether 1) is a T'-axiom can be done just with
‘for’ loops. In other words, the chararacteristic function of the property of being
a T’-axiom is primitive recursive. And therefore T” is p.r. axiomatized. X

That’s a rather quick-and-dirty proof. However we won’t pause to tidy it up
here. That’s because later — when we have a general account of computation
and decidability to hand — we’ll be returning again to our more encompassing
version of the First Theorem, and we will then be able to prove it more directly,
without going via Craig’s Theorem.

14.6 True Basic Arithmetic can't be axiomatized

Let’s now note an immediate corollary of the first half of Theorem 21* combined
with Craig’s Theorem (in order to make good another claim we made in informal
terms right back in Section 1.2, and to sharpen the result of Section 5.4).
Suppose L4 is, as before, the language of basic arithmetic. And let TA be
the set of true sentences of L4, i.e. closed wifs which are true on the standard
interpretation built into L. So TA is True (Basic) Arithmetic. Then we have

Theorem 25 There is no consistent axiomatized theory T whose
set of theorems in the language L 4 is exactly TA.

136

Incompletability — another quick look

Proof Suppose first that T is a p.r. axiomatized theory which entails all of
TA. Then T will in particular prove the truths of basic arithmetic proved by Q
which are enough to make Q p.r. adequate. So T is p.r. adequate. But then, if
T is also consistent, it’s nice: and we can use the Gddel construction to yield a
sentence G in the language L 4 which is true but unprovable-in-T', so there is a
sentence in TA that T can’t prove after all, contrary to hypothesis. So if T is
consistent, it can’t be p.r. axiomatized. And by Craig’s Theorem, if it can’t be
p.r. axiomatized, then it can’t be formally axiomatized at all. X

14.7 Incompletability — another quick look

Let’s sum up. Suppose 7' is a nice theory. It’s incomplete. Throw in some unprov-
able sentences as new axioms. As many as you want. Then, by the generalized
Godel-Rosser Theorem the resulting 7" will still be incomplete, unless it stops
being nice. But adding new axioms can’t make a p.r. adequate theory any less
adequate. So now we know the full price of T’s becoming complete. Either (i) T
ceases to be p.r. axiomatized or (ii) it becomes inconsistent. Outcome (i) is bad
(for we now know that retreating to an axiomatized-but-not-p.r.-axiomatized
theory won’t get let us escape the First Theorem: 7" will have to stop being
properly axiomatized at all). Outcome (ii) is worse.
Keep avoiding those bad outcomes, and T is incompletable.

137

15 Using the Diagonalization Lemma

When we are hill-walking, it often happens that we scramble up to the top of
a peak, and then it becomes clear that we can descend a little (perhaps by a
slightly different route) and from there easily strike out to reach some connected
hill-tops.

We have now reached the peak of the First Incompleteness Theorem. Re-
viewing our route up, we can see that it takes us near a particular instance of
the so-called ‘Diagonalization Lemma’.! We will now backtrack to uncover this
Lemma, and then note some of its important implications, which will take us up
to a couple of neighbouring logical peaks. We start, however, by introducing . ..

15.1 The provability predicate

Recall: Prfseq(m,n) holds when m is the super g.n. for a PA-proof of the wif with
g.n. n. So, introducing a natural further definition, Prov(n) =qef Jv Prfseq(v,n)
will hold when some number codes a proof of the wif with g.n. n — i.e. when n
numbers a PA-theorem.

Since the relation Prfseq is p.r., it can be captured in PA by a wif Prfseq(x,y).
And now consider the wif Prov(x) =g¢f 3v Prfseq(v,x).2 Evidently, this wff is
true of n just when that n numbers a PA-theorem; hence Prov(x) expresses the
provability property Prov.

Now generalize in the obvious way. For any theory 7', here is similarly a
relation Prfseqp(m,n) which holds when m is the super g.n. for a T-proof of
the wff with g.n. n.3 And if T is a nice theory (in the sense of Section 14.3, so
it is p.r. axiomatized), then Prfseqr will again be a p.r. relation. So there will
be a corresponding wif Prfseq,(x,y) which captures this property in 7. And we
can now define Provy(x) =4 3v Prfseqp(v,x), where this complex provability
predicate expresses the property of numbering a T-theorem.

Here are two simple facts about the provability predicate Provy. Assume that
T is a nice theory and ¢ is some sentence; then

Pl. if T+ ¢, then T+ Provr(T¢p™);
P2. if T is w-consistent, then if T' ¥ ¢, then T ¥ Provy(T¢™).

!The name is conventional. Ordinarily, ‘lemma’ connotes a minor result: this Lemma is
major theorem!

2We will assume, as we can without loss of generality, that Prfseq(x,y) doesn’t contain the
variable ‘v’

30f course, we are now talking in the context of some appropriate scheme for Godel-
numbering expressions of T' — see the final remark of Section 12.1.

138

Diagonalization again

Proof of (P1) Suppose T b ¢. Then there is a T proof of the wif with g.n.
T Let this proof have the super g.n. m. Then, by definition, Prfseq,(m, ™).
Hence, since Prfseq is captured by Prfseqp, it follows that 7'+ Prfseq(m, "¢7).
Hence T+ 3v Prfseqp (v, "), i.e. T+ Provp(Tp™). X

Proof of (P2) Suppose T ¥ ¢. Then, for all m, not-Prfseqy(m, ¢7). Since
Prfseqy is captured by Prfseq, it follows that for all m, T+ —Prfseq, (M, "¢™).
So if T+ Provy(T¢7), i.e. T F IvPrfseqr(v, ™), T would be w-inconsistent. So
contraposing, if T is w-consistent, it can’t prove Provr(T¢™). X.

Note, by the way, that we need sharply to distinguish (P2) from
P3. if T ¥ ¢, then T + =Provy(T¢7).

If (P1) and (P3) were both true, then Provy would not merely ezpress but would
also capture the provability property Provp. But as we’ll soon see in Section 15.6,
no wif can do that if T is nice. So (P3) is not always true. (A nice theory T is,
so to speak, self-aware about what it can prove: but it doesn’t know everything
about what it can’t prove.)

15.2 Diagonalization again

We saw that our Godel sentence G for PA is constructed in such a way that it is
true if and only if it is unprovable. Using the provability predicate Prov, we can
now express this fact about G inside PA by the sentence

G < —Prov("G")

Our next task is to show that we actually can prove this sentence in PA.

As a first step, let’s think again about how our Gdédel sentence for PA was
constructed in Section 13.1. We’ll do some manipulation to find an equivalent
to G which explicitly involves Prov. So, recall,

G =qer y(y="UTAU)
Here, ‘"U™ stands in for the numeral for U’s g.n., and
u —def VXﬁGd|(X, y)

where Gdl(x,y) captures our old friend, the relation Gdl.
Now, as we saw in Section 12.6, we can put

Gdl(m,n) =qet Prfseq(m, diag(n))

But the one-place p.r. function diag can be captured as a function in PA by some
open wif Diag(x,y). We can therefore give the following definition:

Gdl(x,y) =det Jz(Prfseq(x,z) A Diag(y,z))
And now to do some manipulation:

139

15. Using the Diagonalization Lemma

u —def VX—\Gd|(X, y)
=det Vx—3z(Prfseq(x,z) A Diag(y, z))
— xVz-(Prfseq(x,z) A Diag(y, z)) pushing in the negation)
— VzVx~(Prfseq(x,z) A Diag(y, z)) swapping quantifiers)

(definition of Gdl)
(
(
— Vz(Diag(y,z) — —3xPrfseq(x,z)) (rearranging after ‘vVz’)
q((
(
(

— Vz(Diag(y,z) — —3vPrfseq(v,z)) (changing variables)
=det Vz(Diag(y,z) — —Prov(z) definition of Prov)

=det U’ new abbreviation)

Two points about this. First, since U and U’ are trivially equivalent, it isn’t
actually going to matter whether we work with G, the diagonalization of U, or
G’, the diagonalization of U’. These are distinct wifs involving different numerals:
but it is an easy exercise to check that G’ will do just as well as G for proving
Godel’s theorem. We won’t pause over this.

Second, to take us up to the theorem we want, note the U/U’ equivalence is
proved by simple logical manipulations which can be done inside the logic of PA.
Which means in particular that

PAFU("UTY) < U'("UT)
But quite trivially,
PAFG < U("UY)
So putting things together, we have
PAF G« U("UY)
Or unpacking this a bit,
PA F G < Vz(Diag("U™,z) — —Prov(z))

15.3 The Diagonalization Lemma: a special case
That last observation almost immediately gives us the desired result:
Theorem 26 PA+ G < —Prov("G™).

Proof Diagonalizing U yields G. Hence, by the definition of diag, we have
diag("UT) = "G™. Since by hypothesis Diag captures diag, it follows that

PA + Vz(Diag("U7,z) <> z="G")
But we’ve just noted that
PA I G < Vz(Diag("U™,z) — —Prov(z))
Hence, substituting our proven equivalent for Diag("U™, z), it follows that

140

The Diagonalization Lemma generalized

PAF G < Vz(z="G" — =Prov(z)).

But the right-hand side of that biconditional is trivially equivalent to =Prov("G™).
So we are done. X

What this shows is that the informal claim ‘G is true if and only if it is unprovable’
can itself be formally proved within PA. Very neat!

And evidently the reasoning generalizes. If Provr is the provability predicate
for T' constructed analogously to the predicate Prov for PA, and if Gy is the
analogously constructed Godel sentence, then by exactly the same reasoning we
have

Theorem 26* If T is a nice theory, T+ Gr < =Provy("Gr ™).

15.4 The Diagonalization Lemma generalized

A little more reflection, however, shows that this last result is just a special case
of a universal Diagonalization Lemma:*

Theorem 27 If T is a nice theory and @(x) is any wff of its
language with one free variable, then there is a sentence v such
that T+~ — o("y7).

Proof We use the same basic proof idea as before. In other words, we do to ‘¢’
pretty much what our Goédelian construction above did to ‘=Prov’. So, first step,
put 9(y) =der Vz(Diagr(y,z) — ¢(2)).

Now let’s do some diagonalization. So construct v, the diagonalization of ¥ (y).
This is equivalent to ¥("¢™). So T + v « Vz(Diagr ("¢, z) — ¢(z)).

Our theorem now follows speedily. Note that diag,("7) = "y7. Hence, T I
Vz(Diagr ("¢, z) <> z="~7), since by hypothesis Diagy captures diag .

Hence T + Vz(Diagr ("¢ ™,z) — ¢(z)) < Vz(z = "7 — ¢(z)), since we’ve just
proved that the antecedents of the conditionals on either side are equivalents. But
the left-hand side of our new biconditional is equivalent to v, and the right-hand
side is in turn equivalent to p("™77). So T F v < o(T7). X

We will use this really beautiful Lemma three times over in the rest of this chap-
ter, first in revisiting the incompleteness result, and then to prove two further
results. Later in the book, we’ll return to the Lemma again.

But first a quick remark about jargon. Suppose that the function f maps the
argument a back to a itself, so that f(a) = a: then « is said to be a fized point
for f. And a theorem to the effect that, under certain conditions, there is a fixed
point for f is a fized-point theorem. By analogy, Theorem 27 is often also referred
to as a fixed point theorem, with v as a ‘fixed point’ for the predicate (z).

4In a footnote added to later reprintings of his (1934), Gédel says that this Lemma ‘was
first noted by Carnap (1934)’: first noted in print, yes; but Goédel himself had probably already
got there in 1930.

141

15. Using the Diagonalization Lemma

15.5 Incompleteness again

Now note the following result, which we prove using the principles (P1) and (P2)
we established at the beginning of the chapter:

Theorem 28 Let T be a nice theory, and let v be any fixed point
for =Provp(z). Then, if T is consistent, T ¥ ~, and if T is w-
consistent, then T ¥ —y.

Proof For readability, let’s start dropping subscript “I"’s when context readily
supplies them. Now, « is a fixed point for —Prov, i.e. T F v < —Prov("+7).
So if T + ~ then T + —Prov("™7). But, by (P1), we also have if T+ + then
T+ Prov(™7). So, if T is consistent, we can’t have T'+ ~.

Now assume T is w-consistent (and hence consistent), and suppose T+ —.
Since T + v < =Prov(™y7), it follows T F Prov("y™"). But by consistency, if
T+ —, then T ¥ ~. Hence by (P2), T ¥ Prov("v™). Contradiction. So, assuming
T is w-consistent, we can’t have T F —. X

In sum, Theorem 28 tells us that if there is a fixed point for —=Prov, then T can’t
be negation-complete, assuming it is nice and w-consistent. But Theorem 27 tells
us that such a fixed point must indeed exist (and Theorem 26* tells us where to
find it). Put the results together and we’ve got to incompleteness again — which
gives us nice reworking of the themes in Gédel’s proof.’

15.6 Capturing provability?

Having backtracked to the Diagonalization Lemma, and re-established incom-
pleteness using that, we can now strike out again to get a range of new theorems.
We’ll mention just two in the rest of this chapter.

First, consider again the T-wff Provy(x) which expresses the property Provy
of being the g.n. of a T-theorem. The obvious next question to ask is: does this
wif also case-by-case capture that property? The following theorem shows that
it can’t:

Theorem 29 No open wff in a nice theory T can capture the

corresponding numerical property Provyp.

Proof Suppose for reductio that P(x) abbreviates an open wif — not necessarily
identical to Provr(x) — which captures Provr. By the Diagonalization Lemma
applied to —P(z), there is some wff v such that

5And we can fairly easily extract from the proof of the Diagonalization Lemma the further
point that there’s an unprovable fixed point of Goldbach type.

We can then go on similarly to get the Gédel-Rosser theorem by applying the Diagonaliza-
tion Lemma again, this time to a more complex wff, and then showing that a fixed point for
this more complex wif is unprovable in a consistent theory. But this doesn’t reveal anything
new, so this time we’ll leave the details as an exercise for enthusiasts to work out.

142

Tarski's Theorem

(i) Tk ye=Py).
By the general assumption that P captures Provr, we have in particular

(ii) if Tk, i.e. Provp("y7), then T = P("y7)
(iil) if T ¥ =, i.e. not-Provp(™7), then T F =P(™7)

Contradiction quickly follows. By (iii) and (i), if 7" ¥ ~, then T + ~. Hence
T I 4. So by (ii) and (i) we have both T'+ P("y7) and T+ =P("v") making T
inconsistent, contrary to hypothesis. X

Hence Provr cannot be captured in 7: and so — to answer our original question
— Prov(x), in particular doesn’t capture that property.

But now recall that T', being p.r. adequate, can capture any p.r. property. So
it immediately follows that the provability property Provy for any nice theory
is not p.r.: which is to say that there is no p.r. function of n which returns 0
if Provr(n) is true, and 1 otherwise. In other words, there is no p.r. function
which decides what is (the code number of) a theorem of T

Later, we will be able to improve this result and prove an important theorem:
there’s no mechanical way at all of deciding whether a wif is a theorem of a nice
theory T, whether by a p.r. computation or by any other kind of algorithmic
procedure. But we aren’t yet in a position to go on to give a formal proof of
this stronger claim, because we haven’t yet got to hand a general theory of
algorithmic procedures.® We’ll see how to get the stronger result in Section ?7?.

15.7 Tarski's Theorem

Finally, we visit twin peaks which can also be reached very quickly via the
Diagonalization Lemma. The path is very straightforward, but it leads to a pair
of spectacular results that are usually packaged together as Tarski’s Theorem.”

(a) Recall: ‘snow is white’ is true iff snow is white. Likewise for all other sensible
replacements for ‘snow is white’. And that’s because of the meaning of ‘true’.

This observation motivates the following definition. Suppose that L is any
language that includes a bit of arithmetic, and so within L we can use the
numeral ‘"™ to pick out the sentence p via Godel coding. Then we’ll say the
open L-wif T(x) is a truth-predicate just in case every instance of

L T oy

is true.
Next, we’ll say that a theory T includes a truth-theory for L if for some T(x),

SCompare our informal Theorem 4 back in Section 5.2, which shows that, for any consistent
sufficiently strong 7', Prov can’t be an algorithmically decidable property of numbers.

7Alfred Tarski investigated these matters in his classic (1933); though Gédel again had
already noted the key point, e.g. in a letter to Zermelo written in October, 1931 (Gddel, 2003,
pp. 423-429). Also see the quotation later in this section.

143

15. Using the Diagonalization Lemma

2. for every L-wif o, THFT(T¢7) < ¢

Equally often, a truth-theory for L is called a ‘definition of truth for L’.

Suppose then that T is a nice arithmetical theory. An obvious question arises:
could T be competent to define truth for its own language? And the answer is
immediate:

Theorem 30 No nice theory can define truth for its own lan-
guage.

Proof Suppose there is a predicate T(x) such that (2) holds. Since T is nice,
the Diagonalization Lemma applies, so applying the Lemma to the negation of
T(x), we know that there must be some L4 sentence L — a Liar sentence! — such
that

3. THL«T("LT)
But then we also have the following instance of (2):
4. THT(LM) <L

It is immediate that T is inconsistent and so not nice, contrary to hypothesis.
So there can’t be a predicate such that (2) holds after all. X

(b) That first theorem puts limits on what a nice theory can prove about truth.
But with very modest extra assumptions, we can put limits on what a theory’s
language can even express about truth.

Consider L4 for the moment. Define the numerical property True as follows:
True(n) if and only if n is the g.n. of a true L 4-sentence. And suppose, for
reductio, that the open L4-wff T(x) expresses True. Then, by definition, for all
L s-sentences ¢, T("¢™) holds iff True("¢™), i.e. iff is true. In other words,
each instance of a formal wff of the shape

L T =y

will be a truth (exactly as you'd expect, then, expressing True makes a predicate
a truth-predicate in the sense we defined).

But now remember that the Diagonalization Lemma holds for any nice theory
T. Hence it holds for Q in particular. So, applying the Lemma to the negation
of T(x), we know that for some L, sentence L, Q - L « —=T("L™"). But (and
here comes the extra assumption we said we were going to invoke!) everything
Q proves is true, since Q’s axioms are of course true. So

2. LeT(LY)
will also be a true L, wif. However, as a special case of (1),

3. T(L) L

144

Tarski's Theorem

must be true too. But (2) and (3) immediately lead to L «» =L and hence con-
tradiction. Therefore our supposition that (1) is always true has to be rejected.
Hence no predicate of L4 can even express the numerical property True.

The argument evidently generalizes. Take any language L rich enough for
us to be able to formulate in L something equivalent to the very elementary
arithmetical theory Q (that’s so we can prove the Diagonal Lemma again). Call
that an adequate arithmetical language. Then by the same argument, assuming
Q is a correct theory,

Theorem 31 No predicate of an adequate arithmetical language
L can express the numerical property Truey, (i.e. the property of
numbering a truth of L).

This tells us that while you can express syntactic properties of a sufficiently rich
formal theory of arithmetic (like provability) inside the theory itself via Godel
numbering, you can’t express some key semantic properties (like arithmetical
truth) inside the theory.

And this last observation of course gives us yet another, particularly illumi-
nating, argument for incompleteness. For example, truth in L4 isn’t provability
in PA: for while PA-provability is expressible, truth isn’t. So assuming that PA
is sound and everything provable in it is true, this means that there must be
truths of L4 which it can’t prove. Similarly for other p.r. axiomatized theories.

We might well take this to be the master argument for incompleteness.? Godel
himself wrote (in response to a query)

I think the theorem of mine that von Neumann refers to is . .. that
a complete epistemological description of a language A cannot be
given in the same language A, because the concept of truth of
sentences in A cannot be defined in A. It is this theorem which is
the true reason for the existence of undecidable propositions in the
formal systems containing arithmetic. I did not, however, formulate
it explicitly in my paper of 1931 but only in my Princeton lectures
of 1934. The same theorem was proved by Tarski in his paper on
the concept of truth [Tarski (1933)].7

(¢) We'll return to issues about truth later. For the moment, just note that we
have the following situation. Suppose T is a nice theory, then (1) there are some
numerical properties that 7' can capture (the p.r. ones for a start); (2) there
are some properties that T' can express but not capture (for example Provr);
and (3) there are some properties that 7T’s language cannot even express (for
example Truer, the numerical property of numbering-a-true-T-wif).

80r if not the argument, at least one of the proofs which, so to speak, belongs in The Book
in which God maintains the best proofs for mathematical theorems. For Paul Erdés’s conceit
of proofs from The Book, see Aigner and Zielger (2004).

9Godel’s letter is quoted by Feferman in his (1984), which also has a very interesting
discussion of why Goédel chose not to highlight this line of argument for incompleteness in his
original paper.

145

15. Using the Diagonalization Lemma

It is not, we should hasten to add, that the property Truer is mysteriously
ineffable, and escapes all formal treatment. A richer theory T with a richer
language may perfectly well be able to capture Truer. But the point remains
that, however rich a given theory of arithmetic is, there will be limitations, not
only on what numerical properties it can capture but even on which numerical
properties that particular theory’s language can express.

146

Interlude: about the First Theorem

We have achieved our first main goal, namely to prove Godel’s First Incomplete-
ness Theorem. It will do no harm to pause for breath and quickly survey what
we’ve established and how we established it. Equally importantly, we should
make it clear what we haven’t proved. The Theorem seems inevitably to attract
serious misunderstandings. Let’s also briefly try to block just a few of these.!

(a) To begin with what we have shown (in headline terms). Suppose we are
trying to regiment the truths of basic arithmetic — i.e. the truths expressible
in terms of successor, addition, multiplication, and the apparatus of first-order
logic. Ideally, we’d like to construct a consistent theory T which entails all these
truths: so we’d like T' to be negation-complete. But, given some entirely natural
assumptions about the sort of theory we want, we can prove that this ideal
cannot be achieved.

The first natural assumption is that T should be set up so that it is effectively
decidable whether a putative T-proof really is a proof. Indeed, we surely want
more: we want it to be straightforwardly decidable what’s a proof, without need-
ing open-ended search procedures. Sharpened up, this is the assumption that T’
should be a p.r. axiomatized theory.

But next, there’s a fork in the path. Do we assume T is a sound theory (with
true axioms and a truth-preserving deductive system) or not?

If we assume soundness — and what more natural than the assumption that
our theory which aims to generate all truths of basic arithmetic should itself be
truthful? — then we have a pretty easy semantic argument for incompleteness:

1. Every p.r. function and relation can be expressed in L 4, the language
of basic arithmetic. (Theorem 14, proved in Sections 11.2 to 11.4 — the
argument is elementary once we grasp the S-function trick.)

2. The relation Gldr(m,n), which holds when m codes for a T-proof of the
diagonalization of the wff with code number n, is primitive recursive — on
the assumptions that T is p.r. axiomatized and that we have a sensible
coding system. (Gldr is definable in terms of Prfseqr and a trivially p.r.
diagr function: so we can just appeal to Theorem 17, for which we gave
a quick and dirty but entirely accessible proof in Section 12.3.)

3. Then, using the fact that Gdlr must be expressible in L4, we can con-
struct a wif Gy which is true if and only if it is unprovable. (Section 13.1:

IWe haven’t space to explode all the wilder misconceptions about the Theorem. See Franzén
(2005) for a more wide-ranging demolition job.

147

Interlude

the construction is ingenious, but quite easy to understand.)

4. Given Gdlr is true if and only if it is unprovable, there is then an entirely
straightforward argument to the conclusion that, if 7" is sound, then T ¥
Gr and T ¥ —Gr. (Use the simple argument which we first gave, in fact,
in Section 1.2.)

If on the other hand, we don’t assume that T is sound, and want to make do
with much weaker non-semantic assumptions about consistency, then we make
life quite a lot harder for ourselves. We can put one version of the syntactic
argument as follows (this way of putting things highlights the parallels and the
contrasts with our semantic argument):

1’. Assume T contains at least as much arithmetic as Q. Then every p.r.
function and relation can be captured in T'. (Theorem 16, which rests on
two other results. (i) We sharpen the theorem that every p.r. function is
expressible in L4 to the theorem that that every p.r. function is in fact
expressible using a ¥; wif of L. And (ii) we show that Q can capture
any function expressible by a ¥; wif.)

2'. As before, Gldr(m,n) is primitive recursive.

3’. Then, using the fact that T can capture Gdly, we then construct a wif G
for which we can then show that T proves the formal wif which states:
Gr if and only if it is unprovable. (Theorem 26, a special case of the
Diagonalization Lemma.)

4’. Given T can prove that Gdl is true if and only if it is unprovable, we can
then show: if T is consistent, T ¥ Gr; and if T is w-consistent, T' ¥ —Gr.
(Section 15.5.)

Note that each of stages 1’, 2’ and 4’ of the semantic argument is significantly
harder than its counterpart in the first syntactic argument. That’s a real cost.
But we get a real benefit: we get a stronger incompleteness result, one that
depends only on assumptions about 7’s consistency rather than an assumption
about soundness. It is some version of this stronger result which is normally
called Godel’s First Theorem. And at the cost of additional complications, we
can use the Rosser variant on our syntactic argument to weaken the assumption
of w-consistency to that of mere consistency, to get the Gédel-Rosser Theorem:
to use our summary shorthand, if a theory is nice, it can’t be complete.

Still, given that we surely do want to be working with sound theories, you
might reasonably ask: is the possibility of an argument resting on weaker con-
sistency assumptions of more than technical, mathematical, interest?

Yes. (i) As we'll explain in the next Interlude, one of Gddel’s aims was to
confront Hilbert’s Programme, which gives us a context where we need to focus
on consistency rather than soundness assumptions. And (ii) as we’ll see before

148

About the First Theorem

that, in the very next chapter, Godel’s Second Incompleteness Theorem emerges
from reflecting on our syntactic argument.

(b) It is often said that these now familiar proofs of incompleteness depend
on self-reference. But we must be careful here. As we stressed before, the Godel
sentence Gp — which has the form Jy(y = "U7T A U(y)) — is semantically speaking
an entirely normal sentence of L 4. In particular, the embedded numeral "U™
refers to a number, not to some sentence. So G isn’t self-referential in a strict
sense (see Section 13.2).

Still, the long and complicated predicate U is of course constructed with an
eye on some Godel numbering convention. Then, when we diagonalize, we use the
numeral "UT which denotes the number which is fact the code number for U on
the same Godel numbering convention. Call this, if you like, ‘self-reference-via-
coding’. And of course, it is the background Gédel numbering convention which
guides our construction which gives the resulting Grp its importance. Purely
arithmetically, Gp is just a horribly long sentence of no evident interest.

These quick and obvious remarks suggest two related questions:

1. Can we find unprovable sentences of, e.g., PA (our benchmark first-order
theory of arithmetic) which are of purely arithmetical interest? Or at
least, can we find unprovable sentences of PA which are of some intrinsic
mathematical interest? Or are the unprovable sentences all rather like G,
sentences whose interest depends on coding tricks brought in from outside
arithmetic?

2. Do proofs of incompleteness always depend on self-reference-via-coding
or some close analogue?

Both these questions are rather vaguely posed (what counts as having ‘purely
arithmetical interest’? what counts as a ‘close analogue’ of an argument depend-
ing on self-reference-via-coding?). However, we’ll see later that there is a variety
of significantly different proofs of incompleteness. Though we will also argue
that while some of the various sentences that cannot be decided in PA may be of
intrinsic mathematical interest, perhaps none of them are of purely arithmetical
interest. We’ll return to these matters.

(¢) What do our core technical results show? Let’s run through a few supposed
implications:

(i) ‘“There are arithmetical truths which are not formally provable in any nice
theory’. Not so. Take any arithmetical truth ¢; this is, for a start, trivially
provable in the formal theory Q + ¢ (i.e. the theory we get by adding ¢ as a new
axiom to Q). But that theory is still nice. It is consistent (assuming Q is sound,
which it is); it is p.r. axiomatized (since has still got a finite list of axioms); it is
p.r. adequate (because Q is).

(ii) ‘For any nice theory T, there will be truths that T can’t prove but we can.’
Not so. Suppose Gr is a Godel-sentence for T. Then T ¥ Gp. If T is consistent,

149

Interlude

Gr will be true. And we can prove that fact, i.e. prove that if T is consistent,
Gr is true. But this doesn’t yield a proof of G, unless we have a proof that T is
consistent. And very often, we won’t have (e.g. because T is too complicated).?

(iii) ‘For some nice theories T, there are truths that T' can’t prove but we can:
and these truths can’t be proved in a formal theory we have reason to accept.
This is more cautious. First, it acknowledges that we can only establish some
Godel sentences to be true; second it acknowledges that given any truth we can
concoct some formal theory that proves it (hence the restriction to ‘natural’
theories which we have a reason to accept). But it’s still wrong.

For take the reasoning that we run through, from outside the theory T, to
convince ourselves that Gr is true, when we can do this. Then there’s nothing in
the First Theorem to stop us locating the principles involved in this reasoning,
and so constructing a formal theory (distinct from 7) which encapsulates these
principles, in which we prove Gr to be true. But we have good reason to accept
that formal theory, since it just regiments some aspects of how we reason anyway.

(d) So what can we infer from the First Theorem that if a theory is nice, it
can’t be complete? Well, that simple but deep Goédelian fact does sabotage, once
and for all, any project of trying to show that all basic arithmetical truths can
be thought of as deducible, in some standard deductive system, from some one
set of fundamental axioms which can be specified in a tidy, p.r., way.

And it therefore sabotages the logicist project in particular, at least in its clas-
sic form of aiming to deduce all arithmetic from a tidy set of principles which
are either logical axioms or definitions. Which at first sight seems a major blow;
for there surely is something very deeply attractive about the thought that in
exploring the truths of basic arithmetic, we are just exploring the deductive
consequences of the axiomatic truths we grasp in grasping the very ideas of the
natural number series and the of fundamental operations of addition and mul-
tiplication. Later, we’ll encounter a couple of fall-back positions for the logicist
which aim, in different ways, to preserve some of this core thought.

For the moment, then, let’s finish with the following observation. If the truths
of even basic arithmetic run beyond what is provable in any given formal system
which regiments a set of p.r. specifiable axioms and a set of deductive procedures,
then even arithmetic is — so to speak — inexhaustible. Mathematicians are not
going to run out of work, as they develop ever richer formal settings in which
to prove more truths. Which is, perhaps, a rather hopeful thought, and which
introduces another theme we will need to return to later.

But first, however, we need to move on to get more technicalities under our
belt. It is time to explore the Second Theorem.

2And the threat of inconsistency is not, in the general case, merely notional. To mention
a famous example, towards the end of the first edition of his Mathematical Logic (1940),
W. V. Quine proves Gdédel’s theorem for his system. Should we then conclude that the relevant
Godel sentence is true? We go wrong if we do: for it turns out that Quine’s formal theory in
that edition is inconsistent!

150

Bibliography

Godel’s papers are identified by their dates of first publication; but translated
titles are used and references are to the versions in the Collected Works, where
details of the original publications are to be found. Similarly, articles or books
by Frege, Hilbert etc. are identified by their original dates, but references are
whenever possible to standard English translations.

Aigner, M. and Zielger, G. M., 2004. Proofs from The Book. Berlin: Springer, 3rd edn.
Balaguer, M., 1998. Platonism and Anti-Platonism in Mathematics. New York: Oxford

University Press.

Boolos, G., Burgess, J., and Jeffrey, R., 2002. Computability and Logic. Cambridge:
Cambridge University Press, 4th edn.

Cantor, G., 1874. On a property of the set of real algebraic numbers. In Ewald 1996,
Vol. 2, pp. 839-843.

Cantor, G., 1891. On an elementary question in the theory of manifolds. In Ewald
1996, Vol. 2, pp. 920-922.

Carnap, R., 1934. Logische Syntax der Sprache. Vienna: Springer. Translated into
English as Carnap 1937.

Carnap, R., 1937. The Logical Syntax of Language. London: Paul, Trench.

Carnap, R., 1950. Logical Foundations of Probability. Chicago: Chicago University
Press.

Chabert, J.-L. (ed.), 1999. A History of Algorithms. Berlin: Springer.

Church, A., 1936. An unsolvable problem of elementary number theory. American
Journal of Mathematics, 58: 345-363.

Church, A., 1937. Review of Turing 1936. Journal of Symbolic Logic, 2: 42—43.

Cooper, S. B., 2004. Computability Theory. Boca Raton, Florida: Chapman and
Hall/CRC.

Craig, W., 1953. On axiomatizability within a system. Journal of Symbolic Logic, 18:
30-32.

Cutland, N. J., 1980. Computability. Cambridge: Cambridge University Press.

Davis, M., 1982. Why Godel didn’t have Church’s Thesis. Information and Control,
54: 3-24.

Dedekind, R., 1888. Was sind und was sollen die Zallen? In Ewald 1996, Vol. 2, pp.
790-833.

Earman, J., 1995. Bangs, Crunches, Whimpers, and Shrieks: Singularities and Acausal-
ities in Relativistic Spacetimes. New York: Oxford University Press.

Enderton, H. B. (ed.), 2002. A Mathematical Introduction to Logic. San Diego: Aca-
demic Press.

151

Bibliography

Epstein, R. L. and Carnielli, W. A., 2000. Computability: Computable Functions, Logic,
and the Foundations of Mathematics. Wadsworth.

Ewald, W. (ed.), 1996. From Kant to Hilbert. Oxford: Clarendon Press.

Feferman, S., 1984. Kurt godel: conviction and caution. Philosophia Naturalis, 21:
546-562. In Feferman 1998, pp. 150-164.

Feferman, S., 1998. In the Light of Reason. New York: Oxford University Press.
Field, H., 1989. Realism, Mathematics and Modality. Oxford: Basil Blackwell.
Fisher, A., 1982. Formal Number Theory and Computability. Oxford: Clarendon Press.

Franzén, T., 2005. Gddel’s Theorem: An Incomplete Guide to its Use and Abuse.
Wellesley, MA: A. K. Peters.

Frege, G., 1882. On the scientific justification of a conceptual notation. In Frege 1972,
pp- 83-89.

Frege, G., 1884. Die Grundlagen der Arithmetik. Breslau: Verlag von Wilhelm Koebner.
Translated as Frege 1950.

Frege, G., 1891. Function and concept. In Frege 1984, pp. 137-156.
Frege, G., 1950. The Foundations of Arithmetic. Basil Blackwell.

Frege, G., 1964. The Basic Laws of Arithmetic. Berkeley and Los Angeles: University
of California Press.

Frege, G., 1972. Conceptual Notation and related articles. Oxford: Clarendon Press.
Edited by Terrell Ward Bynum.

Gandy, R., 1988. The confluence of ideas in 1936. In R. Herken (ed.), The Universal
Turing Machine, pp. 55—-111. Oxford University Press.

Godel, K.; 1929. On the completeness of the calculus of logic. In Godel 1986, Vol. 1,
pp. 60-101.

Godel, K., 1931. On formally undecidable propositions of Principia Mathematica and
related systems I. In Gddel 1986, Vol. 1, pp. 144-195.

Godel, K., 1934. On undecidable propositions of formal mathematical systems. In
Godel 1986, Vol. 1, pp. 346-371.

Godel, K., 1986. Collected Works, Vol. 1: Publications 1929-1936. New York and
Oxford: Oxford University Press.

Godel, K., 2003. Collected Works, Vol. 5: Correspondence H-Z. Oxford: Clarendon
Press.

Héjek, P. and Pudldk, P., 1993. Metamathematics of First-Order Arithmetic. Berlin:
Springer.

Hilbert, D., 1918. Axiomatic thought. In Ewald 1996, Vol. 2, pp. 1107-1115.

Hilbert, D. and Ackermann, W., 1928. Grundzige der Theoretischen Logik. Berlin:
Springer. 2nd edn. 1938, translated as Principles of Mathematical Logic, New York:
Chesea Publishing Co., 1950.

Hilbert, D. and Bernays, P., 1934. Grundlagen der Mathematik, Vol I. Berlin: Springer.
Hunter, G., 1971. Metalogic. London: Macmillan.

Isles, D., 1992. What evidence is there that 2°553¢ is a natural number? Notre Dame
Journal of Formal Logic, 33: 465-480.

152

Bibliography

Kleene, S. C., 1936a. General recursive functions of natural numbers. Mathematische
Annalen, 112: 727-742.

Kleene, S. C., 1936b. A-definability and recursiveness. Duke Mathematical Journal, 2:
340-353.

Kleene, S. C., 1952. Introduction to Metamathematics. Amsterdam: North-Holland
Publishing Co.

Kleene, S. C., 1967. Mathematical Logic. New York: John Wiley.

Kleene, S. C., 1981. Origins of recursive function theory. Amnnals of the History of
Computing, 3: 52-67.

Lakatos, 1., 1976. Proofs and Refutations. Cambridge: Cambridge University Press.

Leary, C. C., 2000. A Friendly Introduction to Mathematical Logic. New Jersey: Pren-
tice Hall.

Lindstrom, P., 2003. Aspects of Incompleteness. A. K. Peters, 2nd edn.
Mendelson, E., 1997. Introduction to Mathematical Logic. Chapman and Hall, 4th edn.

Meyer, A. R. and Ritchie, D., 1967. Computational complexity and program structure.
Tech. Rep. RC-1817, IBM.

Peano, G., 1889. The Principles of Arithmetic. In van Heijenoort 1967, pp. 85-97.

Péter, R., 1934. Uber den zusammenhang der verschiedenen Begriffe der rekursiven
Funktionen. Mathematische Annalen, 110: 612-632.

Potter, M., 2004. Set Theory and its Philosophy. Oxford: Oxford University Press.
Quine, W. V., 1940. Mathematical Logic. Cambridge, MA: Harvard University Press.

Robinson, R., 1952. An essentially undecidable axiom system. In Proceedings of the
International Congress of Mathematicians, Cambridge, Mass., 1950, Vol. 1, pp. 729—
730. Providence, R.I.

Rosser, J. B., 1936. Extensions of some theorems of Godel and Church. Journal of
Symbolic Logic, pp. 230-235.

Russell, B., 1902. Letter to Frege. In van Heijenoort 1967, pp. 124-125.

Russell, B., 1903. The Principles of Mathematics. London: George Allen and Unwin.

Russell, B. and Whitehead, A. N., 1910-13. Principia Mathematica. Cambridge: Cam-
bridge University Press.

Shepherdson, J. C. and Sturgis, H. C.; 1963. Computability of recursive functions.
Journal of the Association for Computing Machinery, 10: 217-255.

Sieg, W., 1997. Step by recursive step: Church’s analysis of effective calculability.
Bulletin of Symbolic Logic, 3: 154-180.

Skolem, T., 1923. The foundations of elementary arithmetic established by means of
the recursive mode of thought, without the use of apparent variables ranging over
infinite domains. In van Heijenoort 1967, pp. 303-333.

Smorynski, C., 1977. The incompleteness theorems. In J. Barwise (ed.), Handbook of
Mathematical Logic, pp. 821-865. Amsterdam: North-Holland.

Smullyan, R. M., 1992. Gddel’s Incompleteness Theorems. Oxford: Oxford University
Press.

Tarski, A., 1933. Pojecie Prawdy w Jezykach Nauk Dedukcyjnych. Warsaw. Translated
into English in Tarksi 1956, pp. 152-278.

153

Bibliography

Tarski, A., 1956. Logic, Semantics, Metamathematics. Oxford: Clarendon Press.

Tarski, A., Mostowski, A., and Robinson, R., 1953. Undecidable Theories. Amsterdam:
North-Holland Publishing Co.

Tourlakis, G., 2002. A programming formalism for PR. www.cs.yorku.ca/Agt/papers/
loop-programs.ps.

Tourlakis, G., 2003. Lectures in Logic and Set Theory. Cambridge: Cambridge Univer-
sity Press.

Turing, A., 1936. On computable numbers, with an application to the Entschei-
dungsproblem. Proceedings of the London Mathematical Society, 42: 230-65. In
Copeland 2004, pp. 58-90.

van Heijenoort, J. (ed.), 1967. From Frege to Gédel. Cambridge, MA: Harvard Univer-
sity Press.

von Neumann, J., 1927. Zur Hilbertschen Beweistheorie. Mathematische Zeitschrift,
26: 1-46.

Wittgenstein, L., 1989. Wittgenstein’s 1939 Cambridge Lectures on the Foundations of
Mathematics. C. Diamond, ed. Chicago: Chicago University Press.

154

