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• The notion of effective decidability

• What’s a formalized language?

• What’s a formal axiomatized theory?

• What’s negation incompleteness?

• ‘Deductivism’ about basic arithmetic

• Two versions of Gödel’s First Incompleteness Theorem

• The First Theorem as an incompletability theorem

• How did Gödel prove (one version of) the First Incompleteness Theorem?

Why these notes? After all, I’ve already written a pretty detailed book, An Introduction to
Gödel’s Theorems (CUP, heavily corrected fourth printing 2009: henceforth IGT ). Surely that’s
more than enough to be going on with?

Ah, but there’s the snag. It is more than enough. In the writing, as is the way with these
things, the book grew far beyond the scope of the lecture notes from which it started. And while
I hope the result is still pretty accessible to someone prepared to put in the required time and
effort, there is – to be frank – a lot more in the book than is really needed by philosophers
meeting the incompleteness theorems for the first time, or indeed by mathematicians wanting
a brisk introduction. You might reasonably want to get your heads around only those technical
basics which are actually necessary for understanding how the theorems are proved and for
appreciating philosophical discussions about incompleteness.

So you really need a cut-down version of the book – an introduction to the Introduction!
Well, isn’t that what lectures are for? Indeed. But now there’s another snag. I haven’t got many
lectures to play with. So either (A) I crack on at a very fast pace (hard-core mathmo style),
cover those basics, but perhaps leave too many people puzzled and alarmed. Or (B) I do relaxed
talk’n’chalk,1 highlighting the Really Big Ideas, making sure everyone is grasping them as we go
along, but inevitably omit important stuff and leave quite a gap between what happens in the
lectures and what happens in the book. What to do?

I’m going for plan (B). But then you will probably need something to help bridge that gap
between lectures and book. Hence these notes.

The idea, then, is to give relaxed and very informal lectures, highlighting Really Big Ideas,
not worrying too much about depth or fine-detail (nor even worrying about getting through all
of the day’s intended menu of topics). These notes then expand things just enough, and give
pointers to relevant chunks of IGT. I hope these notes will to a fair extent be stand-alone, and
tell a briefer but still coherent story read by themselves: so occasionally I’ll copy a paragraph or
two from the book, rather than just refer to them.

1‘Talk and white-board marker’ doesn’t have quite the same ring, does it?
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But these notes do come with a Logical Health Warning: in the interests of relative brevity,
I’ll occasionally have to apply that good maxim ‘Where it doesn’t itch, don’t scratch’. In other
words, sometimes I’ll say things that are not in their ideal official form, but I hope in unworrying
ways that can be easily remedied if you are feeling pernickety.

The bullet-pointed headers to each helping of notes – to each episode, as I’ll call it – are there
to give pointers/reminders to the coverage.

A final introductory remark. If you notice any typos/thinkos in these notes and/or the latest
printing of IGT please let me know (peter smith@me.com). In due course, there will probably be
a more substantially revised second edition of the book; so I’d also be very grateful for any more
general comments about the book that might help me improve the book. Some further relevant
materials, plus the very latest versions of these notes, can be found at www.logicmatters.net.

1 Kurt Gödel (1906–1978)

The greatest logician of the twentieth century. Born in what is now Brno. Educated in Vienna.
Gödel left Austria for the USA in 1938, and spent rest of his life at the Institute of Advanced
Studies at Princeton. Always a perfectionist, after the mid 1940s he more or less stopped pub-
lishing.

Gödel’s doctoral dissertation, written when he was 23, established the completeness theorem
for the first-order predicate calculus (i.e. a standard proof system for first-order logic indeed
captures all the semantically valid inferences).

Later he would do immensely important and seminal work on set theory, as well as make
contributions to proof theory and to the philosophy of mathematics. He even wrote on models of
General Relativity. Talk of ‘Gödel’s Theorems’, however, typically refers to his two incompleteness
theorems in an epoch-making 1931 paper.2

For a brief overview of his life and work, see http://en.wikipedia.org/wiki/Kurt Gödel, or better
– though you’ll need to skip – http://plato.stanford.edu/entries/goedel. But there’s a very nice
full biography, John Dawson Logical Dilemmas (A. K. Peters, 1997), which is well worth reading
as it will also give you a real sense of the logical scene in the glory days of the 1930s.

2 ‘On formally undecidable propositions of Principia
Mathematica and related systems I’

This is the title of the 1931 paper which proves the First Incompleteness Theorem and states the
Second Theorem. (The ‘I’ indicates that it is the first part of what was going to be a two part
paper, with Part II spelling out the proof of the Second Theorem. But that was never written.
I’ll explain later why Gödel didn’t need to bother.)

Even the title gives us a number of things to explain. What’s a ‘formally undecidable propo-
sition’? What’s Principia Mathematica? – you’ve heard of it, no doubt, but what’s the project
of that triple-decker work? What counts as a ‘related system’? In fact, just what is meant by
‘system’ here? We’ll take the last question first.

2.1 ‘Systems’ – i.e. formal axiomatized theories

Our concern is with systems in the sense of formal axiomatized theories. T is such a theory if it
has (i) an effectively formalized language L, (ii) an effectively decidable set of axioms, (iii) an
effectively formalized proof-system in which we can deduce theorems from the axioms.

To explain, we first need a definition:

Defn. 1. A property P defined over a domain D is effectively decidable iff there’s an algorithm
(a finite set of instructions for a deterministic routine computation) for settling in a finite number
of steps, for any o ∈ D, whether o has property P – i.e. there’s a step-by-step mechanical routine

2Yes, Gödel proved a ‘completeness theorem’ and ‘incompleteness theorems’. By the end of this first episode
you should be able to tell the difference!
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for settling the issue, a suitably programmed deterministic computer could in principle do the
trick. A set Σ is effectively decidable if the property of being a member of that set is effectively
decidable.

Now take in turn those conditions (i) to (iii) for being a formal axiomatized theory.

(i) We’ll assume that the basic idea of a formal language L is familiar from earlier logic courses.
But there’s an issue about terminology we’d better clarify.

A language, for us, is a bunch of symbols with an interpretation: so a language, for us, has
a syntaxand a semantics. The syntax fixes which strings of symbols form terms, which form
wffs, and in particular which strings of symbols form sentences, i.e. closed wffs with no unbound
variables dangling free. The semantics assigns truth-conditions to each sentence of the language.

It is not unusual for logic-books to talk of a language when speaking just of uninterpreted
strings of symbols. But I rather deprecate that usage. Sometimes below I’ll talk about an ‘inter-
preted language’ for emphasis: but strictly speaking – in my idiolect – that’s redundant.

Now, to emphasize what is perhaps not emphasized in introductory courses,

Defn. 2. For an effectively formalized language L, the basic alphabet of L is to be finite, and the
syntactic rules of L must be such that the properties of being a term, a wff, a wff with one free
variable, a sentence, etc., are effectively decidable.

NB, the restriction to a finite basic vocabulary still allows us, e.g., to have an infinite supply of
variables: for example, given the two symbols ‘x’ and ‘′’ we can construct an infinite supply of
composite symbols x, x′, x′′, x′′′.3 As to the effective decidability of the properties of being a term,
etc., the point of setting up a formal language is usually (inter alia) precisely to put issues of
what is and isn’t a sentence beyond dispute, so we want to be able effectively to decide whether
a string of symbols is or is not a sentence. A formal interpreted language will also normally
have an intended semantics which gives the interpretation of L, fixing truth conditions for each
L-sentence – again, the semantics should be presented in such a way that we can mechanically
read off from the interpretation rules the interpretation of any given sentence.

(ii) A theory T built in a formalized language L will have a certain class of L-sentences picked out
as axioms.4 Again it is to be effectively decidable what’s an axiom. (After all, if we are making a
theory rigorous, but then can’t routinely tell whether a given sentence is one of its axioms, that
would – usually – be pretty pointless.)

(iii) Just laying down a bunch of axioms would normally be pretty idle if we can’t deduce
conclusions from them! So a formal axiomatized theory T comes equipped with a proof-system,
a set of rules for deducing further theorems from our initial axioms. But describing a proof-system
such that we couldn’t then routinely tell whether its rules are in fact being followed wouldn’t have
much point. Hence we naturally require that it is effectively decidable whether a given array of
wffs is indeed a proof from the axioms according to the rules. It doesn’t matter for our purposes
whether the proof-system is e.g. a Frege/Hilbert axiomatic logic, a natural deduction system, a
tree/tableau system – so long as it is indeed effectively checkable that a candidate proof-array
has the property of being properly constructed according to the rules.

So, in summary of (ii) and (iii),

Defn. 3. A formal axiomatized theory T has an effectively formalized language L, a certain
class of L-sentences picked out as axioms where it is decidable what’s an axiom, and it has a
proof-system such that it is effectively decidable whether a given array of wffs is indeed a proof
from the axioms according to the rules.

I say ‘array of wffs’ rather than simply ‘sequence of wffs’, because you might have come across
proof-systems where deductions are arranged in tree-form rather than in a linear one-proposition-
after-another form. The key thing is that, however proofs are laid out, we must be able to

3In some contexts, for technical purposes, there is interest in talking about formal languages with an uncount-
ably infinite number of primitives. That’s why the finiteness constraint needs to be made explicit.

4We’ll allow the class of axioms to be null. It should be familiar that we can trade in axioms for rules of
inference – though we can’t trade in all rules of inference for axioms if we want to be able to deduce anything: cf.
Lewis Carroll’s Achilles and the Tortoise!
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mechanically work out whether an alleged proof does indeed conform to rules of T ’s proof system.
As a reminder, recall we allow the limiting case of writing down an axiom ϕ by itself to count
as a one-line ‘proof’ with premiss ϕ and conclusion ϕ.

Careful, though! To say that, for a properly formalized theory T it must be effectively decid-
able whether a given purported T -proof of ϕ is indeed a kosher proof according to T ’s deduction
system is not, repeat not, to say that it must be effectively decidable whether ϕ has a proof. It
is one thing to be able to effectively check a proof once proposed, it is another thing to be able
to effectively decide in advance whether there exists a proof to be discovered. (It will turn out,
for example, that any formal axiomatized theory T containing a certain modicum of arithmetic
is such that, although you can mechanically check a purported proof of ϕ to see whether it is a
proof, there’s no general way of telling of an arbitrary ϕ whether it is provable in T or not.)

2.2 Notational conventions

Before going on, we should highlight a couple of useful notational conventions that we’ll be using
from now on in these notes (the same convention is used in IGT, and indeed is not an uncommon
one):

1. Particular expressions from formal systems – and abbreviations of them – will be in sans
serif type. Examples: SS0 + S0 = SSS0, ∀x Sx 6= 0. [Blackboard convention: overline formal
wffs when clarity demands. Bracketing will tend to be casual.]

2. Expressions in informal mathematics will be in ordinary serif font (with variables, function
letters etc. in italics). Examples: 2 + 1 = 3, n+m = m+ n, S(x+ y) = x+ Sy.

3. Greek letters, as in the ‘ϕ’ we’ve just used, are schematic variables in the metalanguage in
which we talk about our formal systems.

For more explanations, see IGT, §§2.2, 3.1–3.3, 4.1.

2.3 ‘Formally undecidable propositions’ and negation incompleteness

Defn. 4. ‘T ` ϕ’ says: there is a formal deduction in T ’s proof-system from T -axioms to the
formula ϕ as conclusion. If ϕ is a sentence and T ` ϕ, then ϕ is said to be a theorem of T .

So NB, ‘`’ officially signifies provability in T , a formal syntactically definable relation, not se-
mantic entailment.

Defn. 5. If T is a theory, and ϕ is some sentence of the language of that theory, then T formally
decides ϕ iff either T ` ϕ or T ` ¬ϕ.

Hence,

Defn. 6. A sentence ϕ is formally undecidable by T iff T 0 ϕ and T 0 ¬ϕ.

Another bit of terminology:

Defn. 7. A theory T is negation complete iff it formally decides every closed wff of its language
– i.e. for every sentence ϕ, T ` ϕ or T ` ¬ϕ

Trivially, then, there are ‘formally undecidable propositions’ in T if and only if T isn’t negation
complete.

Of course, it is very easy to construct negation-incomplete theories: just leave out some
necessary basic assumptions about the matter in hand! But suppose we are trying to fully pin
down some body of truths using a formal theory. We fix on an interpreted formal language L apt
for expressing such truths. And then we’d ideally like to build a theory T in L, whose axioms
are such that when (but only when) ϕ is true, T ` ϕ. So, making the classical assumption that
either ϕ is true or ¬ϕ is true, we’d like T to be such that either T ` ϕ or T ` ¬ϕ. Negation
completeness, then, is a natural desideratum for theories.

For more explanations, see IGT, §3.4.
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2.4 Deductivism, logicism, and Principia

The elementary arithmetic of successor (‘next number’), addition, and multiplication is child’s
play (literally!). It is entirely plausible to suppose that, whether the answers are readily available
to us or not, questions posed in what we’ll call the language of basic arithmetic5 have entirely
determinate answers. Here ‘the language of basic arithmetic’ means a language which has terms
for the natural numbers (for zero and its successors, i.e. for 0, S0, SS0, SSS0, . . . – so having a
term for zero and a sign for the successor function is enough), plus function signs for addition
and multiplication, plus the usual first order logical apparatus.

The answers to questions posed in the the language of basic arithmetic are surely ‘fixed’ by
(a) the fundamental zero-and-its-successors structure of the natural number series (with zero not
being a successor, every number having a successor, distinct numbers having distinct successors,
and so the sequence of zero and its successors never circling round but marching off for ever)
plus (b) the nature of addition and multiplication as given by the school-room explanations.

So it is surely plausible to suppose that we should be able lay down a bunch of axioms which
characterize the number series, addition and multiplication (which codify what we teach the
kids), and that these axioms should settle every truth of basic arithmetic, in the sense that every
such truth of the language of successor, addition, and multiplication is logically provable from
these axioms. For want of a standard label, call this view deductivism about basic arithmetic.

What could be the status of the axioms? I suppose you might, for example, be a Kantian
deductivist who holds that the axioms encapsulate ‘intuitions’ in which we grasp the fundamental
structure of the numbers and the nature of addition and multiplication, where these ‘intuitions’
are a special cognitive achievement in which we somehow represent to ourselves the arithmetical
world.

But talk of intuition is very puzzling and problematic. So we might well be tempted instead
by Frege’s view that the axioms are analytic, truths of logic-plus-definitions. On this view, we
don’t need Kantian ‘intuitions’ going beyond logic: logical reasoning from definitions is enough.
The Fregean brand of deductivism is standardly dubbed ‘logicism’.

Famously, Frege’s attempt to be a logicist deductivist about arithmetic (in fact, for him,
more than basic arithmetic) hit the rocks, because – as Russell showed – his logical system is in
fact inconsistent in a pretty elementary way (it is beset by Russell’s Paradox). That devastated
Frege, but Russell was undaunted, and still gripped by deductivist ambitions he wrote:

All mathematics [yep! – all mathematics] deals exclusively with concepts definable
in terms of a very small number of logical concepts, and . . . all its propositions are
deducible from a very small number of fundamental logical principles.

That’s a big promisory note in Russell’s The Principles of Mathematics (1903). And Principia
Mathematica (three volumes, though unfinished, 1910, 1912, 1913) is Russell’s attempt with
Whitehead to make good on that promise. The project is to set down some logical axioms and
definitions and deduce the laws of basic arithmetic (and then more) from them. Famously, they
eventually get to prove that 1 + 1 = 2 at *110.643 (Volume II, page 86), accompanied by the
wry comment, ‘The above proposition is occasionally useful’.

2.5 Gödel’s bomb

Principia, frankly, is a bit of a mess – in terms of clarity and rigour, it’s quite a step backwards
from Frege. And there are technical complications which mean that not all Principia’s axioms
are clearly ‘logical’ even in a stretched sense. In particular, there’s an appeal to a brute-force
Axiom of Infinity which in effect states that there is an infinite number of objects; and then
there is the notoriously dodgy Axiom of Reducibility.6. But leave those worries aside – they pale
into insignificance compared with the bomb exploded by Gödel.

5The interpreted language, of course – or no questions are posed!
6Principia without the dodgy Axiom is a ‘type theory’ which is quite nicely motivated, but you can’t recon-

struct much maths in it: the dodgy Axiom of Reducibility allows you to reconstruct classical maths by pretending
that the type distinctions by which we are supposed to avoid paradox can be ignored when we need to do so: for
more on this see http://plato.stanford.edu/entries/principia-mathematica/
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For Gödel’s First Incompleteness Theorem shows that any form of deductivism about even
just basic arithmetic (not just Principia’s) is in trouble.

Why? Well the proponent of deductivism about basic arithmetic (logicist or otherwise) wants
to pin down first-order arithmetical truths about successor/addition/multiplication, without leav-
ing any out: so he wants to give a negation-complete theory. And there can’t be such a theory.
Gödel’s First Theorem says – at a very rough first shot – that nice theories containing enough
basic arithmetic are always negation incomplete.

So varieties of deductivism, and logicism in particular, must always fail. Which is a rather
stunning result!7

3 The First Incompleteness Theorem, a bit more carefully

3.1 Two versions of the First Theorem

Three more definitions. First, let’s be a bit more careful about that idea of ‘the language of basic
arithmetic’:

Defn. 8. The formalized interpreted language L contains the language of basic arithmetic if L
has at least the standard first-order logical apparatus (including identity), has a term ‘0’ which
denotes zero and function symbols for the successor, addition and multiplication functions defined
over numbers – either built-in as primitives or introduced by definition – and has a predicate whose
extension is the natural numbers.

The point of that last clause is that if ‘N’ is a predicate satisfied just by numbers, then the
wff ∀x(Nx→ ϕ(x)) says that every number satisfies ϕ; so L can make general claims specifically
about natural numbers. (If L is already defined to be a language whose quantifiers run over the
numbers, then you could use ‘x = x’ for ‘N’, or – equivalently – just forget about it!)

Defn. 9. A theory T is sound iff its axioms are true (on the interpretation built in to T ’s
language), and its logic is truth-preserving, so all its theorems are true.

Defn. 10. A theory T is consistent iff there is no ϕ such that T ` ϕ and T ` ¬ϕ,

where ‘¬’ is T ’s negation operator. In a classical setting, if T is inconsistent, then T ` ψ for all
ψ. And of course, trivially, soundness implies consistency.

Gödel now proves (more accurately, gives us most of the materials to prove) the following:

Theorem 1. If T is a sound formal axiomatized theory whose language contains the language
of basic arithmetic, then there will be a true sentence GT of basic arithmetic such that T 0 GT

and T 0 ¬GT , so T is negation incomplete.

However that isn’t what is usually referred to as the First Incompleteness Theorem. For
note, Theorem 1 tells us what follows from a semantic assumption, namely that T is sound.
And soundness is defined in terms of truth. Now, post-Tarski, we aren’t particularly scared
of the notion of the truth. To be sure, there are issues about how best to treat the notion
formally, to preserve as many as possible of our pre-formal intuitions while blocking versions of
the Liar Paradox. But most of us think that we don’t have to regard the general idea of truth as
metaphysically loaded in an obscure and worrying way. But Gödel was writing at a time when,
for various reasons (think logical positivism!), the very idea of truth-in-mathematics was under
some suspicion. There were other reasons too for wanting to steer away from semantic notions,
reasons to do with ‘Hilbert’s program’ about which more anon. So it was extremely important
to Gödel to show that you don’t need to deploy any semantic notions to get (again roughly) the
following result:

7‘Hold on! I’ve heard of neo-logicism which has its enthusiastic advocates. How can that be so if Gödel showed
that logicism is a dead duck?’ Well, we might still like the idea that some logical principles plus what are more-
or-less definitions (in a language richer than that of first-order logic) together semantically entail all arithmetical
truths, while allowing that we can’t capture the relevant entailment relation in a single properly axiomatized
deductive system of logic. Then the resulting overall system of arithmetic won’t count as a formal axiomatized
theory of all arithmetical truth since its logic is not formalizable, and Gödel’s theorems don’t apply.
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Theorem 2. For any consistent formal axiomatized theory T which can prove a certain modest
amount of arithmetic (and has a certain additional desirable property that any sensible formalized
arithmetic will share), there is a sentence of basic arithmetic GT such that T 0 GT and T 0 ¬GT ,
so T is negation incomplete.

Of course, we’ll need to be a lot more explicit in due course, but that indicates the general
character of Gödel’s result. The ‘contains a modest amount of arithmetic’ is what makes a theory
sufficiently related to Principia’s for the theorem to apply – remember the title of Gödel’s paper!
I’ll not pause in this first episode to spell out that just how much arithmetic that is, but we’ll find
that it is stunningly little. (Nor will I pause now to explain that ‘additional desirable property’
condition. We’ll meet it in due course, but also explain how – by a cunning trick discovered by
J. Barkley Rosser in 1936 – how we can drop that condition.)

For the present, however, let’s concentrate on the semantic version of Gödel’s theorem, i.e.
Theorem 1.

3.2 Theorem 1 is better called an incompletability theorem

Suppose T is a sound theory which can express claims of basic arithmetic. Then we can find a
true GT such that T 0 GT and T 0 ¬GT . Of course, that doesn’t mean that GT is ‘absolutely
unprovable’, whatever that could mean. It just means that GT -is-unprovable-in-T .

Now, we might want to ‘repair the gap’ in T by adding GT as a new axiom. So consider the
theory U = T +GT (to use an obvious notation). Then (i) U is still sound (for the old T -axioms
are true, the added new axiom is true, and the logic is still truth-preserving). (ii) U is still a
properly formalized theory, since adding an specified axiom to T doesn’t make it undecidable
what is an axiom of the augmented theory. (iii) U still can express claims of basic arithmetic. So
Gödel’s First Incompleteness Theorem applies, and we can find a sentence GU such that U 0 GU

and U 0 ¬GU . And since U is stronger than T , we have a fortiori, T 0 GU and T 0 ¬GU . In
other words, ‘repairing the gap’ in T by adding GT as a new axiom leaves some other sentences
that are undecidable in T still undecidable in the augmented theory.

And so it goes. Keep chucking more and more additional true axioms at T and our theory still
remains negation-incomplete, unless it stops being sound or stops being effectively axiomatizable.
In a good sense, T is incompletable.

4 How did Gödel prove the First Theorem (in the semantic
version)?

Let’s take a first pass at outlining how Gödel proved the semantic version of his incompleteness
theorem. Obviously we’ll be coming back to this in a lot more detail later, but we can give just
a flavour of what’s going on. We kick off with two natural definitions.

Defn. 11. If L contains the language of basic arithmetic, so it contains a term 0 for zero and a
function expression S for the successor function, then the terms 0, S0, SS0, SSS0, . . . , are L’s
standard numerals, and we’ll use ‘n’ to abbreviate the standard numeral for n.8

(The overlining convention to indicate standard numerals is a pretty standard one.) Henceforth,
we’ll assume that the language of any theory we are interested in contains the language of basic
arithmetic and hence has standard numerals denoting the numbers.

Defn. 12. The formal wff ϕ(x) of the interpreted language L expresses the numerical property
P iff ϕ(n) is true on interpretation just when n has property P . Similarly, the formal wff ψ(x, y)
expresses the numerical relation R iff ψ(m, n) is true just when m has relation R to n. And the
formal wff χ(x, y) expresses the numerical function f iff χ(m, n) is true just when f(m) = n.

The generalization to many-place relations/many-argument functions is obvious.
Then the proof of Theorem 1 in outline form goes as follows:

8So what is the relation between 0 and 0?
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1. Set up a Gödel numbering We are nowadays familiar with the idea that all kinds of data
can be coded up using numbers. So suppose we set up a sensible (effective) way of coding
wffs and sequences of wffs by natural numbers – so-called Gödel-numbering. Then, given
a formal axiomatized theory T , we can define e.g. the numerical properties Wff T , SentT
and Prf T where

Wff T (n) iff n is the code number of a T -wff.
SentT (n) iff n is the code number of a T -sentence.
Prf T (m,n) iffm is the code number of a T -proof of the T -sentence with code number n.

2. Expressing such properties/relations inside T We next show that such properties/relations
can be expressed inside T by wffs of the formal theory belonging to the language of basic
arithmetic [takes a bit of work!]. We show in particular how to build – just out of the
materials of the language of basic arithmetic – an arithmetic formal wff we’ll abbreviate
PrfT (x, y) that expresses the property Prf T , so PrfT (m, n) is true exactly when Prf T (m,n),
i.e. when m is the code number of a T -proof of the wff with number n. What we rely on
is that the language of basic arithmetic is good at expressing decidable properties and
relations, and relations like Prf T (m,n) are decidable because T is a formalized theory.

3. The construction: building a Gödel sentence Now put ProvT (n) =def ∃xPrfT (x, n). This
says that the wff with number n is a theorem.

Next – the really cunning bit, but surprisingly easy – we show how to build a ‘Gödel’
sentence GT such that GT is in fact equivalent to ¬ProvT (g), where the standard numeral
‘g’ is the numeral denoting the code-number for GT . In other words (think about it!!), GT

is true if and only if GT isn’t a theorem.

4. The argument Suppose T ` GT . Then GT would be a theorem, and hence GT would be
false, so T would have a false theorem and hence not be sound, contrary to hypothesis. So
T 0 GT . So GT is true. So ¬GT is false and T , being sound, can’t prove it. Hence we also
have T 0 ¬GT .

There are big gaps to fill there, but that’s the overall strategy. (The proof of Theorem 2 then
shows that we can get the same result using the same construction of a Gödel sentence by
dropping the assumption that T is sound, so long as we require a bit more by way of what
the theory T can prove, and require T to have that currently mysterious ‘additional desirable
property’. More about this in due course)

Of course, you might immediately think that there is something a bit worrying about our
sketch. For basically, I’m saying we can construct an arithmetic sentence in T that, via the Gödel
number coding, says ‘I am not provable in T ’. But shouldn’t we be suspicious about that? After
all, we know we get into paradox if we try to play with sentences that say ‘I am not true’. So why
does the self-reference in the Liar sentence lead to paradox, while the self-reference in Gödel’s
proof give us a theorem? A very good question. I hope that over the coming episodes, the answer
to that good question will become clear!

Now read IGT, §§1.1–3.4. (“But hold on! What’s the Second Theorem that you mentioned?”
Good question – the opening chapter of IGT will tell you: but here in these notes we’ll maintain
the suspense as far as Episode 10!)
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Gödel Without (Too Many) Tears – 2

Incompleteness and undecidability

Peter Smith

University of Cambridge

January 16, 2011

PDFs of this series of notes are published on my website www.logicmatters.net and then escape into the

wild to roam uncontrolled! Visit the site to get the latest version, and perhaps offer comments, etc.

• The idea of a decidable theory

• Thm. 3: Any consistent, negation-complete, axiomatized formal theory is decidable

• Expressing and capturing properties, relations and functions

• The idea of a sufficiently strong theory

• Thm. 4: No consistent, sufficiently strong, axiomatized formal theory is decidable

• Why the argument for Thm. 4 involves ‘diagonalization’

• Hence, from Thms 3 and 4: A consistent, sufficiently strong, axiomatized formal theory
cannot be negation complete

• Two corollaries, about the undecidability of first-order logic, and the unaxiomatizability of
True Basic Arithmetic

In Episode 1, we introduced the very idea of a negation-incomplete formalized theory T . We
noted that if we are aiming to construct a theory of basic arithmetic, we’ll ideally like the theory
to be able to prove all the truths expressible in the language of basic arithmetic, and hence to be
negation complete (at least as far as statements of basic arithmetic are concerned). But Gödel’s
First Incompleteness Theorem says, very roughly, that that’s impossible: a nice enough theory
T will always be negation incomplete for basic arithmetic.

Now, the Theorem comes in two flavours, depending on whether we cash out the idea of being
‘nice enough’ in terms of (i) the semantic idea of T ’s being a sound theory which uses enough of
the language of arithmetic, or (ii) the idea of T ’s being a consistent theory which proves enough
arithmetic. And we noted that Gödel’s own proofs, of either flavour, go via the idea of numerically
coding up inside arithmetic syntactic facts about what can be proved in T , and then constructing
an arithmetical sentence that – via the coding – in effect ‘says’ I am not provable in T .

We ended by noting that, at least at the level of arm-waving description of Episode 1, the
Gödelian construction might look a bit worrying. After all, we all know that self-reference is
dangerous – think Liar Paradox! So is Gödel’s construction entirely legitimate?

As I hope will become clear as we go along, it certainly is. But first I think it might well
go a little way towards calming anxieties that some illegitimate trick is being pulled, and it
is certainly of intrinsic interest, if we give a different sort of proof of incompleteness, one that
doesn’t go via any explicitly self-referential construction. This proof will also introduce the idea
of a diagonalization argument : and as we will later see that it is in fact diagonalization rather
than self-reference which is really the key to Gödel’s own proof.

So now read on . . .

5 Negation completeness and decidability

Let’s start with another definition (sections, definitions and theorems will be numbered consec-
utively through these notes, to make cross-reference easier):
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Defn. 13. A theory T is decidable iff the property of being a theorem of T is an effectively
decidable property – i.e. iff there is a mechanical procedure for determining, for any given sentence
ϕ of T ’s language, whether T ` ϕ.

It’s then easy to show:

Theorem 3. Any consistent, negation-complete, formal axiomatized theory T is decidable.

Proof For convenience, we’ll assume T ’s proof-system is a Frege/Hilbert axiomatic logic, where
proofs are just linear sequences of wffs (it will be obvious how to generalize the argument to
other kinds of proof systems, e.g. where proof arrays are arranged as trees of some kind).

Recall, we stipulated (in Defns 2, 3) that if T is a properly formalized theory, its formalized
language L has a finite number of basic symbols. Now, we can evidently put those basic symbols
in some kind of ‘alphabetical order’, and then start mechanically listing off all the possible strings
of symbols in some kind of order – e.g. the one-symbol strings, followed by the finite number of
two-symbol strings in ‘dictionary’ order, followed by the finite number of three-symbol strings in
‘dictionary’ order, followed by the four-symbol strings, etc., etc.

Now, as we go along, generating sequences of symbols, it will be a mechanical matter to
decide whether a given string is in fact a sequence of wffs. And if it is, it will be a mechanical
matter to decide whether the sequence of wffs is a T -proof, i.e. check whether each wff is either
an axiom or follows from earlier wffs in the sequence by one of T ’s rules of inference. (That’s all
effectively decidable in a properly formalized theory, by Defns 2, 3). If the sequence is indeed a
kosher, well-constructed, proof, then list its last wff ϕ, i.e. the theorem proved.

So, we can in this way, start mechanically generating a list of all T -theorems (any T -theorem
has a proof, and by churning through all possible strings of symbols, we eventually churn through
to reach any possible proof).

And that enables us to decide, of an arbitrary sentence ϕ of our consistent, negation-complete
T , whether it is indeed a T -theorem. Just start dumbly listing all the T -theorems. Since T is
negation complete, eventually either ϕ or ¬ϕ turns up (and then you can stop!). If ϕ turns up,
declare it to be a theorem. If ¬ϕ turns up, then since T is consistent, we can declare that ϕ is
not a theorem.

Hence, there is a dumbly mechanical ‘wait and see’ procedure for deciding whether ϕ is a
T -theorem, which is guaranteed to deliver a verdict in a finite number of steps. 2

We are, of course, relying here on a very, very, relaxed notion of effective decidability-in-principle
in Defn. 1, where we aren’t working under any practical time constraints or constraints on
available memory etc. (so note, ‘effective’ doesn’t mean ‘practically efficacious’ or ‘efficient’ !).
We might have to twiddle our thumbs for an immense time before one of ϕ or ¬ϕ turns up. Still,
our ‘wait and see’ method is guaranteed in this case to produce a result in finite time, in an
entirely mechanical way – so this counts as an effectively computable procedure in the official
generous sense (explained more in IGT, §2.2).

6 Capturing numerical properties in a theory

Here’s an equivalent way of rewriting the earlier Defn. 12:

Defn. 14. A property P is expressed by the open wff ϕ(x) with one free variable in a language
L which contains the language of basic arithmetic iff, for every n,

i. if n has the property P , then ϕ(n) is true,
ii. if n does not have the property P , then ¬ϕ(n) is true.

A two-place relation R is expressed by the open wff ψ(x, y) with two free variables iff, for every
m,n,

i. if m is R to n, then ψ(m, n) is true,
ii. if m is not R to n, then ¬ψ(m, n) is true.

A one-place function f is expressed by the open wff χ(x, y) with two free variables iff, for every
m,n,

i. if f(m) = n, then χ(m, n) is true,
ii. if f(m) 6= n, then ¬χ(m, n) is true.
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(Recall, n indicates L’s standard numeral for n. And we won’t fuss about the obvious extension
to many-place relations and functions.) Now we want a new companion definition:

Defn. 15. The theory T captures the property P by the open wff ϕ(x) iff, for any n,
i. if n has the property P , then T ` ϕ(n),
ii. if n does not have the property P , then T ` ¬ϕ(n).

The theory T captures the two-place relation R by the open wff ψ(x, y) iff, for any m,n,
i. if m is R to n, then T ` ψ(m, n),
ii. if m is not R to n, then T ` ¬ψ(m, n)

The theory T captures the one-place function f by the open wff χ(x, y) iff, for any m,n,
i. if f(m) = n, then T ` χ(m, n),
ii. if f(m) 6= n, then T ` ¬χ(m, n).

So: what a theory can express depends on the richness of its language; what a theory can capture
(mnemonic: case-by-case prove9) depends on the richness of its axioms and rules of inferences.

Ideally, of course, we’ll want any theory that aims to deal with arithmetic not just to express
but to capture lots of arithmetical properties, i.e. to prove which particular numbers have or lack
these properties.

But what sort of properties do we want to capture? Well, suppose that P is some effectively
decidable property of numbers, i.e. one for which there is a mechanical procedure for deciding,
given a natural number n, whether n has property P or not (see Defn. 1 again). So we can, in
principle, run the procedure to decide whether n has this property P . Now, when we construct
a formal theory of the arithmetic of the natural numbers, we will surely want deductions inside
our theory to be able to track, case by case, any mechanical calculation that we can already
perform informally. We don’t want going formal to diminish our ability to determine whether n
has a property P . Formalization aims at regimenting what we can in principle already do: it isn’t
supposed to hobble our efforts. So while we might have some passing interest in more limited
theories, we might naturally aim for a formal theory T which at least (a) is able to frame some
open wff ϕ(x) which expresses the decidable property P , and (b) is such that if n has property
P , T ` ϕ(n), and if n does not have property P , T ` ¬ϕ(n). In short, we naturally will want T
to capture P in the sense of our definition.

The working suggestion therefore is that, if P is any effectively decidable property of numbers,
we ideally want a competent theory of arithmetic T to be able to capture P . Which motivates
the following definition:

Defn. 16. A formal theory T including some arithmetic is sufficiently strong iff it captures all
decidable numerical properties.

(It would be equally natural, of course, to require the theory also capture all decidable relations
and all computable functions – but for present purposes we don’t need to worry about that!)

To repeat: it seems a reasonable and desirable condition on an ideal formal theory of the
arithmetic of the natural numbers that it be sufficiently strong: in effect, when we can (or at
least, given world enough and time, could) decide whether a number has a certain property, the
theory can do it.

7 Sufficiently strong theories are undecidable

We now prove a lovely theorem:

Theorem 4. No consistent, sufficiently strong, axiomatized formal theory is decidable.

Proof We suppose T is a consistent and sufficiently strong axiomatized theory yet also decid-
able, and derive a contradiction.

If T is sufficiently strong, it must have a supply of open wffs. And by Defn 2, it must in fact
be decidable what strings of symbols are open T -wffs with the free variable ‘x’. And we can use
the dodge in the proof of Theorem 3 to start mechanically listing such wffs

9Many say ‘represent’ instead of my ‘capture’.
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ϕ0(x), ϕ1(x), ϕ2(x), ϕ3(x), . . . .

For we can just churn out all the strings of symbols of T ’s language, and mechanically select out
the wffs with free variable ‘x’.

Now we can introduce the following definition:

n has the property D if and only if T ` ¬ϕn(n).

That’s a perfectly coherent stipulation. Of course, property D isn’t presented in the familiar way
in which we ordinarily present properties of numbers: but our definition in a quite determinate
way tells us whether n has the property D or not, and that’s all we will need.10

Now for the key observation: our supposition that T is a decidable theory entails that D is
an effectively decidable property of numbers.

Why? Well, given any number n, it will be a mechanical matter to start listing off the open
wffs until we get to the n-th one, ϕn(x). Then it is a mechanical matter to form the numeral
n, substitute it for the variable and prefix a negation sign. Now we just apply the supposed
mechanical procedure for deciding whether a sentence is a T -theorem to test whether the wff
¬ϕn(n) is a theorem. So, on our current assumptions, there is an algorithm for deciding whether
n has the property D.

Since, by hypothesis, the theory T is sufficiently strong, it can capture all decidable numerical
properties. So it follows, in particular, that D is capturable by some open wff. This wff must of
course eventually occur somewhere in our list of the ϕ(x). Let’s suppose the d-th wff does the
trick: that is to say, property D is captured by ϕd(x).

It is now entirely routine to get out a contradiction. For, just by definition, to say that ϕd(x)
captures D means that for any n,

if n has the property D, T ` ϕd(n),
if n doesn’t have the property D, T ` ¬ϕd(n).

So taking in particular the case n = d, we have

i. if d has the property D, T ` ϕd(d),
ii. if d doesn’t have the property D, T ` ¬ϕd(d).

But note that our initial definition of the property D implies for the particular case n = d:

iii. d has the property D if and only if T ` ¬ϕd(d).

From (ii) and (iii), it follows that whether d has property D or not, the wff ¬ϕd(d) is a theorem
either way. So by (iii) again, d does have property D, hence by (i) the wff ϕd(d) must be a
theorem too. So a wff and its negation are both theorems of T . Therefore T is inconsistent,
contradicting our initial assumption that T is consistent.

In sum, the supposition that T is a consistent and sufficiently strong axiomatized formal
theory of arithmetic and decidable leads to contradiction. 2

So, if T is properly formalized, consistent and can prove enough arithmetic, then there is no way
of mechanically determining what’s a T -theorem and what isn’t. We could, I suppose, call this
result a non-trivialization theorem. We can’t trivialize an interesting area of mathematics which
contains enough arithmetic by regimenting it into a theory T , and then just pass T over to a
computer to tell us what’s a theorem and what isn’t.

8 ‘Diagonalization’

It is worth remarking on the key construction here. We take a sequence of wffs ϕn(x) (for
n = 0, 1, 2, . . .) and then considering the (negations of) the wffs ϕ0(0), ϕ1(1), ϕ2(2), etc.11 This
sort of thing is called a diagonalizing. Why?

10And note too that the fact that our mode of presentation of the property D is peculiar, is not ‘ordinarily
arithmetical’, leaves it quite open that there could be an alternative mode of presentation of the same property
which is ‘ordinarily arithmetical’. In fact, Gödel coding tricks will ensure that there will be.

11Reality check: what is the relation between ϕ(0) and ϕ(0)?
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Well just imagine the square array you get by writing ϕ0(0), ϕ0(1), ϕ0(2), etc. in the first
row, ϕ1(0), ϕ1(1), ϕ1(2), etc. in the next row, ϕ2(0), ϕ2(1), ϕ2(2) etc. in the next row, and so
on [go on, draw the diagram!]. Then the wffs of the form ϕn(n) lie down the diagonal.

We’ll be meeting some other instances of this kind of construction. And it is diagonalization
in this sense that is really at the heart of Gödel’s incompleteness proof.

9 Incompleteness again

Theorem 3 says: any consistent, negation-complete, axiomatized formal theory is decidable. The-
orem 4 says: no consistent, sufficiently strong, axiomatized formal theory is decidable. It imme-
diately follows that

Theorem 5. A consistent, sufficiently strong, axiomatized formal theory cannot be negation
complete.

Wonderful! A seemingly remarkable theorem proved remarkably quickly.
Though note that – unlike Gödel’s own result – Theorem 5 doesn’t actually yield a specific

undecidable sentence for a given theory T . And more importantly, the interest of the theorem
entirely depends on the informal notion of a sufficiently strong theory being in good order.

Well, obviously, I wouldn’t have written this episode if the notion of sufficient strength was
intrinsically problematic. So there is a major promisory note implicit note here: we can give a
decent sharp account of what makes for a decidable property in order to (i) clarify the notion
of sufficient strength, while (ii) still making it plausible that we want sufficiently strong theories
in this clarified sense. And indeed the trick can be done. However, supplying and defending the
sharp account of the notion of decidability takes quite a lot of effort! And it arguably takes more
effort – or at least, more new ideas in addition to those already sketched – compared with proving
incompleteness by Gödel’s original method. So over the next episodes, we are going to revert to
exploring Gödel’s route to the incompleteness theorems.

10 A corollary about the decidability of logic

To finish, it is worth noting two corollaries of our results so far. But before reading on, do
double-check that you fully understand the three theorems in this episode so far.

Happy? Then first, here’s a corollary from our undecidability result. We start an obvious
definition:

Defn. 17. A formalized logic is decidable iff the property of being a theorem of the logic – i.e. a
sentence deducible from no premisses – is decidable.

It is familiar that standard propositional logic is decidable (doing a truth-table test or a tree
test decides what’s a tautology, and the theorems are all and only the tautologies). It is familiar
too that there’s no obvious analogue to the truth-table test for deciding of an arbitrary sentence
whether it is theorem of standard first-order logic (a.k.a. the predicate calculus). But is there
some other decision procedure?

Well, Theorem 4 quickly implies:

Theorem 6. If there is a consistent theory with a first-order logic which is sufficiently strong
and has a finite number of axioms, then first-order logic is undecidable.

Proof Suppose Q is a consistent finitely axiomatized theory with a first-order logic and which
is sufficiently strong. Since it is finitely axiomatized, we can wrap all its axioms together into one
long conjunction, Q̂. And then, trivially, Q ` ϕ if and only if ` Q̂→ ϕ; i.e. we can prove ϕ inside
Q if and only if a certain related conditional is logically provable from no assumptions. So if (1)
the logic were decidable, then (2) we could mechanically tell whether the conditional Q̂→ ϕ is a
logical theorem, hence (3) we could mechanically decide whether ϕ is a Q-theorem. But since Q
is a consistent sufficiently strong formalized theory (3) is impossible. So (1) is impossible – the
logic must be undecidable. 2
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Much later, we’ll find that there is indeed a consistent, finitely axiomatized, weak arithmetic
with a first-order logic, which is sufficiently strong – the so-called Robinson Arithmetic Q fits
the bill. So that will settle it: first-order logic really is undecidable.

11 A corollary about axiomatizability

Again we start with definitions:

Defn. 18. A set of sentences Σ can be formally axiomatized iff there is an axiomatized formal
theory T such that Σ is the set of T -theorems.

Defn. 19. An interpreted language L is sufficiently expressive iff, for every decidable property
P of numbers, there is a predicate ϕ(x) which expresses P .

Then we immediately have

Theorem 7. The set of truths of a sufficiently expressive language L is not formally axiomati-
zable by a theory framed in L.

Proof Suppose, for reductio, that T is (i) a formalized theory in language L which proves all the
truths expressible in L. T will (ii) then be negation complete (since by hypothesis it will prove
the true one out of any ϕ/¬ϕ pair). But also T will (iii) be sufficiently strong: for by hypothesis,
if P is a decidable property, T can express it using some ϕ(x), and it proves all truths so if ϕ(n)
is true (so n is P ) then T ` ϕ(n), and if ¬ϕ(n) is true (so n is not P ) then T ` ¬ϕ(n).

But the combination of (i), (ii) and (iii) contradicts our incompleteness theorem: so there
can’t be such a theory as T . 2

Later we will see that even LA, the language of basic arithmetic is sufficiently expressive: so
it will follow that we can’t axiomatize True Basic Arithmetic, i.e. the set of LA-truths, by any
theory couched in LA. (In fact, we can improve on that result.)

At this point, you can usefully read Chs 4 and 6 of IGT. (You might also look at Ch. 5 – but
proof details there are perhaps only for enthusiasts who are more mathematically minded. In
fact the arguments are about as tricky as any in the book, and I now wonder whether I should
have included them. I certainly don’t want you to get fazed by them!)

Afterword for enthusiasts By all means skip this extended footnote. I hesitate to include it because I
don’t want anyone to get bogged down at this early stage of the notes! However, the point isn’t without
interest.

Someone, such as an earlier time-slice of me, might be tempted by the following further thought in
response to Theorem 5:

Suppose we start off with a consistent ‘sufficiently strong’ theory T couched in some language
which just talks about arithmetic matters: then this theory T is incomplete, and will have
arithmetical formally undecidable sentences. But now imagine that we extend T ’s language
(perhaps it now talks about sets of numbers as well as about numbers), and we give it richer
axioms, to arrive at an expanded consistent but still formally axiomatized theory U . U will
still be sufficiently strong if T is, and so Theorem 5 will still apply given that U is properly
axiomatized. Note, however, that as far as Theorem 5 is concerned, it could be that U repairs
the gaps in T and proves every truth statable in T ’s language, while the incompleteness has
now ‘moved outwards’, so to speak, to claims involving U ’s new vocabulary.

If that were right, this would indicate another way Theorem 5 is weaker than Gödel’s canonical result,
for he shows that some incompleteness will always remain even in a theory’s arithmetical core, even as
it gets augmented with more and more additional axioms (so long as the resulting bigger theory remains
properly axiomatized).

But as David Makinson pointed out to me, that displayed line of thought isn’t right. It is worth
pausing to see why so.
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Consider the theory T ∗ whose axioms are just all the theorems of U statable in in the original
narrower language of T , and which has no rules of inference. Now, what do we know about this theory?
Well, we don’t yet know that it counts as a kosher formalized theory, because we don’t know that it is
decidably axiomatized. But we do know

1. T ∗ is consistent. T ∗ proves just some of U ’s theorems, and U is consistent.

2. T ∗ is sufficiently strong. Because T ∗ includes all T ’s theorems and T is already sufficiently strong.

3. If U proves every truth statable in T ’s language, then T ∗ is negation complete. That’s immediate
from the definitions.

We now show that T ∗ isn’t negation complete, and hence (by 3) U can’t prove every truth statable
in T ’s language, contrary to the displayed line of thought above.

Proceed by reductio. Suppose T ∗ is negation complete. Then T ∗ must be decidable (by the same

kind of argument used in proving Theorem 3). To spell that out: given any sentence A in the language

of T ∗, i.e. the language of T , just mechanically grind out theorems of U until you get either A or its

negation (you must get one of them, since by supposition T ∗ is negation complete and by definition T ∗’s

theorems are just U ’s theorems in the language of T , so U is negation complete in the language of T ). If

A is a U -theorem, then it is a T ∗ axiom; if its negation is a U -theorem, then A is not a T ∗ axiom. Since,

given our assumption, it is decidable what is a T ∗ axiom, T ∗ would count as a kosher formalized theory

by Defn. 3. So T ∗ would be a consistent, sufficiently strong, axiomatized formal theory. So by Theorem

5, T ∗ can’t be negation complete after all, contrary to hypothesis. Q.E.D.
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• Baby Arithmetic is negation complete

• Robinson Arithmetic, Q

• A simple proof that Robinson Arithmetic is not complete

• Adding ≤ to Robinson Arithmetic

• Why Robinson Arithmetic is interesting

Before continuing any further, a very general word about the contents of these handouts (and
indeed of this course). As you will have seen, there is relatively little philosophy so far. We said,
in very general terms, that the Gödelian incompleteness theorem sinks varieties of what I called
“deductivism” as a framework for a philosophical position about basic arithmetic. But otherwise,
our discussions up to this point have mostly been mathematical (albeit rather informal maths
for the most part).

And that’s the way things will continue. As I see it, what will most help get you into a
position to understand and assess various philosophical claims about Gödel’s results is to have a
really solid grasp of what his theorems actually say and how they are proved. So these handouts
will remain primarily an introduction to the mathematics of incompleteness. The philosophical
implications are for you to draw out.

Back to work then. But so far, we’ve been going at a pretty rapid pace (just to get to exciting
stuff fast!). We now need to slow right down.

Our last big theorem – Theorem 5 – tells us that if a theory meets certain conditions of
‘sufficient strength’, then it must be negation incomplete. And we made some initial arm-waving
remarks to the effect that it seems plausible that we should want theories which meet those
conditions. Later, we announced that there actually is a consistent (and finitely axiomatized)
weak arithmetic with a first-order logic which meets the conditions (in which case, stronger
arithmetics will also meet the conditions). But we didn’t say anything about what such a weak
theory really looks like. In fact, we haven’t looked at any detailed theory of arithmetic yet! It is
high time, then, that we stop operating at the extreme level of abstraction of Episodes 1 and 2,
and start getting our hands dirty.

This episode introduces a couple of weak arithmetics. Frankly, this will be pretty unexciting
stuff – by all means skip fairly lightly over some of the more boring proof details! But you do
need to get a flavour of how these two simple formal theories work, in preparation for the next
episode where we tackle the canonical first-order arithmetic PA.

12 Baby Arithmetic

We start by looking at an evidently sound theory BA (‘Baby Arithmetic’). This is a negation
complete theory of arithmetic.
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Question: How is that possible? – for recall

Theorem 1. If T is a sound formal axiomatized theory whose language contains the language
of basic arithmetic, then there will be a true sentence GT of basic arithmetic such that T 0 GT

and T 0 ¬GT , so T is negation incomplete.

Answer: BA’s very limited language LB lacks quantifiers, so doesn’t contain the language of basic
arithmetic (see again Defn. 8). Because its language is so limited, the theory can in fact prove
or disprove every sentence constructible in LB .

12.1 The language LB

The language LB has non-logical symbols

0,S,+,×

The first of these is of course a constant (intended to denoted zero). The next symbol is a one-
place function symbol (intended to denote the successor function). The last two symbols in the
list are two-place function symbols (with the obvious standard interpretations). Note that if we
use ‘+’ and ‘×’ as ‘infix’ function symbols in the usual way – i.e. we write S0 + SS0 rather than
prefix the function sign as in +S0 SS0 – then we’ll also need brackets for scoping the function
signs, to disambiguate S0 + SS0× SSS0, e.g. as (S0 + (SS0× SSS0)).

From these symbols, we can construct the terms of LB . A term is a referring expression built
up from occurrences of ‘0’ and applications of the function expressions ‘S’, ‘+’, ‘×’. So, examples
are 0, SSS0, (S0 + SS0), ((S0 + SS0)× SSS0).

The value of a term is the number it denotes when standardly interpreted: the values of our
example terms are respectively 0, 3, 3 and 9.

Recall, we use ‘n’ to represent the standard numeral SS . . . S0 with n occurrences of ‘S’. Thus
‘3’ is short for ‘SSS0’. The value of ‘n’ is of course n.12

The sole built-in predicate of the language LB is the logical identity sign. Since LB lacks
other non-logical predicates, its only way of forming atomic wffs is therefore by taking two terms
constructed from the non-logical symbols and putting the identity sign between them. In other
words, the atomic wffs of LB are equations relating terms denoting particular numbers. So, for
example, (S0 + SS0) = SSS0 is a true atomic wff – which we can abbreviate, dropping brackets
in a natural way, as 1 + 2 = 3 – and (S0× SS0) = SSS0 is a false one.

We also, however, want to be able to express inequations, hence we’ll want LB to have a
negation sign. And note, for convenience, we will abbreviate wffs of the form ¬ τ1 = τ2 by
τ1 6= τ2.

In IGT, I go on to round things out so as to give LB some expressively complete set of
propositional connectives, e.g. ¬,∧,∨,→. We’ll then also of course need brackets again for scoping
the two-place connectives if we give them an ‘infix’ syntax in the familiar way.

The syntax for constructing the complete class of wffs of LB is then exactly as you’d expect,
and the semantics is the obvious one. [Exercise: spell out the details carefully!]

12.2 The axioms and logic of BA

The theory BA in the language LB comes equipped with some classical propositional deductive
system to deal with the propositional connectives (choose your favourite system!) and the usual
identity rules.

Next, we want non-logical axioms governing the successor function. We want to capture the
ideas that, if we start from zero and repeatedly apply the successor function, we keep on getting
further numbers – i.e. different numbers have different successors: contraposing, for any m,n, if
Sm = Sn then m = n. And further, we never cycle back to zero: for any n, 0 6= Sn.

However, there are no quantifiers in LB . So we can’t directly express those general facts about
the successor function inside the object language LB . Rather, we have to employ schemata (i.e.

12Recall also our convention from §2.2: sans serif expressions belong to LB , or whatever formal language is
under discussion: italic symbols are just part of everyday mathematical English.
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general templates) and use the generalizing apparatus in our English metalanguage to say: any
sentence that you get from one of the following schemata by substituting standard numerals for
the place-holders ‘ζ’, ‘ξ’ is an axiom.

Schema 1. 0 6= Sζ

Schema 2. Sζ = Sξ → ζ = ξ

Next, we want non-logical axioms for addition. This time we want to capture the idea that
adding zero to a number makes no difference: for any m, m+0 = m. And adding a larger number
Sn to m is governed by the rule: for any m,n, m+Sn = S(m+n). Those two principle together
tell us how to add zero to a given number m; and then adding one is defined as the successor of
the result of adding zero; and then adding two is defined as the successor of the result of adding
one; and so on up – thus defining adding n for any particular natural number n.

Again, however, because of its lack of quantifiers, we can’t express all that directly inside
LB . We have to resort to schemata again, and say that anything you get by substituting standard
numerals for placeholders in the following is an axiom:

Schema 3. ζ + 0 = ζ

Schema 4. ζ + Sξ = S(ζ + ξ)

We can similarly pin down the multiplication function by requiring that every numeral in-
stance of the following is an axiom too:

Schema 5. ζ × 0 = 0

Schema 6. ζ × Sξ = (ζ × ξ) + ζ

Instances of Schema 5 tell us the result of multiplying by zero. Instances of Schema 6 with ‘ξ’
replaced by ‘0’ define how to multiply by one in terms of multiplying by zero and then applying the
already-defined addition function. Once we know about multiplying by one, we can use another
instance of Schema 6 with ‘ξ’ replaced by ‘S0’ to tell us how to multiply by two (multiply by one
and do some addition). And so on and so forth, thus defining multiplication for every number.

To summarize, then,

Defn. 20. BA is the theory whose language is LB, logic is propositional logic plus standard
identity rules, and whose non-logical axioms are every numerical instance of Schemas (1) to (6).

12.3 Variables and variables

We better pause to comment on that use of metalinguistic variables like ‘ξ’. These are not part
of the language LB . They are added to informal mathematical English to expedite our talking
about wffs in the language LB . If you are really pernickety, you could write, for example,

for any numerals ζ, ξ, pSζ = Sξ → ζ = ξq is an axiom,

where the corners are Quine quotes.
Ordinary mathematical English is of course casual about such matters, and sometimes recruits

object-language variables x, y etc. to do the work of expressing schematic generalizations. That’s
usually harmless, but we’d better be more careful, even if we don’t get ultra careful with Quine
quotes.

12.4 Some proofs inside BA, and three little theorems

We’ll give two little examples of how arithmetic can be done inside BA. First, let’s show that
BA ` 4 6= 2, i.e. BA ` SSSS0 6= SS0

3



1. SSSS0 = SS0 Supposition
2. SSSS0 = SS0→ SSS0 = S0 Axiom, instance of Schema 2
3. SSS0 = S0 From 1, 2 by MP
4. SSS0 = S0→ SS0 = 0 Axiom, instance of Schema 2
5. SS0 = 0 From 3, 4 by MP
6. 0 6= SS0 Axiom, instance of Schema 1
7. Contradiction! From 5, 6 and identity rules
8. SSSS0 6= SS0 From 1 to 7, by RAA.

And a little reflection on that illustrative proof should now convince you of this general claim:

Theorem 8. If s and t are distinct numbers, then BA ` s 6= t.

[Exercise for the mathematical: turn that ‘little reflection’ into a proper proof!]
And for our second example, we’ll show that BA ` 2× 1 = 2. In unabbreviated form, though

dropping outermost brackets, we need to derive SS0× S0 = SS0.

1. SS0× 0 = 0 Axiom, instance of Schema 5
2. SS0× S0 = (SS0× 0) + SS0 Axiom, instance of Schema 6
3. SS0× S0 = 0 + SS0 From 1, 2 by LL

(‘LL’ of course indicates the use of Leibniz’s Law to intersubstitute identicals.) To proceed, we
now need to show that 0 + SS0 = SS0. For note, this isn’t an instance of Schema 3. So we have
to do a bit of work to get it:

4. 0 + 0 = 0 Axiom, instance of Schema 3
5. 0 + S0 = S(0 + 0) Axiom, instance of Schema 4
6. 0 + S0 = S0 From 4, 5 by LL
7. 0 + SS0 = S(0 + S0) Axiom, instance of Schema 4
8. 0 + SS0 = SS0 From 6, 7 by LL

Which gives us what we want:

9. SS0× S0 = SS0 From 3, 8 by LL

That’s pretty laborious, to be sure, but again it works. And inspection of BA’s axioms and a little
reflection on our second illustrative proof should now convince you of a further general claim:

Theorem 9. BA can prove any true equation of the form m + n = t or m× n = t.

In other words, BA can correctly add or multiply any two numbers. [Exercise for the mathemat-
ical: give a proper proof of that!]

We can now generalize further: in fact BA can correctly evaluate all terms of its language.
That is to say,

Theorem 10. Suppose τ is a term of LB and the value of τ on the intended interpretation of
the symbols is t. Then BA ` τ = t.

Why so? Well, let’s take a very simple example and then draw a general moral. Suppose we want
to show e.g. that (2 + 3)× (2× 2) = 20. Then evidently we’ll proceed as follows.

1. (2 + 3)× (2× 2) = (2 + 3)× (2× 2) Trivial!
2. 2 + 3 = 5 Instance of Thm. 9
3. (2 + 3)× (2× 2) = 5× (2× 2) From 1, 2 using LL
4. 2× 2 = 4 Instance of Thm. 9
5. (2 + 3)× (2× 2) = 5× 4 From 3, 4 using LL
6. 5× 4 = 20 Instance of Thm. 9
7. (2 + 3)× (2× 2) = 20 From 5, 6 using LL

What we do here is evidently ‘evaluate’ the complex formula on the left ‘from the inside out’,
reducing the complexity of what needs to evaluated at each stage, eventually equating the com-
plex formula with a standard numeral. [Exercise for the mathematical: give a proper argument
‘by induction on the complexity of the formula’ that proves Thm 10.]
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12.5 BA is a sound and complete theory of the truths of LB

Our little theorems now enable us to prove the following:

Theorem 11. Suppose σ and τ are terms of LB. Then if σ = τ is true, then BA ` σ = τ , and
if σ = τ is false, then BA ` σ 6= τ .

Proof Let σ evaluate to s and τ evaluate to t. Then, by Theorem 10, (i) BA ` σ = s and (ii)
BA ` τ = t.

Now, suppose σ = τ is true. Then s = t, and so s must be the very same numeral as t. We
can therefore immediately conclude from (i) and (ii) that BA ` σ = τ by the logic of identity.

Suppose, on the other hand, that σ = τ is false, so s 6= t. Then by Theorem 8, BA ` s 6= t,
and together with (i) and (ii) that implies BA ` σ 6= τ , again by the logic of identity. 2

And from that last theorem, it more or less immediately follows that

Theorem 12. BA is negation complete.

Proof The only atomic claims expressible in BA are equations involving terms; all other sentences
are truth-functional combinations of such equations. But we’ve just seen that we can (1) prove
each true equation and (2) prove the true negation of each false equation.

But now recall that there’s a theorem of propositional logic which tells us that, given some
atoms and/or negated atoms, we can prove every complex wff that must be true if those
atoms/negated atoms are true, and prove the negation of every complex wff that must be false
if those atoms/negated atoms are true. That means, given (1) and (2), we can derive any true
truth-functional combination of the equations/inequations in a complex wff, i.e. prove any true
sentence. Likewise, we can also derive the negation of any false truth-functional combination of
the equations/inequations in a complex wff, i.e. prove the negation of any false sentence.

Hence, for any sentence ϕ of BA, since either ϕ is true or false, either BA ` ϕ or BA ` ¬ϕ.
Hence BA is negation complete. 2

So the situation is this. BA is obviously a sound theory – all its axioms are trivial arithmetical
truths, and its logic is truth-preserving, so all its theorems are true. BA is also, as we’ve just seen,
a complete theory in the sense of entailing all the truths expressible in its language LB . However,
the language LB only allows us to express a limited class of facts about adding and multiplying
particular numbers (it can’t express numerical generalizations). And, prescinding from practical
issues about memory or display size, any pocket calculator can in effect tell us about all such
facts. So it is no surprise that we can get a formalized theory to do the same!

13 Robinson Arithmetic

That’s all very straightforward, but also very unexciting. The reason that Baby Arithmetic
manages to prove every correct claim that it can express – and is therefore negation complete by
our definition – is that it can’t express very much. In particular, as we stressed, it can’t express any
generalizations at all. BA’s completeness comes at the high price of being expressively extremely
impoverished. The obvious way to start beefing up BA into something more interesting is to
restore the familiar apparatus of quantifiers and variables. So that’s what we’ll start doing.

13.1 The language LA

We’ll keep the same non-logical vocabulary as in LB : so there is still just a single non-logical
constant denoting zero, and the three built-in function-symbols, S,+,× expressing successor,
addition and multiplication. But now we allow ourselves the full linguistic resources of first-order
logic, with the usual supply of quantifiers and variables to express generality. We fix the domain
of the quantifiers to be the natural numbers. The result is the interpreted language LA.

LA is the least ambitious language which ‘contains the language of basic arithmetic’ in the
sense of Defn. 8. (For, of course, LA has the the predicate expression ‘x = x’ which has the
numbers as its extension, so fits our official definition, if we want to fuss about that.)
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13.2 The axioms and logic of Q

The theory Q is built in the formal language LA, and is equipped with a full first-order clas-
sical logic. And as for the non-logical axioms, now we have the quantifiers available to express
generality we can replace each of BA’s metalinguistic schemata (specifying an infinite number of
formal axioms governing particular numbers) by a single generalized Axiom expressed inside LA

itself. For example, we can replace the first two schemata governing the successor function by

Axiom 1. ∀x(0 6= Sx)

Axiom 2. ∀x∀y(Sx = Sy→ x = y)

Obviously, each instance of our earlier Schemata 1 and 2 can be deduced from the corresponding
Axiom by instantiating the quantifiers.

These Axioms tell us that zero isn’t a successor, but they don’t explicitly rule it out that there
are other objects that aren’t successors cluttering up the domain of quantification (i.e. there could
be ‘pseudo-zeros’). We didn’t need to fuss about this before, because by construction BA can only
talk about the numbers represented by standard numerals in the sequence ‘0,S0,SS0, . . .’. But
now we have the quantifiers in play. And these quantifiers are intended to run over the natural
numbers – we certainly don’t intend them to be running over stray objects other than zero that
aren’t successors. So let’s reflect that in our axioms by explicitly ruling out such strays:

Axiom 3. ∀x(x 6= 0 → ∃y(x = Sy))

Next, we can similarly replace our previous schemata for addition and multiplication by
universally quantified Axioms in the obvious way:

Axiom 4. ∀x(x + 0 = x)

Axiom 5. ∀x∀y(x + Sy = S(x + y))

Axiom 6. ∀x(x× 0 = 0)

Axiom 7. ∀x∀y(x× Sy = (x× y) + x)

Again, each of these axioms entails all the instances of BA’s corresponding schema.

Defn. 21. The formal axiomatized theory with language LA, Axioms 1 to 7, plus a classical
first-order logic, is standardly called Robinson Arithmetic, or simply Q.

It is worth noting, for future reference, that it was first isolated as a weak system of arithmetic
worthy of study in 1952 – i.e. long after Gödelian incompleteness was discovered.

13.3 Q is not complete

Q is assuredly a sound theory. Its axioms are all true; its logic is truth-preserving; so its derivations
are proper proofs in the intuitive sense of demonstrations of truth and every theorem of Q is
true. But just which truths of LA are theorems?

Since any old BA axiom – i.e. any instance of one of our previous schemata – can be derived
from one of our new Q Axioms, every LB-sentence that can be proved in BA is equally a quantifier-
free LA-sentence which can be proved in Q. Hence,

Theorem 13. Q correctly decides every quantifier-free LA sentence (i.e. Q ` ϕ if the quantifier-
free wff ϕ is true, and Q ` ¬ϕ if the quantifier-free wff ϕ is false).

So far, so good. However, there are very simple true quantified sentences that Q can’t prove.
For example, Q can of course prove any particular wff of the form 0 + n = n. But it can’t prove
the corresponding universal generalization:

Theorem 14. Q 0 ∀x(0 + x = x).
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Proof Since Q is a theory with a standard first-order theory, for any LA-sentence ϕ, Q ` ϕ if
and only if Q � ϕ (that’s just the completeness theorem for first-order logic). Hence one way of
showing that Q 0 ϕ is to show that Q 2 ϕ: and we can show that by producing a countermodel
to the entailment – i.e. by finding an interpretation (a deviant, unintended, ‘non-standard’,
re-interpretation) for LA’s wffs which makes Q’s axioms true-on-that-interpretation but which
makes ϕ false.

So here goes: take the domain of our deviant, unintended, re-interpretation to be the set N∗

comprising the natural numbers but with two other ‘rogue’ elements a and b added (these could
be e.g. Kurt Gödel and his friend Albert Einstein – but any other pair of distinct non-numbers
will do). Let ‘0’ still to refer to zero. And take ‘S’ now to pick out the successor* function S∗

which is defined as follows: S∗n = Sn for any natural number in the domain, while for our rogue
elements S∗a = a, and S∗b = b. It is very easy to check that Axioms 1 to 3 are still true on this
deviant interpretation. Zero is still not a successor. Different elements have different successors.
And every non-zero element is a successor (perhaps a self-successor!).

We now need to extend this interpretation to re-interpret the function-symbol ‘+’. Suppose
we take this to pick out addition*, where m+∗ n = m+ n for any natural numbers m, n in the
domain, while a+∗ n = a and b+∗ n = b. Further, for any x (whether number or rogue element),
x+∗ a = b and x+∗ b = a. If you prefer that in a matrix (read off row +∗ column):

+∗ n a b
m m+ n b a
a a b a
b b b a

It is again easily checked that interpreting ‘+’ as addition* still makes Axioms 4 and 5 true.
(In headline terms: For Axiom 4, we note that adding* zero on the right always has no effect. For
Axiom 5, just consider cases. (i) m +∗ S∗n = m + Sn = S(m + n) = S∗(m +∗ n) for ‘ordinary’
numbers m,n in the domain. (ii) a + S∗n = a = S∗a = S∗(a +∗ n), for ‘ordinary’ n. Likewise,
(iii) b + S∗n = S∗(b +∗ n). (iv) x +∗ S∗a = x + a = b = S∗b = S∗(x +∗ a), for any x in the
domain. (v) Finally, x+∗ S∗b = S∗(x+∗ b). Which covers every possibility.)

We are not quite done, however, as we still need to show that we can give a co-ordinate re-
interpretation of ‘×’ in Q by some deviant multiplication* function. We can leave it as an exercise
to fill in suitable details. Then, with the details filled in, we will have an overall interpretation
which makes the axioms of Q true and ∀x(0 + x = x) false. So Q 0 ∀x(0 + x = x) 2

Theorem 15. Q is negation-incomplete.

Proof. Put ϕ = ∀x(0 + x = x). We’ve just shown that Q 0 ϕ. But obviously, Q can’t prove ¬ϕ
either. Just revert to the standard interpretation built into LA. Q certainly has true axioms
on this interpretation. So all theorems are true on that interpretation, but ¬ϕ is false on that
interpretation, so it can’t be a theorem. Hence ϕ is formally undecidable in Q.

Of course, we’ve already announced that Gödel’s incompleteness theorem is going to prove
that no sound axiomatized theory whose language is at least as rich as LA can be negation
complete – that was Theorem 1. But we don’t need to invoke anything as elaborate as Gödel’s
arguments to see that Q is incomplete. Q is, so to speak, boringly incomplete.

13.4 Q can capture less-than-or-equals

We’e just seen something that Q can’t do: now for something it can do. We’ll establish

Theorem 16. In Q, the less-than-or-equal-to relation is captured by the wff ∃v(v + x = y).

Given the definition of capturing, Defn 15, that means we need to show that, for any particular
pair of numbers, m, n, if m ≤ n, then Q ` ∃v(v + m = n), and otherwise Q ` ¬∃v(v + m = n).

Proof Suppose m ≤ n, so for some k ≥ 0, k + m = n. Q can prove everything BA proves
and hence, in particular, can prove every true addition sum. So we have Q ` k + m = n. But
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logic gives us k + m = n ` ∃v(v + m = n) by existential quantifier introduction. Therefore Q `
∃v(v + m = n), as was to be shown.

Suppose alternatively m > n. We need to show Q ` ¬∃v(v + m = n). We’ll first demonstrate
this in the case where m = 2, n = 1, using a Fitch-style proof-system. For brevity we will omit
statements of Q’s axioms and some other trivial steps; we drop unnecessary brackets

1. ∃v(v + SS0 = S0) Supposition
2. a + SS0 = S0 Supposition
3. a + SS0 = S(a + S0) From Axiom 5
4. S(a + S0) = S0 From 2, 3 by LL
5. a + S0 = S(a + 0) From Axiom 5
6. SS(a + 0) = S0 From 4, 5 by LL
7. a + 0 = a From Axiom 4
8. SSa = S0 From 6, 7 by LL
9. SSa = S0→ Sa = 0 From Axiom 2

10. Sa = 0 From 8, 9 by MP
11. 0 = Sa From 10
12. 0 6= Sa From Axiom 1
13. Contradiction! From 11, 12
14. Contradiction! ∃E 1, 2–13
15. ¬∃v(v + SS0 = S0) RAA 1–14

The only step to explain is at line (14) where we use a version of the Existential Elimination
rule: if the temporary supposition ϕ(a) leads to contradiction, for arbitrary a, then ∃vϕ(v) must
lead to contradiction. And having done the proof for the case m = 2, n = 1, inspection reveals
that we can use the same general pattern of argument to show Q ` ¬∃v(v + m = n) whenever
m > n. [Exercise: convince yourself that this claim is true!] So we are done. 2

13.5 Adding ‘≤’ to Q

Given the result we’ve just proved, we can sensibly add the standard symbol ‘≤’ to LA, the
language of Q, defined so that whatever we put for ‘ξ’ and ‘ζ’, ξ ≤ ζ is just short for ∃v(v + ξ = ζ),
and then Q will be able to prove at least the expected facts about the less-than-or-equals relations
among quantifier-free terms. (Well, we really need to be a bit more careful than that in stating
the rule for unpacking the abbreviation, if we are to avoid any possible ‘clash of variables’. But
we’re not going to fuss about the details.)

Note, by the way, that some presentations in fact treat ‘≤’ as a primitive symbol built into
our formal theories like Q from the start, governed by its own additional axiom(s). But nothing
important hangs on the difference between that approach and our policy of introducing the
symbol by definition. (And of course, nothing hangs either on our policy of introducing ‘≤’ as
our basic symbol rather than ‘<’, which could have been defined by ξ < ζ =def ∃v(Sv + ξ = ζ).)

Since it so greatly helps readability, we’ll henceforth make very free use of ‘≤’ as an abbrevia-
tory symbol inside formal arithmetics. We will also adopt a second, closely related, convention. In
informal mathematics we often want to say that all/some numbers less than or equal to a given
number have some particular property. We can now express such claims in formal arithmetics
by wffs of the shape ∀ξ(ξ ≤ κ → ϕ(ξ)) and ∃ξ(ξ ≤ κ ∧ ϕ(ξ)), where ‘≤’ is to be unpacked as
we’ve just explained. And it is standard to further abbreviate such wffs by (∀ξ ≤ κ)ϕ(ξ) and
(∃ξ ≤ κ)ϕ(ξ) respectively.

13.6 Why Q is interesting

Given it can’t even prove ∀x(0 + x = x), Q is evidently a very weak theory of arithmetic. Which
is probably no surprise as (apart from Axiom 3) we’ve added little axiomatic proof-power to BA
while adding a lot of expressive power to its language by adding quantifiers. So it’s only to be
expected that there will be lots of newly expressible truths that Q can’t prove (and since Q is
sound, it won’t be able to disprove these truths either).
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Even so, despite its great shortcomings, Q does have some nice properties. As we saw, it
can capture the decidable relation that obtains when one number is at least as big as another.
Moreover, we can eventually show that rather stunningly general result

Theorem 17. Q can capture all decidable numerical properties – i.e. it is sufficiently strong in
the sense of Defn 16.

That might initially seem very surprising indeed, given Q’s weakness. But remember, ‘sufficient
strength’ was defined as a matter of being able to case-by-case prove enough wffs about de-
cidable properties of individual numbers. It turns out that Q’s hopeless weakness at proving
generalizations doesn’t stop it doing that.

So that’s why Q is particularly interesting – it is about the weakest arithmetic which is suffi-
ciently strong (and it was isolated by Robinson for that reason), and for which Gödelian proofs of
incompleteness can be run. Suppose, then, that a theory is formally axiomatized, consistent and
can prove everything Q can prove (those do indeed seem very modest requirements). Then what
we’ve just announced and promised can be proved is that any such theory will be ‘sufficiently
strong’. And therefore e.g. Theorem 5 will apply – any such theory will be incomplete.

However, we can only establish that Q does have sufficient strength to capture all decidable
properties if and when we have a quite general theory of decidability to hand. And we don’t want
to get embroiled in that (at least yet). So what we will be proving quite soon (in Episode 6) is
a rather weaker claim about Q. We’ll show that it can capture all so-called ‘primitive recursive’
properties, where these form a very important subclass of the decidable properties. This major
theorem will be a crucial load-bearing part of our proofs of various Gödel style incompleteness
theorems: it means that Q gives us ‘the modest amount of arithmetic’ need for Theorem 2.

But before we get round to showing all this, we are first going to take a look at a much richer
arithmetic than Q, namely PA.

For parallel reading to this episode, see IGT, Ch. 8, and Ch. 9, §§9.1–9.4.
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The main course:

• The ω-rule

• Induction: the induction axiom, the induction rule, the induction schema

• First-order Peano Arithmetic

• Why we might have expected PA to be negation complete

Dessert:

• The idea of ∆0, Σ1, and Π1 wffs

• Addendum: A consistent extension of Q is sound for Π1 wffs

This episode, after the preamble, falls into two parts. First I introduce the canonical first-order
theory of arithmetic, PA. Then – tacked on here, because I need to fit it in somewhere soon and
this is as good a place as any – I introduce some terminology for distinguishing wffs on the basis
of their ‘quantifier complexity’. Do make sure you understand the idea of induction, and how
that is handled in PA, before reading the rest of the episode.

Here’s the story so far. We noted in Episode 1 that Gödel showed, more or less,

Theorem 1. If T is a sound formal axiomatized theory whose language contains the language
of basic arithmetic, then there will be a true sentence GT of basic arithmetic such that T 0 GT

and T 0 ¬GT , so T is negation incomplete.

Of course, we didn’t prove that theorem, though we waved an arm airily at the basic trick that
Gödel uses to establish the theorem – namely we ‘arithmetize syntax’ (i.e. numerically code up
facts about provability in formal theorems) and then construct a Gödel sentence that sort-of-says
‘I am not provable’.

We did note, however, that this theorem invokes the assumption that we dealing with a
sound theory, and of course soundness is a semantic notion. For various reasons, Gödel thought
it essential to establish that we can get incompleteness making merely syntactic assumptions,
thus:

Theorem 2. For any consistent formal axiomatized theory T which can prove a certain modest
amount of arithmetic (and has a certain additional desirable property that any sensible formalized
arithmetic will share), there is a sentence of basic arithmetic GT such that T 0 GT and T 0 ¬GT ,
so T is negation incomplete.

This theorem with syntactic assumptions is the sort of thing that’s usually referred to as The
First Incompleteness Theorem, and of course we again didn’t prove it. Indeed, we didn’t even
say what that ‘modest amount of arithmetic’ is (nor did we say anything about that ‘additional
desirable property’). So Episode 1 was little more than a gesture in the right direction.

In Episode 2, we did a bit better, in the sense that we actually gave a proof of the following
theorem:
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Theorem 5. A consistent, sufficiently strong, axiomatized formal theory cannot be negation
complete.

The argument was nice, as it shows that we can get incompleteness results without calling on
the arithmetization of syntax and the construction of Gödel sentences. However the argument
depended on working with the notion of ‘sufficient strength’ which is defined in terms of the an
informal, intuitive, notion of a ‘decidable property’. That’s not in itself wicked, because lots of
mathematical proofs involve informal, intuitive, concepts. But the discussion in Episode 2 doesn’t
give us any clue about how we can sharpen up the intuitive notions in play or about what a
‘sufficiently strong’ theory might look like.

Episode 3 took a step towards telling us what makes for a sufficiently strong (and likewise
towards telling us what the ‘modest amount of arithmetic’ mentioned in Theorem 2 amounts to).

As a warm-up exercise, we first looked at BA, the quantifier-free arithmetic of the addition
and multiplication of particular numbers. This is a complete (and hence decidable!) theory –
but of course it is only complete, i.e. able to decide every sentence constructible in its language,
because its language is indeed so weak.

If we augment the language of BA by allowing ourselves the usual apparatus of first-order
quantification, and replace the schematically presented axioms of BA with their obvious univer-
sally quantified correlates (and add in the axiom that every number bar zero is a successor) we
get Robinson Arithmetic Q. Since we’ve added pretty minimally to what is given in the axioms
of BA while considerably enriching its language, it is probably no surprise that we have

Theorem 15. Q is negation-incomplete.

And we can prove this without any fancy Gödelian considerations. A familiar and simple kind of
model-theoretic argument is enough to do the trick: we find a deviant interpretation of Q’s syntax
which is such as to make the axioms all true but on which ∀x(0 + x = x) is false, thus establishing
Q 0 ∀x(0 + x = x). And since Q is sound on the built-in interpretation of its language, we also
have Q 0 ¬∀x(0 + x = x).

Q, then, is a very weak arithmetic. Still, it will turn out to be the ‘modest amount of arith-
metic’ needed to get Theorem 2 to fly. Also we have

Theorem 17. Q can capture all decidable numerical properties – i.e. it is sufficiently strong in
the sense of Defn 16.

so a theory’s containing Q makes it a sufficiently strong’ theory in the sense of Theorem 5. Of
course establishing these facts is a non-trivial task for later: but they do explain why Q is so
interesting despite its weakness.

Now read on . . . .

14 Arithmetical Induction

For a moment, put ϕ(x) for (0 + x = x). Then, as we noted, for any particular n, Q ` ϕ(n), for Q
can prove an unquantified true equation. But we showed that Q 0 ∀xϕ(x). In other words, Q can
separately prove all instances of ϕ(n) but can’t prove the corresponding simple generalization.
So let’s consider what proof-principle we might add to Q to fill this sort of yawning gap.

14.1 The ω-rule

Q, to repeat, proves each of ϕ(0), ϕ(1), ϕ(2), ϕ(3), . . .. Suppose then that we added to Q the rule
that we can infer as follows:

...

ϕ(0)

...

ϕ(1)

...

ϕ(2)

...

ϕ(3)
...

∀xϕ(x)
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This rule – or rather the generalized version for any ϕ – is what’s called the ω-rule. It is evidently
a sound rule: if each ϕ(n) is true then indeed all numbers n satisfy ϕ(x). Adding the ω-rule would
certainly repair the gap we exposed in Q.

But of course there’s a very big snag: the ω-rule is infinitary. It takes as input an infinite
number of premisses. So proofs invoking this ω-rule will be infinite arrays. And being infinite,
they cannot be mechanically checked in a finite number of steps to be constructed according to
our expanded rules. In sum, then, a theory with a proof-system that includes an infinitary ω-rule
can’t count as a formal axiomatized theory according to Defn. 3.

There is certainly some technical interest in investigating infinitary logics which allow in-
finitely long sentences (e.g. infinite conjunctions) and/or infinite-array proofs. But there is a
clear sense in which such logics are not of practical use, and cannot be used to regiment how we
in fact argue. The finiteness requirement we impose on formalized theories is, for that reason,
not arbitrary. And so we’ll stick to that requirement, and hence have to ban the ω-rule.

14.2 Replacing an infinitary rule with a finite one

To repeat, as well as proving ϕ(0), Q also proves ϕ(1), ϕ(2), ϕ(3), . . .. And it isn’t, so to speak,
a global accident that Q can prove all those. Rather, Q proves them in a uniform way.

One way to bring this out is to note that we have the following proof in Q:

1. ϕ(a) Supposition
2. 0 + a = a Unpacking the definition
3. S(0 + a) = Sa From 2 by LL
4. (0 + Sa) = S(0 + a) Instance of Axiom 5
5. (0 + Sa) = Sa From 3, 4
6. ϕ(Sa) Applying the definition
7. (ϕ(a)→ ϕ(Sa)) From 1, 6 by Conditional Proof
8. ∀x(ϕ(x)→ ϕ(Sx)) From 7, since a was arbitrary.

Given Q trivially proves ϕ(0), we can appeal to ∀x(ϕ(x) → ϕ(Sx)) to derive ϕ(0) → ϕ(1), and
so modus ponens gives us ϕ(1). The same generalization also gives us ϕ(1) → ϕ(2), so another
modus ponens gives us ϕ(2). Now we can appeal to our generalization again to get ϕ(2)→ ϕ(3),
and so can derive ϕ(3). Keep on going!

In this way, ϕ(0) and ∀x(ϕ(x) → ϕ(Sx)) together prove each of of ϕ(0), ϕ(1), ϕ(2), . . ., and
those truths in turn, by the sound ω-rule, entail ∀xϕ(x). Thus putting everything together we
have . . .

ϕ(0)

ϕ(0)

∀x(ϕ(x)→ ϕ(Sx))

(ϕ(0)→ ϕ(S0))

ϕ(S0)

ϕ(0)

∀x(ϕ(x)→ ϕ(Sx))

(ϕ(0)→ ϕ(S0))

ϕ(S0)

∀x(ϕ(x)→ ϕ(Sx))

(ϕ(S0)→ ϕ(SS0))

ϕ(SS0) . . . . . .
ω-rule

∀xϕ(x)

But now suppose we cut out all those (infinitely many) intermediate steps in that motivating
argument! This act of radical compression will leave us a nice finitary rule:

Defn. 22. The Induction Rule:

ϕ(0) ∀x(ϕ(x)→ ϕ(Sx))

∀xϕ(x)

This cut-down rule is evidently sound whatever predicate we put for ϕ(ξ) which expresses a
genuine numerical property. Add this finitary rule to Q and we’ll evidently at least patch the
gap we found.
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14.3 Induction: the basic idea

The basic idea reflected in that formal rule is as follows.

Whatever numerical property we take, if we can show that (i) zero has that property,
and also show that (ii) this property is always passed down from a number n to the
next Sn, then this is enough to show (iii) the property is passed down to all numbers.

This is the principle of arithmetical induction, and is a standard method of proof for establishing
arithmetical generalizations.

For those not so familiar with this standard method, here’s a little example of the principle
at work in an everyday informal mathematical context. Suppose we want to establish that the
sum of the first n numbers is n(n+ 1)/2. Well, first define ψ(n) so that

ψ(n)↔ 1 + 2 + 3 . . . n = n(n+ 1)/2

Then (i) trivially ψ(0) is true (the sum of the first zero numbers is zero)! And (ii) now suppose
that ψ(n) is true, i.e. 1 + 2 + 3 . . . n = n(n + 1)/2. Then the sum of the first n + 1 numbers is
n(n+1)/2+(n+1). Rearranging, that equals (n+1)(n+2)/2, i.e. (Sn)(Sn+1)/2. Which means
that ψ(Sn) will be true too. So (i) ψ(0), and (generalizing) (ii) for all numbers n, if ψ(n), then
ψ(Sn). Therefore, as we want, by induction the claim holds for all numbers.

Here’s another example of same principle at work, in telegraphic form. Suppose we want
to show that all the theorems of a certain Hilbert-style axiomatized propositional calculus are
tautologies. Define χ(n) to be true if the conclusions of proofs appealing only to logical axioms
up to n steps long are tautologies. Then we show that χ(0) is true (trivial!), and then argue that
if χ(n) then χ(Sn) (e.g. we note that the last step of an n + 1 step must either be an instance
of an axiom, or follow by modus ponens from two earlier conclusions which – since χ(n) is true
– must themselves be tautologies, and either way we get another tautology). Then ‘by induction
on the length of proofs’ we get the desired result.

14.4 A word to worried philosophers

Beginning philosophers, in week one of their first year logic course, have the contrast between
deductive and inductive arguments dinned into them. So emphatically is the distinction made,
so firmly are they drilled to distinguish conclusive deductive argument from merely probabilistic
inductions, that some students can’t help feeling initially pretty uncomfortable when they first
hear of ‘induction’ being used in arithmetic!

So let’s be clear. We have a case of empirical, non-conclusive, induction, when we start from
facts about a limited sample and infer a claim about the whole population. Number off the swans,
for example, and let ϕ(n) say that swan #n is white. We sample some swans and run (say) k
checks showing that ϕ(0), ϕ(1), ϕ(2), . . . , ϕ(k) are all true. We hope that these are enough to be
representative of the whole population of swans, and so – taking a chance – infer that for all n,
ϕ(n), now quantifying over over all (numbers for) swans, jumping beyond the sample of size k.
The gap between the sample and the whole population, between the particular bits of evidence
and the universal conclusion, allows space for error. The inference isn’t deductively watertight.

By contrast, in the case of arithmetical induction, we start not from a bunch of claims about
particular numbers but from an already universally quantified claim about all numbers, i.e.
∀x(ϕ(x)→ ϕ(Sx)). We put that universal claim together with the particular claim ϕ(0) to derive
another universal claim, ∀xϕ(x). This time, then, we are going from universal to universal, and
there is no deductive gap.

You might say ‘Pity, then, that we use the same word in talking of empirical induction and
arithmetical induction when they are such different kinds of inference.’ True enough!

14.5 The induction axiom, the induction rule, the induction schema

The basic idea, we said in §14.3, is that for any property of numbers, if zero has it and it is passed
from one number to the next, then all numbers have it. This intuitive principle is a generalization
over properties of numbers. Hence to frame a corresponding formal version, it seems that we

4



should ideally use a language that enables us to generalize not just over numbers but over
properties of numbers. In a phrase, we’d ideally need to be working in a second-order theory,
which allows second order quantifiers – i.e. we have not only first-order quantifiers running over
numbers, but also a further sort of quantifier which runs over arbitrary-properties-of-numbers.
Then we could state a second-order

Defn. 23. Induction Axiom:

∀X([X0 ∧ ∀x(Xx→ XSx)]→ ∀xXx)

(Predicates are conventionally written upper case: so too for variables that are to occupy predicate
position.)

Despite that, however, for now we’ll concentrate on formal theories whose logical apparatus
involves only regular first-order quantification. Note: this isn’t due to some perverse desire to
fight with one hand tied behind our backs. There are some troublesome issues about second-order
logic. For a start, there are technical issues: it isn’t effectively axiomatizable (you can’t wrap up
the consequence relation for second-order sentences into a nice formalizable logical system). And
there are philosophical issues: how well do we understand the idea of quantifying over ‘arbitrary
properties’? But we can’t go into these worries here but will leave that to your core mathematical
logic course.

But if we don’t have second-order quantifiers available to range over properties of numbers,
how can we handle induction? Well, one way is to adopt the induction rule we encountered in
§14.2. So long as ϕ(x) expresses a kosher property – and we’ll say in a moment what that might
come to – we can apply the inference rule

ϕ(0) ∀x(ϕ(x)→ ϕ(Sx))

∀xϕ(x)

Alternatively, we can set down the first order

Defn. 24. Induction Schema:

[ϕ(0) ∧ ∀x(ϕ(x)→ ϕ(Sx))]→ ∀xϕ(x)

and then say that for every kosher ϕ(x), the corresponding instance of the induction schema is
to be an axiom. Evidently, having this rule and having all instances of the schema come to just
the same.

Techie note. Strictly speaking, we’ll also want to allow uses of the inference rule where ϕ
has slots for additional variables dangling free. Equivalently, we will take the axioms to be the
universal closures of instances of the induction schema with free variables. For more explanation,
see IGT, §10.2, and see the idea being put to work in IGT, §10.3. We won’t fuss about elaborating
this point here.

15 First-order Peano Arithmetic

15.1 Getting generous with induction

Suppose then we start again from Q, and aim to build a richer theory in the language LA (as
defined in §13.1) by adding induction.

Any instance of the induction schema, we said, should be intuitively acceptable as an ax-
iom, so long as we replace ϕ in the schema by a suitable open wff which expresses a genuine
property/relation. Well, consider any open wff ϕ of LA. This will be built from no more than
the constant term ‘0’, the familiar successor, addition and multiplication functions, plus identity
and other logical apparatus. Therefore – you might very well suppose – it ought also to express
a perfectly determinate arithmetical property or relation (even if, in the general case, we can’t
always decide whether a given number n has the property or not). So why not be generous and
allow any open LA wff at all to be substituted for ϕ in the schema?
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Here’s a positive argument for generosity. Remember that instances of the induction schema
(for monadic predicates) are conditionals which look like this:

[ϕ(0) ∧ ∀x(ϕ(x)→ ϕ(Sx))] → ∀xϕ(x)

So they actually only allow us to derive some ∀xϕ(x) when we can already prove the corresponding
(i) ϕ(0) and also can prove (ii) ∀x(ϕ(x)→ ϕ(Sx)). But if we can already prove things like (i) and
(ii) then aren’t we already committed to treating ϕ as a respectable predicate? For given (i) and
(ii), we can already prove each and every one of ϕ(0), ϕ(S0), ϕ(SS0), . . . . However, there are no
‘stray’ numbers which aren’t denoted by some numeral; so that means (iv) that we can prove
of each and every number that ϕ is true of it. What more can it possibly take for ϕ to express
a genuine property that indeed holds for every number, so that (v) ∀xϕ(x) is true? In sum, it
seems that we can’t overshoot by allowing instances of the induction schema for any open wff
ϕ of LA with one free variable. The only usable instances from our generous range of axioms
will be those where we can prove the antecedents (i) and (ii) of the relevant conditionals: and in
those cases, we’ll have every reason to accept the consequents (v) too.

(Techie note: the argument generalizes in the obvious way to the case where ϕ(x) has other
variables dangling free.)

15.2 Introducing PA

Suppose then that we accept the conclusion of our last argument, and now take it that any open
wff of LA can be used in the induction schema. This means moving on from Q, and jumping right
over a range of possible intermediate theories, to adopt the much richer theory of arithmetic that
we can briskly define as follows:

Defn. 25. PA – First-order Peano Arithmetic13 – is the first-order theory whose language is LA

and whose axioms are those of Q plus the [universal closures of] all instances of the induction
schema that can be constructed from open wffs of LA.

Plainly, it is still decidable whether any given wff has the right shape to be one of the new axioms,
so this is a legitimate formalized theory.

Given its very natural motivation, PA is the benchmark axiomatized first-order theory of
basic arithmetic. Just for neatness, then, let’s bring together all the elements of its specification
in one place.

First, though, a quick observation. PA allows, in particular, induction for the formula

ϕ(x) =def (x 6= 0 → ∃y(x = Sy)).

But now note that the corresponding ϕ(0) is a trivial logical theorem. Likewise, ∀xϕ(Sx) is an
equally trivial theorem, and that trivially entails ∀x(ϕ(x)→ ϕ(Sx)). So we can use an instance
of the Induction Schema inside PA to derive ∀xϕ(x). But that’s just Axiom 3 of Q. So our initial
presentation of PA – as explicitly having all the Axioms of Q plus the instances of the Induction
Schema – involves a certain redundancy. Bearing that in mind, here’s our . . .

15.3 Summary overview of PA

First, to repeat, the language of PA is LA, a first-order language whose non-logical vocabulary
comprises just the constant ‘0’, the one-place function symbol ‘S’, and the two-place function
symbols ‘+’, ‘×’, and whose intended interpretation is the obvious one.

Second, PA’s deductive proof system is some standard version of classical first-order logic with
identity. The differences between various presentations of first-order logic of course don’t make
a difference to what sentences can be proved in PA. It’s convenient, however, to fix officially on
a Hilbert-style axiomatic system for later metalogical work theorizing about the theory.

And third, its non-logical axioms – eliminating the redundancy from our original listing and
renumbering – are the following sentences:

13The name is conventional. Giuseppe Peano did publish a list of axioms for arithmetic in 1889. But they
weren’t first-order, only explicitly governed the successor relation, and – as he acknowledged – had already been
stated by Richard Dedekind.
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Axiom 1. ∀x(0 6= Sx)

Axiom 2. ∀x∀y(Sx = Sy→ x = y)

Axiom 3. ∀x(x + 0 = x)

Axiom 4. ∀x∀y(x + Sy = S(x + y))

Axiom 5. ∀x(x× 0 = 0)

Axiom 6. ∀x∀y(x× Sy = (x× y) + x)

plus every instance of the following

Induction Schema ({ϕ(0) ∧ ∀x(ϕ(x)→ ϕ(Sx))} → ∀xϕ(x)) where ϕ(x) is an open wff of
LA that has ‘x’ free. (Techie note: if ϕ(x) has other variables free then we’ll need to ‘bind’ this
instance with universal quantifiers if we want every axiom to be a closed sentence.)

15.4 What PA can prove

PA proves ∀x(x 6= Sx). Just take ϕ(x) to be x 6= Sx. Then PA trivially proves ϕ(0) because that’s
Axiom 1. And PA also proves ∀x(ϕ(x)→ ϕ(Sx)) by contraposing Axiom 2. And then an induction
axiom tells us that if we have both ϕ(0) and ∀x(ϕ(x)→ ϕ(Sx)) we can deduce ∀xϕ(x), i.e. no
number is a self-successor. It’s as simple as that. Yet this trivial little result is worth noting
when we recall our deviant interpretation which makes the axioms of Q true while making
∀x(0 + x = x) false: that had Kurt Gödel himself added to the domain as a rogue self-successor.
A bit of induction, however, rules out self-successors.

And so it goes: the familiar basic truths about elementary general truths about the successor
function, addition, multiplication and ordering (with the order relation as defined in §13.4) are
all provable in PA using induction (and rule out other simple deviant models) There are more
than enough examples worked through in IGT, which we won’t repeat here!

So we might reasonably have hoped – at least before we’d heard of Gödel’s incompleteness
theorems – that PA would turn out to be a complete theory that indeed pins down all the truths
of LA.

Here’s another fact that might well have encouraged this hope, pre-Gödel. Suppose we define
the language LP to be LA without the multiplication sign. Take P to be the theory couched in
the language LP , whose axioms are Q’s now familiar axioms for successor and addition, plus the
universal closures of all instances of the induction schema that can be formed in the language
LP . In short, P is PA minus multiplication. Then P is a negation-complete theory of successor
and addition. We are not going to be able to prove that – the argument uses a standard model-
theoretic method called ‘elimination of quantifiers’ which isn’t hard, and was known in the 1920s,
but it would just take too long to explain.

So the situation is as follows, and was known before Gödel got to work. (i) There is a complete
formal axiomatized theory BA whose theorems are exactly the quantifier-free truths expressible
using successor, addition and multiplication (and the connectives). (ii) There is another complete
formal axiomatized theory (equivalent to PA minus multiplication) whose theorems are exactly
the first-order truths expressible using just successor and addition. Against this background,
Gödel’s result that adding multiplication in order to get full PA gives us a theory which is
incomplete and incompletable (if consistent) comes as a rather nasty surprise. It certainly wasn’t
obviously predictable that multiplication would make all the difference. Yet it does. In fact, as
we’ve said before, as soon we have an arithmetic as strong as Q, we get incompleteness.

And by the way, it isn’t that a theory of multiplication must in itself be incomplete. In 1929,
Thoralf Skolem showed that there is a complete theory for the truths expressible in a suitable
first-order language with multiplication but lacking addition or the successor function. So why
then does putting multiplication together with addition and successor produce incompleteness?
The answer will emerge shortly enough, but pivots on the fact that an arithmetic with all three
functions built in can express/capture all ‘primitive recursive’ functions. But we’ll have to wait
to the next episode to explain what that means.
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16 Burning questions

1. PA has an infinite number of axioms: why is having an infinite number of axioms any
better than using an infinitary ω-rule? Sure, there are an unlimited number of instances
of the induction schema, each one of which is an axiom of PA. Still, we can mechanically
check a given wff to see whether it is or isn’t one of the instances. So we can mechanically
check a wff to see whether it is a PA axiom. So we can mechanically (and finitely) check a
given finite array of wffs to see whether it is a properly constructed PA proof. By contrast,
we obviously can’t finitely check an array to see if it involves a correct application of the
infinite-premiss ω-rule. That’s why PA is a kosher formal axiomatized theory in our official
sense, and a system with the ω-rule isn’t.

2. But won’t some of the instances of the induction schema will be ludicrously long, far to long
to mechanically check? Ah, but remember we are talking about checkability in principle,
without constraints on time, the amount of ink to be spilt, etc. etc. Effective decidability
is not practical decidability.

3. PA has an infinite number of axioms: but can we find a finite bunch of axioms with the
same consequences? No. First-order Peano Arithmetic is essentially infinitely axiomatized
(not an easy result though!).

4. We saw that Q has ‘a non-standard model’, i.e. there is a deviant unintended interpretation
that still makes the axioms of Q true. Does PA have any non-standard models, i.e. deviant
unintended interpretations that still make its axioms true? Yes, by the Löwenheim-Skolem
theorem it must do (because any consistent theory with infinite models will have models of
arbitrary infinite size). True, PA does not have the trivial non-standard model we built for
Q. But PA still doesn’t pin down uniquely the structure of the natural numbers. Indeed,
even if we assume that we are looking for a countable model – i.e. a model whose elements
could in principle be numbered off – there can be non-standard models of PA. A standard
compactness argument shows this.14

17 Quantifier complexity

OK, that’s the main course over for this episode. Make sure you have fully digested it before
moving on to dessert! If you haven’t, go back and re-read as necessary. Otherwise, we move on
to briefly consider issues about the ‘quantifier complexity’ of wffs.

PA is the canonical, most natural, first-order theory of the arithmetic of successor, addition
and multiplication. Indeed it is arguable that any proposition about successor, addition and
multiplication that can be seen to be true just on the basis of our grasp of the structure of
the natural numbers, without more sophisticated ‘higher-order’ reflections, can be shown to be
true in PA (for discussion of this, see IGT, §23.3). Still there is some formal interest in exploring
weaker systems, sitting between Q and PA, systems which have some induction, but not induction
for all open LA wffs. For example, there is some interest in the theories you get by allowing as
axioms only instances of the induction schema induction for so-called ∆0 wffs, or so-called Σ1

wffs. Now, we are not going to explore these weak arithmetics here. But, irrespective of that, it
is in fact worth knowing what ∆0 , Σ1, and Π1 wffs are. So this section briskly explains.

14If you know the compactness theorem for first-order theories, you’ll probably have met the proof. A reminder:
Add to the language of PA a new constant c, and add to the axioms of PA the additional axioms c 6= 0, c 6= 1,
c 6= 2, . . . , c 6= n, . . . . Evidently each finite subset of the axioms of the new theory has a model (assuming PA
is consistent); just take the standard model of arithmetic and interpret c to be greater than the maximum n
for which c 6= n is in the given finite suite of axioms. So, by compactness, the infinite set of axioms of the new
theory has a model, indeed – by the Löwenheim-Skolem theorem again – a countable model, which contains a
zero, its successors, and rogue elements including the denotation of c. This structure is, a fortiori, a non-standard
countable model of PA.
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17.1 Bounded quantification

As we said before in §13.5, we often want to say that all/some numbers less than or equal
to a given number have some particular property. We can now express such claims in formal
arithmetics like Q and PA using wffs of the shape ∀ξ(ξ ≤ κ → ϕ(ξ)) and ∃ξ(ξ ≤ κ ∧ ϕ(ξ)),
where ξ ≤ ζ is just short for ∃v(v + ξ = ζ). And it is standard to further abbreviate such wffs by
(∀ξ ≤ κ)ϕ(ξ) and (∃ξ ≤ κ)ϕ(ξ) respectively.

For any theory T containing Q – and hence for T = PA in particular – we have results like
these:

1. For any n, T ` ∀x({x = 0 ∨ x = 1 ∨ . . . ∨ x = n} → x ≤ n).

2. For any n, T ` ∀x(x ≤ n→ {x = 0 ∨ x = 1 ∨ . . . ∨ x = n}).

3. For any n, if T ` ϕ(0) ∧ ϕ(1) ∧ . . . ∧ ϕ(n), then T ` (∀x ≤ n)ϕ(x).

4. For any n, if T ` ϕ(0) ∨ ϕ(1) ∨ . . . ∨ ϕ(n), then T ` (∃x ≤ n)ϕ(x).

In other words, theories like Q and PA ‘know’ that bounded universal quantifications behave like
finite conjunctions, and that bounded existential quantifications behave like finite disjunctions.
Hold on to that thought!

17.2 ∆0 wffs

Let’s informally say that

Defn. 26. An LA wff is ∆0 if its only quantifications are bounded ones.

For a fancied-up definition, see IGT, §9.5. So a ∆0 wff is one which is built up using the successor,
addition, and multiplication functions, identity, the less-than-or-equal-to relation (defined as
usual), plus the familiar propositional connectives and/or bounded quantifications.

In other words, a ∆0 wff is exactly like a quantifier-free LA wff, i.e. like an LB wff, except
that we allow ourselves to wrap up some conjunctions like ϕ(0)∧ϕ(1)∧ . . .∧ϕ(n) into bounded
quantifications (∀x ≤ n)ϕ(x), and similarly wrap up some disjunctions like like ϕ(0)∨ϕ(1)∨ . . .∨
ϕ(n) into bounded quantifications (∃x ≤ n)ϕ(x).

Since we can mechanically calculate the truth-value of every quantifier-free LA sentence, i.e.
LB sentence, and a ∆0 sentence is equivalent to one, we can mechanically determine the truth-
value of a ∆0 sentence. It follows, of course, that we can mechanically determine whether a ∆0

open wff ϕ(x) is satisfied by a number n by determining whether ϕ(n) is true (likewise for open
wffs with more than one free variable). So ∆0 open wffs express decidable properties of numbers.

Since we know from Theorem 13 that even Q can correctly decide all quantifier-free LA

sentences, and Q knows that bounded quantifications behave just like conjunctions/disjunctions,
it won’t be a surprise to hear that we have

Theorem 18. Q (and hence PA) can correctly decide all ∆0 sentences.

17.3 Σ1 and Π1 wffs

We now say, again informally, that

Defn. 27. An LA wff is Σ1 if it is (or is equivalent to) a ∆0 wff preceded by zero, one, or more
unbounded existential quantifiers. And a wff is Π1 if it is (or is equivalent to) a ∆0 wff preceded
by zero, one, or more unbounded universal quantifiers.

As a mnemonic, it is worth remarking that ‘Σ’ in the standard label ‘Σ1’ comes from an old
alternative symbol for the existential quantifier, as in ΣxFx – that’s a Greek ‘S’ for ‘(logical)
sum’. Likewise the ‘Π’ in ‘Π1’ comes from corresponding symbol for the universal quantifier, as in
ΠxFx – that’s a Greek ‘P’ for ‘(logical) product’. And the subscript ‘1’ in ‘Σ1’ and ‘Π1’ indicates
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that we are dealing with wffs which start with one block of similar quantifiers, respectively
existential quantifiers and universal quantifiers.15

So a Σ1 wff says that some number (pair of numbers, etc.) satisfies the decidable condition
expressed by its ∆0 core; likewise a Π1 wff says that every number (pair of numbers, etc.) satisfies
the decidable condition expressed by its ∆0 core.

To check understanding, make sure you understand why

1. The negation of a ∆0 wff is ∆0.

2. A ∆0 wff is also Σ1 and Π1.

3. The negation of a Σ1 wff is Π1.

17.4 Two results

Here’s another pretty trivial result:

Theorem 19. Q (and hence PA) can prove any true Σ1 sentences (is ‘Σ1-complete’).

Proof. Take, for example, a sentence of the type ∃x∃yϕ(x, y), where ϕ(x, y) is ∆0. If this sentence
is true, then for some pair of numbers m,n, the ∆0 sentence ϕ(m, n) must be true. But then by
Theorem 18, Q proves ϕ(m, n) and hence ∃x∃yϕ(x, y), by existential introduction.

Evidently the argument generalizes for any number of initial quantifiers, which shows that Q
proves all truths which are (or are provably-in-Q equivalent to) some ∆0 wff preceded by one or
more unbounded existential quantifiers.

But if that seems straightforward and unexciting, the following corollary is interesting and
perhaps initially surprising:

Theorem 20. If T is a consistent theory which includes Q, then every Π1 sentence that it proves
is true.

Proof. Suppose T proves a false Π1 sentence ϕ. Then ¬ϕ will be a true Σ1 sentence. But in
that case, since T includes Q and so is ‘Σ1-complete’, T will prove ¬ϕ, making T inconsistent.
Contraposing, if T is consistent, any Π1 sentence it proves is true.

This is, in its way, a rather remarkable observation. It means that we don’t have to fully believe
a theory T – i.e. don’t have to accept all its theorems are true on the interpretation built into
T ’s language – in order to use it to establish that some Π1 arithmetic generalization is true. For
example, it turns out that, with some trickery, we can state for example Fermat’s Last Theorem
as a Π1 sentence. And Andrew Wiles showed how to prove Fermat’s Last Theorem using some
very heavy-duty infinitary mathematics. Now we see, rather intriguingly, that we don’t have
to believe that this infinitary mathematics is true – whatever exactly that means when things
get wildly infinitary! – but only that it is consistent, to take him as establishing that the Π1

arithmetical claim which is the Theorem is true.

Now read IGT, chs. 9 and 10.

15By the same token, a Π2 wff is one that starts with two blocks of quantifiers, a block of universal quantifiers
followed by a block of existential quantifiers followed by a bounded kernel. And so it goes.
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• What’s a primitive recursive function?

• How to prove results about all p.r. functions

• The p.r. functions are computable . . .

• . . . but not all computable functions are p.r.

• The idea of a characteristic function, which enables us to define . . .

• . . . the idea of p.r. properties and relations.

In our preamble, it might be helpful this time to give a story about where we are going, rather
than (as in previous episodes) review again where we’ve been. So, at the risk of spoiling the
excitement, here’s what’s going to happen in this and the following three episodes.

1. The formal theories of arithmetic that we’ve looked at so far have (at most) the successor
function, addition and multiplication built in. But why stop there? Even school arithmetic
acknowledges many more numerical functions, like the factorial and the exponential.

This episode describes a very wide class of familiar such functions, the so-called primitive
recursive ones. They are a major subclass of the effectively computable functions.

We also define the primitive recursive properties and relations (i.e. those with a p.r.
‘characteristic function’) – a p.r. function can effectively decide when the property/relation
holds.

2. The next episode shows that LA, the language of basic arithmetic (see §13.1), can express
all p.r. functions and relations. Moreover Q and hence PA can capture all those functions
and relations too (i.e. case-by-case prove wffs that assign the right values to the functions
for particular numerical arguments). So PA, despite having only successor, addition and
multiplication ‘built in’, can actually deal with a vast range of functions.

Note, by the way, the link with our earlier talk about “sufficiently strong theories”. Those,
recall, are theories that can capture all effectively decidable properties of numbers. Well,
now we are going to show that PA (indeed, even Q) can capture at all least all decidable-
by-a-p.r.-function properties of numbers. And that’s enough for the Gödelian argument to
go through as we well see next.

3. We introduce again the key idea of the ‘arithmetization of syntax’ by Gödel-numbering.
Focus on PA for the moment. Then we can define various properties/relations as follows:

Wff (n) iff n is the code number of a PA-wff;
Sent(n) iff n is the code number of a PA-sentence;
Prf (m,n) iffm is the code number of a PA-proof of the sentence with code number n.

Moreover, these properties/relations are primitive recursive. Similar results obtain for any
sensibly axiomatized formal theory.

1



4. Since Prf is p.r., and PA can capture all p.r. relations, there is a wff Prf(x, y) which captures
the relation Prf . And we can use this fact – or a closely related one – to construct a
Gödel sentence which sort-of-says ‘I am not provable in PA’, and hence prove Gödel first
incompleteness theorem for PA. Similarly for other sensibly axiomatized arithmetics that
include Q.

Now read on . . .

18 Introducing the primitive recursive functions

We’ll start with two more functions that are familiar from elementary arithmetic. Take the
factorial function y!, where e.g. 4! = 1 × 2 × 3 × 4. This can be defined by the following two
equations:

0! = S0 = 1
(Sy)! = y!× Sy

The first clause tells us the value of the function for the argument y = 0; the second clause tells
us how to work out the value of the function for Sy once we know its value for y (assuming we
already know about multiplication). So by applying and reapplying the second clause, we can
successively calculate 1!, 2!, 3!, . . . . Hence our two-clause definition fixes the value of ‘y!’ for all
numbers y.

For our second example – this time a two-place function – consider the exponential, standardly
written in the form ‘xy’. This can be defined by a similar pair of equations:

x0 = S0
xSy = (xy × x)

Again, the first clause gives the function’s value for a given value of x and y = 0, and – keeping
x fixed – the second clause gives the function’s value for the argument Sy in terms of its value
for y.

We’ve seen this two-clause pattern before, of course, in our formal Axioms in Q/PA for the
addition and multiplication functions. Presented in the style of everyday informal mathematics
(leaving quantifiers to be understood) – and note, everything in this episode is just informal
mathematics – we have:

x+ 0 = x
x+ Sy = S(x+ y)

x× 0 = 0
x× Sy = (x× y) + x

Three comments about our examples so far:

i. In each definition, the second clause fixes the value of a function for argument Sn by
invoking the value of the same function for argument n. This kind of procedure where we
evaluate a function by calling the same function is standardly termed ‘recursive’ – or more
precisely, ‘primitive recursive’. So our two-clause definitions are examples of definition by
primitive recursion.1

ii. Note, for example, that (Sn)! is defined as n!× Sn, so it is evaluated by evaluating n! and
Sn and then feeding the results of these computations into the multiplication function. This
involves, in a word, the composition of functions, where evaluating a composite function
involves taking the output(s) from one or more functions, and treating these as inputs to
another function.

1Strictly speaking, we need a proof of the claim that primitive recursive definitions really do well-define
functions: such a proof was first given by Richard Dedekind in 1888.
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iii. Our examples so far can be put together to illustrate two short chains of definitions by
recursion and functional composition. Working from the bottom up, addition is defined in
terms of the successor function; multiplication is then defined in terms of successor and
addition; then the factorial (or, on the second chain, exponentiation) is defined in terms of
multiplication and successor.

Here’s another little definitional chain:

P (0) = 0
P (Sx) = x

x −· 0 = x
x −· Sy = P (x −· y)

|x− y| = (x −· y) + (y −· x)

‘P ’ signifies the predecessor function (with zero being treated as its own predecessor); ‘−· ’ signifies
‘subtraction with cut-off’, i.e. subtraction restricted to the non-negative integers (so m −· n is
zero if m < n). And |m−n| is of course the absolute difference between m and n. This time, our
third definition doesn’t involve recursion, only a simple composition of functions.

These examples motivate the following initial gesture towards a definition

Defn. 28. Roughly: a primitive recursive function is one that can be similarly characterized
using a chain of definitions by recursion and composition.2

That is a quick-and-dirty characterization, though it should be enough to get across the basic
idea. Still, we really need to pause to do better. In particular, we need to nail down more carefully
the ‘starter pack’ of functions that we are allowed to take for granted in building a definitional
chain.

19 Defining the p.r. functions more carefully

On the one hand, I suppose you ought to read this section! On the other hand, don’t get lost in
the techie details. All we are trying to do here is give a careful, explicit, presentation of the ideas
we’ve just been sketching, and flesh out that rough and ready Defn. 28.

19.1 Definition by primitive recursion – one and two place functions

Consider the recursive definition of the factorial again:

0! = 1
(Sy)! = y!× Sy

This is an example of the following general scheme for defining a one-place function f :

f(0) = g
f(Sy) = h(y, f(y))

Here, g is just a number, while h is – crucially – a function we are assumed already to know
about prior to the definition of f . Maybe that’s because h is an ‘initial’ function that we are
allowed to take for granted like the successor function; or perhaps it’s because we’ve already
given recursion clauses to define h; or perhaps h is a composite function constructed by plugging
one known function into another – as in the case of the factorial, where h(y, u) = u× Sy.

Likewise, with a bit of massaging, the recursive definitions of addition, multiplication and the
exponential can all be treated as examples of the following general scheme for defining two-place
functions:

2The basic idea is there in Dedekind and highlighted by Skolem in 1923. But the modern terminology ‘primitive
recursion’ seems to be due to Rósza Péter in 1934; and ‘primitive recursive function’ was first used by Stephen
Kleene’ in 1936.
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f(x, 0) = g(x)
f(x, Sy) = h(x, y, f(x, y))

where now g and h are both functions that we already know about. Three points about this:

i. To get the definition of addition to fit this pattern, we have to take g(x) to be the trivial
identity function I(x) = x.

ii. To get the definition of multiplication to fit the pattern, g(x) has to be treated as the even
more trivial zero function Z(x) = 0.

iii. Again, to get the definition of addition to fit the pattern, we have to take h(x, y, u) to be
the function Su. As this illustrates, we must allow h not to care what happens to some
of its arguments. One neat way of doing this is to help ourselves to some further trivial
identity functions that serve to select out particular arguments. Suppose, for example, we
have the three-place function I33 (x, y, u) = u to hand. Then, in the definition of addition, we
can put h(x, y, u) = SI33 (x, y, u), so h is defined by composition from previously available
functions.

19.2 The initial functions

With that motivation, we will now officially define the full ‘starter pack’ of functions as follows:

Defn. 29. The initial functions are the successor function S, the zero function Z(x) = 0 and
all the k-place identity functions, Iki (x1, x2, . . . , xk) = xi for each k, and for each i, 1 ≤ i ≤ k.

The identity functions are also often called projection functions. They ‘project’ the vector with
components x1, x2, . . . , xk onto the i-th axis.

19.3 Definition by primitive recursion – generalizing

We next want to generalize the idea of recursion from the case of one-place and two-place func-
tions. There’s a standard notational device that helps to put things snappily: we write ~x as short
for the array of k variables x1, x2, . . . , xk. Then we can generalize as follows:

Defn. 30. Suppose that the following holds:

f(~x, 0) = g(~x)
f(~x, Sy) = h(~x, y, f(~x, y))

Then f is defined from g and h by primitive recursion.

This covers the case of one-place functions f(y) like the factorial if we allow ~x to be empty, in
which case g(~x) is a ‘zero-place function’, i.e. a constant.

19.4 Definition by composition

We need to tidy up the idea of definition by composition. The basic idea, to repeat, is that we
form a composite function f by treating the output value(s) of one or more given functions g,
g′, g′′, . . . , as the input argument(s) to another function h. For example, we set f(x) = h(g(x)).
Or, to take a slightly more complex case, we could set f(x, y, z) = h(g(x, y), g′(y, z)).

There’s a number of equivalent ways of covering the manifold possibilities of compound-
ing multi-place functions. But one standard way is to define what we might call one-at-a-time
composition (where we just plug one function g into another function h), thus:

Defn. 31. If g(~y ) and h(~x, u, ~z ) are functions – with ~x and ~z possibly empty – then f is defined
by composition by substituting g into h just if f(~x, ~y, ~z ) = h(~x, g(~y), ~z ).

We can then think of generalized composition – where we plug more than one function into
another function – as just iterated one-at-a-time composition. For example, we can substi-
tute the function g(x, y) into h(u, v) to define the function h(g(x, y), v) by composition. Then
we can substitute g′(y, z) into the defined function h(g(x, y), v) to get the composite function
h(g(x, y), g′(y, z)).
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19.5 Putting everything together

We informally defined the primitive recursive (henceforth, p.r.) functions as those that can be
defined by a chain of definitions by recursion and composition. Working backwards down a
definitional chain, it must bottom out with members of an initial ‘starter pack’ of trivially
simple functions. At the outset, we highlighted the successor function among the given simple
functions. But we’ve since noted that, to get our examples to fit our official account of definition
by primitive recursion, we need to acknowledge some other, even more trivial, initial functions.
So putting everything together, let’s now offer this more formal characterization:

Defn. 32. The p.r. functions are as follows

1. The initial functions S,Z, and Iki are p.r.;

2. if f can be defined from the p.r. functions g and h by composition, substituting g into h,
then f is p.r.;

3. if f can be defined from the p.r. functions g and h by primitive recursion, then f is p.r.;

4. nothing else is a p.r. function.

(We allow g in clauses (2) and (3) to be zero-place, i.e. be a constant.) Note, by the way, that
the initial functions are total functions of numbers, defined for every numerical argument; also,
primitive recursion and composition both build total functions out of total functions. Which
means that all p.r. functions are total functions, defined for all natural number arguments.

So: a p.r. function f is one that can be specified by a chain of definitions by recursion and
composition, leading back ultimately to initial functions. Let’s say:

Defn. 33. A full definition for the p.r. function f is a specification of a sequence of functions
f0, f1, f2, . . . , fk where each fj is either an initial function or is defined from previous functions
in the sequence by composition or recursion, and fk = f .

Then what we’ve seen is that every p.r. function has a full definition in this defined sense. (That’s
the sharp version of the informal characterization we gave at the end of §18.)

20 How to prove a result about all p.r. functions

That last point that every p.r. function has a full definition means that there is a simple way of
proving that every p.r. function has some property P . For suppose that, for some given property
P , we can show

P1. The initial functions have property P .

P2. If the functions g and h have property P , and f is defined by composition from g and h,
then f also has property P .

P3. If the functions g and h have property P , and f is defined by primitive recursion from g
and h, then f also has property P .

Then P1, P2, and P3 together suffice to establish that all primitive recursive functions have
property P .

Why so? Well, as we said, any p.r. function f has a full definition, which specifies a sequence
of functions f0, f1, f2, . . . , fk where each fj is either an initial function or is defined from previous
functions in the sequence by composition or recursion, and fk = f . So as we trek along the fj ,
we start with initial functions which have property P by P1. By P2 and P3, each successive def-
initional move takes us from functions which have property P to another function with property
P . So, every function we define as we go along has property P , including the final target function
f . (This proof is, in effect, a proof by induction on the length of the full definition for f : do you
see why? See §14.3.)

In sum, then: to prove that all p.r. functions have some property P , it suffices to prove the
relevant versions of P1, P2 and P3.
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21 The p.r. functions are computable

21.1 The basic argument

We want to show that every p.r. function is mechanically computable. Given the general strategy
just described, it is enough to show that

C1. The initial functions are computable.

C2. If f is defined by composition from computable functions g and h, then f is also computable.

C3. If f is defined by primitive recursion from the computable functions g and h, then f is also
computable.

But C1 is trivial: the initial functions S,Z, and Iki are effectively computable by a simple algo-
rithm. And C2, the composition of two computable functions g and h is computable (you just
feed the output from whatever algorithmic routine evaluates g as input into the routine that
evaluates h).

To illustrate C3, return once more to our example of the factorial. Here is its p.r. definition
again:

0! = 1
(Sy)! = y!× Sy

The first clause gives the value of the function for the argument 0; then – as we said – you can
repeatedly use the second recursion clause to calculate the function’s value for S0, then for SS0,
SSS0, etc. So the definition encapsulates an algorithm for calculating the function’s value for any
number, and corresponds exactly to a certain simple kind of computer routine. And obviously
the argument generalizes.

21.2 Computing p.r. functions by ‘for’-loops

Compare our p.r. definition of the factorial with the following schematic program:

1. fact := 1
2. For y = 0 to n− 1
3. fact := (fact × Sy)
4. Loop

Here fact is a memory register that we initially prime with the value of 0!. Then the program
enters a loop: and the crucial thing about executing a ‘for’ loop is that the total number of
iterations to be run through is fixed in advance: we number the loops from 0, and in executing
the loop, you increment the counter by one on each cycle. So in this case, on loop number k the
program replaces the value in the register with Sk times the previous value (we’ll assume the
computer already knows how to find the successor of k and do that multiplication). When the
program exits the loop after a total of n iterations, the value in the register fact will be n!.

More generally, for any one-place function f defined by recursion in terms of g and the
computable function h, the same program structure always does the trick for calculating f(n).
Thus compare

f(0) = g
f(Sy) = h(y, f(y))

with the corresponding program

1. func := g
2. For y = 0 to n− 1
3. func := h(y, func)
4. Loop
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So long as h is already computable, the value of f(n) will be computable using this ‘for’ loop
that terminates with the required value in the register func.

Similarly, of course, for many-place functions. For example, the value of the two-place function
defined by

f(x, 0) = g(x)
f(x, Sy) = h(x, y, f(x, y))

is calculated by the algorithmic program

1. func := g(m)
2. For y = 0 to n− 1
3. func := h(m, y, func)
4. Loop

which gives the value for f(m,n) so long as g and h are computable.
Now, our mini-program for the factorial calls the multiplication function which can itself be

computed by a similar ‘for’ loop (invoking addition). And addition can in turn be computed
by another ‘for’ loop (invoking the successor). So reflecting the downward chain of recursive
definitions

factorial ⇒ multiplication ⇒ addition ⇒ successor

there’s a program for the factorial containing nested ‘for’ loops, which ultimately calls the prim-
itive operation of incrementing the contents of a register by one (or other operations like setting
a register to zero, corresponding to the zero function, or copying the contents of a register,
corresponding to an identity function).

The point obviously generalizes, giving us

Theorem 21. Primitive recursive functions are effectively computable by a series of (possibly
nested) ‘for’ loops.

21.3 If you can compute it using ‘for’-loops, it is p.r.

The converse is also true. Take a ‘for’ loop which computes the value of a function f for given
arguments, a loop which calls on two prior routines, one which computes a function g (used to
set the value of f with some key argument set to zero), the other which computes a function h
(which is used on each loop to fix the next value of f as that argument is incremented). This
plainly corresponds to a definition by recursion of f in terms of g and h. And generalizing,

Theorem 22. If a function can be computed by a program using just ‘for’ loops as its main
programming structure – with the program’s ‘built in’ functions all being p.r. – then the newly
defined function will also be primitive recursive.

This gives us a quick-and-dirty way of convincing ourselves that a new function is p.r.: sketch
out a routine for computing it and check that it can all be done with a succession of (possibly
nested) ‘for’ loops which only invoke already known p.r. functions: then the new function will be
primitive recursive.

22 Not all computable numerical functions are p.r.

We have seen that any p.r. function is mechanically computable. But not all effectively computable
numerical functions are primitive recursive. In this section, we first make the claim that there
are computable-but-not-p.r. numerical functions look plausible. Then we’ll cook up an example.

First, then, some plausibility considerations. We’ve just seen that the values of a given prim-
itive recursive function can be computed by a program involving ‘for’ loops as its main pro-
gramming structure. Each loop goes through a specified number of iterations. However, we do
allow computations to involve open-ended searches, with no prior bound on the length of search.
We made essential use of this permission when we showed that negation-complete theories are
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decidable – for we allowed the process ‘enumerate the theorems and wait to see which of ϕ or
¬ϕ turns up’ to count as a computational decision procedure.

Standard computer languages of course have programming structures which implement just
this kind of unbounded search. Because as well as ‘for’ loops, they allow ‘do until’ loops (or
equivalently, ‘do while’ loops). In other words, they allow some process to be iterated until a
given condition is satisfied – where no prior limit is put on the the number of iterations to be
executed.

If we count what are presented as unbounded searches as computations, then it looks very
plausible that not everything computable will be primitive recursive.

True, that is as yet only a plausibility consideration. Our remarks so far leave open the
possibility that computations can always somehow be turned into procedures using ‘for’ loops
with a bounded limit on the number of steps. But in fact we can now show that isn’t the case:

Theorem 23. There are effectively computable numerical functions which aren’t primitive re-
cursive.

Proof. The set of p.r. functions is effectively enumerable. That is to say, there is an effective way
of numbering off functions f0, f1, f2, . . . , such that each of the fi is p.r., and each p.r. function
appears somewhere on the list.

This holds because, by definition, every p.r. function has a ‘recipe’ in which it is defined by
recursion or composition from other functions which are defined by recursion or composition from
other functions which are defined . . . ultimately in terms of some primitive starter functions. So
choose some standard formal specification language for representing these recipes. Then we can

0 1 2 3 . . .

f0 f0(0) f0(1) f0(2) f0(3) . . .

f1 f1(0) f1(1) f1(2) f1(3) . . .

f2 f2(0) f2(1) f2(2) f2(3) . . .

f3 f3(0) f3(1) f3(2) f3(3) . . .

. . . . . . . . . . . . . . . ↘

effectively generate ‘in alphabetical order’ all possible strings of symbols from this language; and
as we go along, we select the strings that obey the rules for being a recipe for a p.r. function. That
generates a list of recipes which effectively enumerates the p.r. functions, repetitions allowed.

Now consider our table. Down the table we list off the p.r. functions f0, f1, f2, . . . . An
individual row then gives the values of fn for each argument. Let’s define the corresponding
diagonal function, by putting δ(n) = fn(n) + 1. To compute δ(n), we just run our effective
enumeration of the recipes for p.r. functions until we get to the recipe for fn. We follow the
instructions in that recipe to evaluate that function for the argument n. We then add one. Each
step is entirely mechanical. So our diagonal function is effectively computable, using a step-by-
step algorithmic procedure.

By construction, however, the function δ can’t be primitive recursive. For suppose otherwise.
Then δ must appear somewhere in the enumeration of p.r. functions, i.e. be the function fd for
some index number d. But now ask what the value of δ(d) is. By hypothesis, the function δ is
none other than the function fd, so δ(d) = fd(d). But by the initial definition of the diagonal
function, δ(d) = fd(d) + 1. Contradiction.

So we have ‘diagonalized out’ of the class of p.r. functions to get a new function δ which is
effectively computable but not primitive recursive.

‘But hold on! Why is the diagonal function not a p.r. function? Where are the open-ended
searches involved in computing it?’ Well, consider evaluating δ(n) for increasing values of n.
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For each new argument, we will have to look along the sequence of strings of symbols in our
computing language until we find the next one that gives us a well-constructed recipe for a p.r.
function. That isn’t given to us a bounded search.

23 Defining p.r. properties and relations

We have defined the class of p.r. functions. Next, we extend the scope of the idea of primitive
recursiveness and introduce the ideas of p.r. decidable (numerical) properties and relations.

Now, quite generally, we can tie talk of functions and talk of properties and relations together
by using the notion of a characteristic function. Here’s a definition.

Defn. 34. The characteristic function of the numerical property P is the one-place function cP
such that if m is P , then cP (m) = 0, and if m isn’t P , then cP (m) = 1.

The characteristic function of the two-place numerical relation R is the two-place function cR
such that if m is R to n, then cR(m,n) = 0, and if m isn’t R to n, then cR(m,n) = 1.

And similarly for many-place relations. The choice of values for the characteristic function is, of
course, entirely arbitrary: any pair of distinct numbers would do. Our choice is supposed to be
reminiscent of the familiar use of 0 and 1, one way round or the other, to stand in for true and
false. And our (less usual) selection of 0 rather than 1 for true is merely for later convenience in
IGT .

The numerical property P partitions the numbers into two sets, the set of numbers that have
the property and the set of numbers that don’t. Its corresponding characteristic function cP
also partitions the numbers into two sets, the set of numbers the function maps to the value
0, and the set of numbers the function maps to the value 1. And these are the same partition.
So in a good sense, P and its characteristic function cP contain exactly the same information
about a partition of the numbers: hence we can move between talk of a property and talk of
its characteristic function without loss of information. Similarly, of course, for relations (which
partition pairs of numbers, etc.). And in what follows, we’ll frequently use this link between
properties and relations and their characteristic functions in order to carry over ideas defined for
functions and apply them to properties/relations.

For example, without further ado, we now extend the idea of primitive recursiveness to cover
properties and relations:

Defn. 35. A p.r. decidable property is a property with a p.r. characteristic function, and likewise
a p.r. decidable relation is a relation with a p.r. characteristic function.

Given that any p.r. function is effectively computable, p.r. decidable properties and relations are
among the effectively decidable ones. Hence the appropriateness of the label!

Now read IGT , Ch. 11.
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• LA can express all p.r. functions

• The role of the β-function trick in proving that result

• In fact, Σ1 wffs suffice to express all p.r. functions

• Q can capture all p.r. functions

• Expressing and capturing p.r. properties and relations.

A. The last episode wasn’t about logic or formal theories at all: it was about common-or-garden
arithmetic and the informal notion of computability.

We noted that addition can be defined in terms of repeated applications of the successor
function. Multiplication can be defined in terms of repeated applications of addition. The expo-
nential and factorial functions can be defined, in different ways, in terms of repeated applications
of multiplication. There’s already a pattern emerging here!

The main task in the last episode was to get clear about this pattern. So first we said more
about the idea of defining one function in terms of repeated applications of another function.
Tidied up, that becomes the idea of defining a function by primitive recursion (Defn. 30).

Then we want the idea of a definitional chain where we define a function by primitive recursion
from other functions which we define by primitive recursion from other functions, and so on
down, until we bottom out with the successor function and other trivia. We also of course allow
composition of functions – i.e. feeding the output of one already-defined function into another
already-defined function – along the way. Tidied up, this gives us the idea of a primitive recursive
function, i.e. one that can be defined by such a definitional chain (Defn. 32).

We then noted three key facts:

1. Every p.r. function is intuitively computable – moreover it is computable without going in
for open-ended searches. It can be computed using only ‘for’ loops and not open-ended ‘do
until’ loops. That’s Theorem 21.

2. Conversely, if a numerical function can be computed from a starter pack of trivial functions
using only ‘for’ loops, then it is primitive recursive. That’s Theorem 22.

3. But not every intuitively computable numerical function is primitive recursive. That’s
Theorem 23.

B. Let’s just comment, by way of an aside, on the proof of the third result.
We noted that we can effectively list (the recipes for) p.r. functions, specifying the functions

f0, f1, f2, . . . . We can then define the function d(n) = fn(n) + 1. This is effectively computable,
because we just go along the effectively generated list of recipes till the n-th one, and use that
recipe applied to input n to compute fn(n) and then add one. But this computable function is
distinct from all the fj . So it isn’t primitive recursive.
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The argument evidently generalizes. Suppose we can effectively list the recipes for some other
class C of computable total (i.e. everywhere-defined) functions, specifying the functions fC0 , fC1 ,
fC2 , . . . . Then again we can define dC(n) = fCn (n) + 1, which will be everywhere-defined because
fCj is everywhere defined, is computable, but not in C. In a slogan, we can ‘diagonalize out’ of
class C. So that gives us a theorem:

Theorem 24. No effective listing of algorithms can include algorithms for all the intuitively
computable total functions.1

C. OK, so the situation is now this. We’ve been talking about formal arithmetics with just
three functions – successor, addition, multiplication – built in. We’ve reminded ourselves that
ordinary informal arithmetic talks about heaps more elementary functions like the exponential,
the factorial, the-number-of-prime-divisors-of, and so on and so forth: and we generalized the sort
of way these functions can be defined to specify the whole class of primitive recursive functions.
A gulf seems to have opened up between the modesty of the resources of our formal theories
(including the strongest so far, PA) and the richness of the world of p.r. functions (and we know
that those aren’t even all the computable arithmetical functions). In this episode, we show the
gulf is merely apparent. The language LA in fact can express all p.r. functions; and even the
weak theory Q can capture them all too. So, in fact, our formal theories – despite their modest
basic resources – can deal with a lot more than you might at first sight suppose.

Now recall the idea of a sufficiently strong theory which we introduced in Defn. 16. That was
the idea of capturing all decidable numerical properties. That’s equivalent to the idea of captur-
ing all computable one-place functions (by the link between properties and their characteristic
functions). Well, what we are claiming is that we can show at least that Q and hence PA can
capture all primitive recursive computable functions. That will be enough for Gödel’s argument
for incompleteness to fly.

D. One more remark before we set off. The main proof(-sketch) in this episode is not particularly
difficult, but it is a bit messy. Don’t worry at all, however, if you find it troublesome to see what
is going on. Nothing in what follows in later episodes depends on your knowing the details of the
proofs of Theorems 25 and 27. All you need to know is that the results can be proved. So don’t
let this episode be a stumbling block!

24 LA can express all p.r. functions

We want to show that if the one-place function f is p.r., then there is a two-place LA wff ϕ(x, y),
such that ϕ(m, n) is true if and only if f(m) = n. And similarly, of course, for many-place p.r.
functions.

24.1 Proof strategy

Suppose that the following three propositions are all true:

E1. LA can express the initial functions, and addition and multiplication. (See Defn. 29.)

E2. If LA can express the functions g and h, then it can also express a function f defined by
composition from g and h. (See Defn. 31.)

E3. If LA can express the functions g and h, then it can also express a function f defined by
primitive recursion from g and h. (See Defn. 30.)

Then by the argument of §20, that establishes

Theorem 25. LA can express all p.r. functions.

1Note that the restriction to total functions is doing essential work here. Consider algorithms for partial
computable functions (the idea is that when the algorithm for the partial function ϕi ‘crashes’ on input n, ϕi(n)
is undefined). And consider a listing of algorithms for partial functions. δ(n) = ϕn(n) + 1 could then be e.g. ϕd,
if ϕd(d) and hence ϕd(d) + 1 are both undefined.
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But it is trivial to prove E1. Just look at cases. The successor function Sx = y is of course
expressed by the open wff Sx = y. The addition function x + y = z is expressed by x + y = z.
Similarly for multiplication.

The zero function, Z(x) = 0 is expressed by the wff Z(x, y) =def (x = x ∧ y = 0).
Finally, the three-place identity function I32 (x, y, z) = y, to take just one example, is expressed

by the wff I32(x, y, z, u) =def (x = x ∧ y = u ∧ z = z). Likewise for all the other identity functions.
[Check those claims!]

So that just leaves E2 and E3 to prove.

24.2 Proving E2

This result is pretty trivial too. Suppose g and h are one-place functions, expressed by the wffs
G(x, y) and H(x, y) respectively. Then, the function f(x) = h(g(x)) is evidently expressed by the
wff ∃z(G(x, z) ∧ H(z, y)).

For suppose g(m) = k and h(k) = n, so f(m) = n. Then by hypothesis G(m, k) and
H(k, n) will be true, and hence ∃z(G(m, z) ∧ H(z, n)) is true, as required. Conversely, suppose
∃z(G(m, z) ∧ H(z, n)) is true. Then since the quantifiers run over numbers, (G(m, k) ∧ H(k, n))
must be true for some k. So we’ll have g(m) = k and h(k) = n, and hence f(m) = h(g(m)) = n
as required.

Other cases where g and/or h are multi-place functions can be handled similarly.

24.3 What it takes to define the factorial

Proving E3 is the tricky case.2 We’ll illustrate the general strategy by first taking a particular
case of a definition by primitive recursion, and then we’ll generalize. So consider the primitive
recursive definition of the factorial function again:

0! = 1
(Sx)! = x!× Sx

The multiplication and successor functions here are of course expressible in LA: but how can we
express our defined function in LA?

Think about the p.r. definition for the factorial in the following way. It tells us how to construct
a sequence of numbers 0!, 1!, 2!, . . . , x!, where we move from the u-th member of the sequence
(counting from zero) to the next by multiplying by Su. Putting y = x!, the p.r. definition thus
says

A. There is a sequence of numbers k0, k1, . . . , kx such that: k0 = 1, and if u < x then kSu =
ku × Su, and kx = y.

So the question of how to reflect the p.r. definition of the factorial inside LA comes to this: how
can we express facts about finite sequences of numbers using the limited resources of LA?

What we need to do is to wrap up a finite sequence into a single code number c, and then
have a decoding function decode such that if you feed decode the code number c and the index
i it spits out the i-th member of the sequence which c codes! In other words, if c is the code
number for the sequence k0, k1, . . . , kx we want: decode(c, i) = ki.

If we can find a coding scheme and a decoding function that does the trick, then we can
rewrite the p.r. definition of the factorial as

B. There is a code number c such that: decode(c, 0) = 1, and if u < x then decode(c, Su) =
decode(c, u)× Su, and decode(c, x) = y.

And if decode can be expressed in LA then we can define the factorial in LA.

2Don’t worry if you find the ensuing argument a bit boggling (though really you shouldn’t, as the basic proof
idea is not hard even if its implementation takes a bit of a trick). As far as understanding Gödel’s theorems are
concerned, what you really need to know is that Theorem 25 can be proved, and not the details about how it is
proved.
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24.4 Coding sequences if we have a factorizing function to play with

Let’s just note – before giving a decode function that can be expressed in pure LA – that if we
were working in a slightly richer language the task would be easy.

Suppose π0, π1, π2, π3, . . . is the series of prime numbers 2, 3, 5, 7, . . . . Now consider the
number

b = πk0
0 · π

k1
1 · π

k2
2 · . . . · πkn

n .

b can be thought of as encoding the whole sequence k0, k1, k2, . . . , kn. And we can recover
the coded sequence from b by using the (primitive recursive) decoding function exponent where
exponent(b, i) is the exponent of the i-th prime in the prime factorization of b. (That’s unique
by the fundamental theorem of arithmetic that says that prime factorizations are unique.)

So there is nothing at all mysterious about a coding scheme for finite sequences and a decoding
function that recovers elements of the sequence from its code: the decoding function exponent
would do the job. And a language L+

A with an expression for exponent built in would be able to
define the factorial function in the way explained.

But of course, exponent isn’t built into LA or obviously definable in it. The question now is:
can we construct a different coding scheme with a decoding function which can be constructed
from the successor, addition and multiplication functions which are built into LA?

24.5 Gödel’s β-function

It turns out to simplify things if we liberalize our notion of coding/decoding just a little. So we’ll
now allow three-place decoding-functions, which take two code numbers c and d, as follows:

A three-place decoding function is a function of the form decode(c, d, i) such that,
for any finite sequence of natural numbers k0, k1, k2, . . . , kn there is a pair of code
numbers c, d such that for every i ≤ n, decode(c, d, i) = ki.

A three-place decoding-function will do just as well as a two-place function to help us express
facts about finite sequences.

Even with this liberalization, though, it still isn’t obvious how to define a decoding-function
in terms of the functions built into basic arithmetic. But Gödel neatly solved our problem with
the following little trick. Put

β(c, d, i) =def the remainder left when c is divided by d(i+ 1) + 1.

Then, given any sequence k0, k1, . . . , kn, we can find a suitable pair of numbers c, d such that for
i ≤ n, β(c, d, i) = ki.

This claim should look intrinsically plausible. As we divide c by d(i + 1) + 1 for different
values of i (0 ≤ i ≤ n), we’ll get a sequence of n+ 1 remainders. Vary c and d, and the sequence
of n + 1 remainders will vary. The permutations as we vary c and d without limit appear to be
simply endless. We just need to check, then, that appearances don’t deceive, and we can always
find a (big enough) c and a (smaller) d which makes the sequence of remainders match a given
n+ 1-term sequence of numbers (mathmos: see IGT, 13.4, fn. 6 for proof that this works!)

But now reflect that the concept of a remainder on division can be elementarily defined in
terms of multiplication and addition. Thus consider the following open wff:

B(c, d, i, y) =def (∃u ≤ c)[c = {S(d× Si)× u}+ y ∧ y ≤ (d× Si)].

This, as we want, expresses our Gödelian β-function in LA (for remember, we can define ‘≤’ in
LA).

24.6 Defining the factorial in LA

We’ve just claimed: given any sequence of numbers k0, k1, . . . , kx, there are code numbers c, d
such that for i ≤ x, β(c, d, i) = ki. So we can reformulate

A. There is a sequence of numbers k0, k1, . . . , kx such that: k0 = 1, and if u < x then kSu =
ku × Su, and kx = y,
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as follows:

B′. There is some pair of code numbers c, d such that: β(c, d, 0) = 1, and if u < x then
β(c, d, Su) = β(c, d, u)× Su, and β(c, d, x) = y.

But we’ve seen that the β-function can be expressed in LA by the open wff we abbreviated B.
So we can translate (C) into LA as follows:

C. ∃c∃d{B(c, d, 0, 1) ∧
(∀u ≤ x)[u 6= x→ ∃v∃w{(B(c, d, u, v) ∧ B(c, d,Su,w)) ∧ w = v × Su}] ∧
B(c, d, x, y)}.

Abbreviate all that by ‘F(x, y)’, and we’ve arrived! For this evidently expresses the factorial
function.

24.7 Generalizing to prove E3

Finally, we need to show that we can use the same β-function trick and prove more generally
that, if the function f is defined by recursion from functions g and h which are already expressible
in LA, then f is also expressible in LA.

So here, just for the record, is the entirely routine generalization we need (there are no new
ideas here – just unavoidable clutter).

We are assuming that

f(~x, 0) = g(~x)
f(~x, Sy) = h(~x, y, f(~x, y)).

This definition amounts to fixing the value of f(~x, y) = z thus:

A* There is a sequence of numbers k0, k1, . . . , ky such that: k0 = g(~x), and if u < y then
ku+1 = h(~x, u, ku), and ky = z.

So using a three-place β-function again, that comes to

B* There is some c, d, such that: β(c, d, 0) = g(~x), and if u < y then
β(c, d, Su) = h(~x, u, β(c, d, u)), and β(c, d, y) = z.

Suppose we can already express the n-place function g by a (n + 1)-variable expression G, and
the (n+ 2)-variable function h by the (n+ 3)-variable expression H. Then – using ‘~x’ to indicate
a suitable sequence of n variables – (B*) can be rendered into LA by

C* ∃c∃d{∃k[B(c, d, 0, k) ∧ G(~x, k)] ∧
(∀u ≤ y)[u 6= y→ ∃v∃w{(B(c, d, u, v) ∧ B(c, d,Su,w)) ∧ H(~x, u, v,w)}] ∧
B(c, d, y, z)}.

Abbreviate this defined wff ϕ(~x, y, z); it is then evident that ϕ will serve to express the p.r. defined
function f . Which gives us the desired result E3.

So, we’ve shown how to establish each of the claims E1, E2 and E3 from the start of §24.1.
Hence every p.r. function can be expressed in LA.

Theorem 25 is in the bag!

25 Primitive recursive functions can be canonically ex-
pressed by Σ1 wffs

In this section, we extract more information out of the proof of Theorem 25. In particular we
show that the LA wff needed to express a p.r. function is logically not very complex – a Σ1 wff
(in the sense of Defn. 27) is enough to do the job.
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25.1 The proof of Theorem 25 is constructive

What we showed, in effect, is how to take a chain of definitions by composition and primitive
recursion – starting with the initial functions and building up to a full definition for f – and then
step-by-step reflect it in building up to a wff that expresses f .

Remember: a full definition for f is in effect a recipe for defining a whole sequence of functions
f0, f1, f2, . . . , fk where each fj is either an initial function or is constructed out of previous
functions by composition or recursion, and fk = f . Corresponding to that sequence of functions
we can write down a sequence of LA wffs which express those functions. In the terms of §24.1, we
write down the E1 expression corresponding to an initial function. If fj comes from two previous
functions by composition, we use the existential construction in E2 to write down a wff built out
of the wffs expressing the two previous functions. If fj comes from two previous functions by
recursion, we use the β-function trick and write down a C*-style expression built out of the wffs
expressing the two previous functions.

So that means we’ve not only proved that for any given p.r. function f there exists an LA-wff
which expresses it. We’ve shown how to construct such a wff by recapitulating the structure of
a definitional ‘history’ for f . The proof is, in a good sense, a constructive one.

For brevity, let’s now say that

Defn. 36. An LA wff canonically expresses the p.r. function f if it recapitulates a full definition
for f by being constructed in the manner described in the proof of Theorem 25.

25.2 Canonical wffs for expressing p.r. functions are Σ1

The canonical wff which reflects a full definition of f is built up starting from wffs expressing
initial wffs (and addition and mutliplication). Those starter wffs are ∆0 wffs, and hence Σ1.

Suppose g and h are one-place functions, expressed by the Σ1 wffs G(x, y) and H(x, y) respec-
tively. Then, the function f(x) = h(g(x)) is expressed by the wff ∃z(G(x, z) ∧ H(z, y)) which is
Σ1 too. For that is equivalent to a wff with the existential quantifiers pulled from the front of the
Σ1 wffs G and H out to the very front of the new wff. Similarly for other cases of composition.

Finally, if we can already express the one-place function g by a two-variable Σ1 expression G,
and the two-place function h by the three-variable Σ1 expression H. Then if f is defined from g
and h by primitive recursion, f can be expressed by

C* ∃c∃d{∃k[B(c, d, 0, k) ∧ G(x, k)] ∧
(∀u ≤ y)[u 6= y→ ∃v∃w{(B(c, d, u, v) ∧ B(c, d,Su,w)) ∧ H(x, u, v,w)}] ∧
B(c, d, y, z)}.

And this too is Σ1. For B is Σ1: and C* is equivalent to what we get when we drag all the
existential quantifiers buried at the front of each of B, G and H to the very front of the wff. (Yes,
dragging existentials past a universal is usually wicked! – but here the only universal here is a
bounded universal, which is ‘really’ just a tame conjunction, and simple tricks explained in IGT
allow us to get the existentials all at the front). Again this generalizes to other cases of definition
by recursion.

So in fact our recipe for building a canonical wff in fact gives us a Σ1 wff. Which yields

Theorem 26. LA can express any p.r. function f by a Σ1 canonical wff which recapitulates a
full definition for f .

26 Q can capture all p.r. functions

We now want to show that not only can the language of Q express all p.r. functions, but also:

Theorem 27. The theory Q can capture any p.r. function by a Σ1 wff.

Recall, ‘capturing’ a function here means being able to case-by-case prove formulae that in effect
assign the right values to the function (see Defn. 15). So the formula χ(x, y) captures the one-
place function f in Q if, when f(m) = n, Q ` χ(m, n), and when f(m) 6= n, Q ` ¬χ(m, n).
Similarly for many-place functions.
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Now there’s more than one route to Theorem 27. I’ll mention the direct assault and the clever
trick. In IGT, Ch. 13, I go for the clever trick. Which I now rather regret – for while clever
tricks can give you a theorem they may not necessarily give you real understanding. So what I’ll
describe here is the direct assault. And this is just to once more replicate the overall strategy for
proving results about all p.r. functions which we described in §20, and deployed already in §21.1
and §24.1.

Suppose then that we can prove

C1. Q can capture the initial functions.

C2. If Q can capture the functions g and h, then it can also capture a function f defined by
composition from g and h.

C3. If Q can capture the functions g and h, then it can also capture a function f defined by
primitive recursion from g and h.

where in each case the capturing wffs are Σ1. Then – by just the same sort of argument as in
§24.1 – it follows that Q can capture any p.r. function by a Σ1 wff.

So how do we prove C1? We just check that the formulae we said in §24.1 express the initial
functions in fact serve to capture the initial functions in Q.

How do we prove C2? Again we track the proof in §24.2. Suppose g and h are one-place
functions, captured by the wffs G(x, y) and H(x, y) respectively. Then we prove that the function
f(x) = h(g(x)) is captured by the wff ∃z(G(x, z) ∧ H(z, y)) (which is Σ1 if G and H are).

And how do we prove C3? This is the tedious case that takes hard work! We need to show
the formula B not only expresses but captures Gödel’s β-function. And then we use that fact
to prove that if the n-place function g is captured by a (n + 1)-variable expression G, and the
(n + 2)-variable function h by the (n + 3)-variable expression H, then the rather horrid wff
D* in §24.7 captures the function f defined by primitive recursion from g and h. (If you want
the gory details establishing that, then you can consult e.g. Elliott Mendelson, Introduction to
Mathematical Logic, 4th edn, Prop. 3.24. And again, the result is Σ1 if G and H are.)

So the basic story is this. Take a full definition for defining a p.r. function, ultimately out
of the initial functions. Follow the step-by-step instructions implicit in §24 about how to build
up a canonical wff which in effect recapitulates that recipe. You’ll get a wff which expresses
the function, and that same wff captures the function in Q (and in any stronger theory with a
language which includes LA). Moreover the wff in question will be Σ1.

27 Expressing/capturing properties and relations

Just a brief coda, linking what we’ve done in this episode with the last section of the previous
one.

We said in §23, Defn. 34 that the characteristic function cP of a monadic numerical property
P is defined by setting cP (m) = 0 if m is P and cP (m) = 1 otherwise. And a property P is said
to be p.r. decidable if its characteristic function is p.r.

Now, suppose that P is p.r.; then cP is a p.r. function. So, by Theorem 25, LA can express
cP by a two-place open wff cP (x, y). So if m is P , then cP (m) = 0, then cP (m, 0) is true. And
if m is not P , then cP (m) 6= 0, then cP (m, 0) is not true. So, by the definition of expressing-
a-property, the wff cP (x, 0) serves to express the p.r. property P . The point generalizes from
monadic properties to many-place relations. So we have as an easy corollary of Theorem 25 that

Theorem 28. LA can express all p.r. decidable properties and relations.

Similarly, suppose again that P is p.r. so cP is a p.r. function. So, by Theorem 27, Q can
capture cP by a two-place open wff cP (x, y). So if m is P , then cP (m) = 0, so Q ` cP (m, 0). And
if m is not P , then cP (m) 6= 0, then Q ` ¬cP (m, 0). So, by the definition of capturing-a-property,
the wff cP (x, 0) serves to capture the p.r. property P in Q. The point trivially generalizes from
monadic properties to many-place relations. So we have as an easy corollary of Theorem 27 that

Theorem 29. Q can capture all p.r. decidable properties and relations.

Now read IGT, Chap 13.

7
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• A very little on Hilbert’s program

• Gödel coding

• The relation that holds between m and n when m codes for a PA proof of the wff with code
n is p.r.

• The (standard) notation pϕq to denote to code number for the wff ϕ, and pϕq as shorthand
for the standard numeral for pϕq.

This episode looks rather more substantial than it really is. The first page-and-a-bit reviews
where we’ve been. And then §28 is more scene-setting which (depending on your background)
you might well just want to skip through. The real action continues with §29 on p. 5.

Anyway, let’s take stock yet again.

1. In Episode 1 we introduced the very idea of a formal axiomatized theory, the notion of
negation incompleteness, and we stated (two versions of) Gödel’s First Theorem.

2. Next, we gave a proof of an incompleteness theorem that is weaker than Gödel’s, since it
doesn’t tell us how to construct a true-but-unprovable sentence. But the proof is suggestive
as it starts from the idea of a sufficiently strong theory, i.e. one that can ‘capture’ every
decidable property P of numbers, in the sense (roughly) of proving case by case that n is
P when it is, and proving that it isn’t when it isn’t.

3. The opening episodes, however, proceeded at a considerable level of abstraction. We talked
in the first episode of a theory’s ‘containing a modest amount of arithmetic’ without ex-
plaining how much that it is. Then in the second episode we talked of a theory’s being
‘sufficiently strong’, promising that a ‘sufficiently strong’ theory is indeed modest, but
again without saying what how much arithmetic that involves. But in Episode 3 we started
looking at some actual theories of arithmetic of various strengths. As a warm-up exercise
we first looked at ‘Baby Arithmetic’ BA, a complete quantifier-free arithmetic, that ‘knows’
how to compute the results of additions and multiplications. Then we added quantifiers,
replaced BA’s axiom schemata with quantified axioms, added another axiom that says that
every number other than zero is a successor, and we get Robinson Arithmetic Q. This is
boringly incomplete – meaning that it can be shown to be incomplete without any fancy
Gödelian arguments. It can’t even prove ∀x(0 + x = x). [Reality check: how is that BA is
complete and yet the stronger theory Q isn’t?]

4. Q, as we said, is boringly incomplete, even for just the arithmetic of successor, addition and
multiplication. How can we beef it up at least so that it can prove elementary quantified
truths like ∀x(0 + x = x)? By adding induction. If we add each instance of the so-called In-
duction Schema as an extra axiom to Q, we get First-Order Peano Arithmetic PA. This rich
theory certainly proves all familiar elementary arithmetical claims than can be expressed in
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the first-order language LA which has the successor, addition, and multiplication functions
built in. In fact, pre-Gödel, the natural conjecture would be that it is a complete theory
for the truths of LA.

5. But of course, elementary arithmetic deals with many more functions than successor, ad-
dition, and multiplication, i.e. many more functions than are built in to LA. In Episode 5,
we looked at a whole family of functions – the primitive recursive functions – which can
defined in the sort of way that e.g. multiplication and addition are defined by recursion.
These p.r. functions are computable functions, but aren’t all of the computable functions.

Episodes 3 to 5 can be thought of as very important scene-setting: but our real hard work proving
(versions of) the First Incompleteness Theorem starts with . . .

6. Episode 6 showed that LA can in fact express all the p.r. functions – i.e. for any one-place
p.r. function f , we can construct in LA a wff ϕ which is satisfied by a pair of numbers m,n
just when f(m) = n (and similarly for many-place functions). And we gestured towards
a proof that even Q (and hence, a fortiori PA) can capture all the p.r. functions: if we
construct the wff ϕ that expresses f in the right way, then if f(m) = n, Q ` ϕ(m, n), and
if f(m) 6= n, Q ` ¬ϕ(m, n).

Now that last result in Episode 6 doesn’t quite take us back to the ideas in Episode 2. Earlier, we
talked about ‘sufficiently strong theories’, where a theory is sufficiently strong if it captures all
computably decidable properties of numbers. Episode 6 shows that Q and richer theories capture
all p.r. decidable properties (meaning properties with p.r. characteristic functions). But since not
all decidable properties are p.r. decidable (since not all computable functions are p.r. functions),
this doesn’t yet give us the result that Q and richer theories are sufficiently strong (even though
they are).

However, it will turn out over this and the next episode that we don’t need the stronger
claim. Q’s being able to be capture all p.r. functions is enough to make it the case that sensibly
axiomatized theories that contain Q are incomplete (so long as they are consistent and satisfy
another modest condition).

Now read on . . .

28 Formalization and finitary reasoning

28.1 Formalization and axiomatization again

Before proceeding, let’s give ourselves a few gentle reminders about the business of formalization
– something that is now familiar to any logic student.

In elementary logic classes, we are drilled in translating arguments into an appropriate formal
language and then constructing formal deductions of putative conclusions from given premisses.
Why bother with formal languages? Because everyday language – even mathematical English
– is replete with redundancies and ambiguities. So, in assessing complex arguments, it helps
to regiment them into a suitable artificial language which is expressly designed to be free from
obscurities, and where surface form reveals logical structure. And why bother with formal deduc-
tions? Because informal arguments – even mathematical arguments – often involve suppressed
premisses (and there is the lurking danger of inferential fallacies). It is only too easy to cheat.
Setting out arguments as formal deductions in one style or another enforces honesty: we have
to keep a tally of the premisses we invoke, and of exactly what inferential moves we are using.
And honesty is the best policy. For suppose things go well with a particular formal deduction.
Suppose we get from the given premisses to some target conclusion by small inference steps each
one of which is obviously valid (no suppressed premisses are smuggled in, and there are no sus-
pect inferential moves). Our honest toil then buys us the right to confidence that our premisses
really do entail the desired conclusion.

Granted, outside the logic classroom we almost never set out deductive arguments in fully for-
malized versions. No matter. We have glimpsed a first ideal – arguments presented in an entirely
perspicuous language with maximal clarity and with everything entirely open and above board,
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leaving no room for misunderstanding, and with all the arguments’ commitments systematically
and frankly acknowledged.

Old-fashioned presentations of Euclidean geometry illustrate the pursuit of a related second
ideal – the (informal) axiomatized theory. Like beginning logic students, school students used
to be drilled in providing deductions, though the deductions were framed in ordinary geometric
language. The game is to establish a whole body of theorems about (say) triangles inscribed in
circles, by deriving them from simpler results, which had earlier been derived from still simpler
theorems that could ultimately be established by appeal to some small stock of fundamental
principles or axioms. And the aim of this enterprise? By setting out the derivations of our
various theorems in a laborious step-by-step style – where each small move is warranted by
simple inferences from propositions that have already been proved – we develop a unified body of
results that we can be confident must hold if the initial Euclidean axioms are true. On the surface,
school geometry perhaps doesn’t seem very deep: yet making all its fundamental assumptions
fully explicit is surprisingly difficult. And giving a set of axioms invites further enquiry into what
might happen if we tinker with these assumptions in various ways – leading, as is now familiar,
to investigations of non-Euclidean geometries.

Now, even the most tough-minded mathematics texts which explore axiomatized theories are
written in an informal mix of ordinary language and mathematical symbolism. Proofs are rarely
spelt out in every formal detail, and so their presentation falls short of the logical ideal of full
formalization. But we will hope that nothing stands in the way of our more informally presented
mathematical proofs being sharpened up into fully formalized ones – i.e. we hope that they could
be set out in a strictly regimented formal language of the kind that logicians describe, with
absolutely every inferential move made fully explicit and checked as being in accord with some
overtly acknowledged rule of inference, with all the proofs ultimately starting from our explicitly
given axioms. True, the extra effort of laying out everything in this kind of detail will almost
never be worth the cost in time and ink. In mathematical practice we use enough formalization
to convince ourselves that our results don’t depend on illicit smuggled premisses or on dubious
inference moves, and leave it at that – our motto is ‘sufficient unto the day is the rigour thereof’.
But still, we want good mathematics to achieve precision and to avoid the use of unexamined
inference rules or unacknowledged assumptions – and thus, perhaps, run the danger of paradox
and inconsistency.

So, putting together the logician’s aim of perfect clarity and honest inference with the math-
ematician’s project of regimenting a theory into a tidily axiomatized form, we can see the point
of the notion of an axiomatized formal theory as a composite ideal.

Note, we are not saying that mathematicians ought really always to work inside fully formal-
ized axiomatized theories. Mathematics is hard enough even when done using the usual strategy
of employing just as much rigour as seems appropriate to the case in hand. And in any case, as
mathematicians (and some philosophical commentators) are apt to stress, there is a lot more to
mathematical practice than striving towards the logical ideal. For a start, we typically aim for
proofs which are not merely correct but explanatory – which not only show that some proposi-
tion must be true, but in some sense make it clear why it is true. However, such observations
don’t affect our present point, which is that the business of formalization just takes to the limit
features that we expect to find in good proofs anyway, i.e. precise clarity and lack of inferential
gaps.

28.2 Responding to paradox

Think yourself back to the situation in mathematics a century ago.
Classical analysis – the theory of differentiation and integration – has, supposedly, been put

on firm foundations. We’ve done away with obscure talk about infinitesimals; and we’ve traded in
an intuitive grasp of the continuum of real numbers for the idea of reals defined as ‘Dedekind cuts’
on the rationals or ‘Cauchy sequences’ of rationals. The key idea we’ve used in our constructions
is the idea of a set of numbers. And we’ve been very free and easy with that, allowing ourselves to
talk of arbitrary sets of numbers, even when there is no statable rule for collecting the numbers
into the set.

This freedom to allow ourselves to talk of arbitrarily constructed sets is just one aspect of
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the increasing freedom that mathematicians have allowed themselves, over the second half of the
nineteenth century. They have loosed themselves from the assumption that mathematics should
be tied to the description of nature: as Morris Kline puts it, “after about 1850, the view that
mathematics can introduce and deal with arbitrary concepts and theories that do not have any
immediate physical interpretation . . . gained acceptance”. And Cantor could write “Mathematics
is entirely free in its development and its concepts are restricted only by the necessity of being
non-contradictory”.

It is rather bad news, then, if all this play with freely created concepts, and in particular the
fundamental notion of arbitrary sets, in fact gets us embroiled in contradiction – as seems to be
the case as the set-theoretic paradoxes pile up. What to do?

We might distinguish two kinds of responses that we can have to the paradoxes that threaten
Cantor’s paradise where mathematicians can play freely, what we might suggestively call the
foundationalist and the ‘more mathematics’ lines.

Foundationalist responses to paradox Consider first the option of seeking “foundations”. We
could, for example, seek to “re-ground” mathematics by confining ourselves again to applicable
mathematics which has, as we would anachronistically put it, a model in the natural world so
must be consistent.

The trouble is we’re none too clear what this re-grounding in the world would involve –
for remember, we are thinking back at the beginning of the twentieth century, as relativity and
quantum mechanics are emerging, and any Newtonian confidence that we had about the structure
of the natural world is being shaken.

So put the option of anchoring mathematics in the physical world aside. But perhaps (i) we
could try to ensure that our mathematical constructions are grounded in mental constructions
that we can perform and have a secure epistemic access to. Or alternatively (ii) we could try
to go back to find incontrovertible logical principles and definitions of mathematical notions in
logical terms, and try to constrain mathematics to what we can reconstruct on a firm logical
footing.

Response (i) leads us to intuitionism. But it depends on an obscure notion of mental con-
struction, and in any case – in its most worked out form – cripples lots of classical mathematics
that we thought was unproblematically in good order, rather than giving it a foundation.

What about the logicist response (ii)? This is perhaps more promising but it is still problem-
atic. For remember, we are pretending to be situated a hundred or so years back, and at least at
this point – leaving aside its beginnings in the as yet hardly-read work of Frege – modern logic
itself isn’t in as good a shape as most of the mathematics we are supposedly going to use it to
ground (and indeed what might count as logic is pretty obscure). Moreover, as Peirce saw, it
looks as if we are going to need to appeal to mathematically developed ideas in order to develop
logic itself; indeed Peirce himself thought that all formal logic is merely mathematics applied to
logic. Still, perhaps we shouldn’t give up: let’s see if we can write a Principia Mathematica . . . !

‘Mathematical’ responses to paradox Maybe, however, we just shouldn’t be seeking to give
mathematics a philosophical “foundation”. After all, the paradoxes arise within mathematics,
and to avoid them (the working mathematican might reasonably think) we just need to do
mathematics more carefully. As Peirce – for example – held, mathematics risks being radically
distorted if we seek to make it answerable to some outside considerations (whether from philos-
ophy or logic). And we don’t need to look outside for a prior justification that will guarantee
consistency. Rather we need to improve our mathematical practice, in particular by improving the
explicitness of our regimentations of mathematical arguments, to reveal the principles we actually
use in ‘ordinary’ mathematics, and to see where the fatal mis-steps must be occurring when we
over-stretch these principles in ways that lead to paradox.

How do we improve explicitness, and pursue more careful explorations? A first step will be
to work towards regimenting the principles that we actually need in mathematics into something
approaching the ideal form of an axiomatized formal theory. This is what Zermelo aimed to
do in axiomatizing set theory: to locate the principles actually needed for the seemingly ‘safe’
mathematical constructions needed in grounding classical analysis and other familiar mathemat-
ical practice. And when the job is done it seems that these principles don’t in fact allow the
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familiar reasoning leading to Russell’s Paradox or other set-theoretic paradoxes. So perhaps this
axiomatized theory is consistent and trouble-free?

Well, to explore this question, the thought goes, requires not ‘looking outside’ mathematics
for foundations, but engaging in more mathematical enquiry.

Note that both the foundationalist logicist and the ‘do maths better’ camp, are keen on battering
a mathematical theory T into nice tidy axiomatized formats and sharply defining the rules of
the game. But for a foundationalist logicist this is a step on the way to showing T is true-
because-safely-derivable-from-truisms. The ‘do maths better’ camp just want axiomatization to
be a prelude to giving us enough control over theory T that we can show it is safe-to-work-with-
because-consistent.

28.3 Applying finitary mathematics to formal theories

Now note a key observation emphasized by Hilbert.
The axiomatic formalization of a mathematical theory T about widgets, wombats, or what-

evers, gives us new formal objects that are themselves apt topics for new formal mathematical
investigations – namely the T -wffs and T -proofs that make up the theory!

And, crucially, when we go metatheoretical like this and move from thinking about sets (for
example) to thinking about the syntactic properties of formalized-theories-about-sets, we move
from considering suites of infinite objects (sets) to considering suites of finite formal objects (the
wffs, and the finite sequences of wffs that form proofs). This means that we might then hope to
bring to bear, at the metatheoretical level, entirely ‘safe’, merely finitary, reasoning about these
suites of finite formal objects in order to prove consistency, etc.

Of course, it is a moot point what exactly constitutes such ultra-‘safe’ finitary reasoning.
But still, it certainly looks as if we will – for instance – need much, much, less than full set
theory to reason about formalized-set-theory as a suite of finite syntactic objects. So we might,
in particular, hope with Hilbert to be able to use a safe uncontentious fragment of finitary
mathematics to prove that our wildly infinitary set theory is at least syntactically consistent
(doesn’t prove both ϕ and ¬ϕ for some wff ϕ).

So, you can see the attractions of Hilbert’s hopeful programme here – the programme of show-
ing various systems of infinitary mathematics are contradiction-free by giving finitary consistency
proofs.

And now, enter Gödel . . .

29 Arithmetization

We just noted Hilbert’s insight that the syntactic objects that comprise formal theories (the wffs,
the proofs) are finite objects, and so we only need mathematics of finite objects to theorize about
the syntactic properties of theories.

But here comes Gödel’s great insight: when we are dealing with finite objects, we can associate
them with numerical codes: and then we can use arithmetic to talk about these codes, and to deal
with the arithmetical properties that – via the coding – ‘track’ syntactic properties of the theories.

Nowadays, of course, the idea seems almost trite, for we are so very used to the notion that
any finite data – in effect, any data that a finite computer can handle – can be digitized, i.e.
rendered as binary numbers. But in the late 1920s this wonderfully simple but powerful idea
must have seemed revelatory.

We’ll implement it in stages.

29.1 Coding expressions in a formal language

We’ll concentrate on the particular case of coding up expressions of the language LA (but you’ll
see that the same basic idea will work for any formal language). There are of course different
ways of doing this: we’ll follow in style Gödel and tradition!
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So suppose that our version of LA has the usual logical symbols (connectives, quantifiers,
identity, brackets), and symbols for zero and for the successor, addition and multiplication func-
tions: associate all those with odd numbers (different symbol, different number, of course). LA

also has an inexhaustible supply of variables, which we’ll associate with even numbers. So, to pin
that down, let’s fix on this preliminary series of basic codes:

¬ ∧ ∨ → ↔ ∀ ∃ = ( ) 0 S + × x y z . . .

1 3 5 7 9 11 13 15 17 19 21 23 25 27 2 4 6 . . .

Our Gödelian numbering scheme for expressions is now defined in terms of this table of basic
codes as follows:

Defn. 37. Let expression e be the sequence of k + 1 symbols and/or variables s0, s1, s2, . . . , sk.
Then e’s Gödel number (g.n.) is calculated by taking the basic code-number ci for each si in
turn, using ci as an exponent for the i+ 1-th prime number πi, and then multiplying the results,
to get 2c0 · 3c1 · 5c2 · . . . · πck

k .

For example:

i. The single symbol ‘S’ has the g.n. 223 (the first prime raised to the appropriate power as
read off from our correlation table of basic codes).

ii. The standard numeral SS0 has the g.n. 223 · 323 · 521 (the product of the first three primes
raised to the appropriate powers).

iii. The wff

∃y (S0 + y) = SS0

has the g.n.

213 · 34 · 517 · 723 · 1121 · 1325 · 174 · 1919 · 2315 · 2923 · 3123 · 3721

That last number is, of course, enormous. So when we say that it is elementary to decode the
resulting g.n. by taking the exponents of prime factors, we don’t mean that the computation
is quick. We mean that the computational routine required for the task – namely, repeatedly
extracting prime factors – involves no more than the mechanical operations of school-room
arithmetic. And of course, the task produces a unique decoding by the fundamental theorem
of arithmetic, that numbers are uniquely decomposable into prime factors.

29.2 Coding sequences

As well as talking about wffs via their code numbers, we’ll want to talk about proofs via their
code numbers. But how do we code for proof-arrays?

The details will obviously depend on the kind of proof system we adopt for the theory we are
using. Suppose though, for simplicity, we consider theories with a Hilbert-style axiomatic system
of logic. And in this rather old-fashioned framework, proof-arrays are simply linear sequences of
wffs. A nice way of coding these is by what we’ll call super Gödel numbers.

Defn. 38. Given a sequence of wffs or other expressions e0, e1, e2, . . . , en, we first code each ei by
a regular g.n. gi, to yield a sequence of numbers g0, g1, g2, . . . , gn. We then encode this sequence
of regular Gödel numbers using a single super g.n. by repeating the trick of multiplying powers
of primes to get 2g0 · 3g1 · 5g2 · . . . · πgn

n .

Decoding a super g.n. therefore involves two steps of taking prime factors: first find the sequence
of exponents of the prime factors of the super g.n.; then treat those exponents as themselves
regular g.n., and take their prime factors to arrive back at a sequence of expressions.
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29.3 Term, Wff and Sent are p.r. properties

For this subsection, we’ll continue to focus on the language LA. But similar remarks will apply
mutatis mutandis to any sensibly built formal language. We begin with some definitions (see §4):

Defn. 39. Having fixed on our scheme of Gödel numbering, define the following numerical
properties:

1. Term(n) is to hold when n codes for a term of LA.

2. Wff (n) is to hold when n codes for a wff of LA.

3. Sent(n) is to hold when n codes for a closed sentence of LA.

Then we have the following key result:

Theorem 30. Term(n), Wff (n), and Sent(n) are p.r. decidable properties.

And we have a much easier time of it than Gödel did. Writing at the very beginning of the
period when concepts of computation were being forged, he couldn’t expect his audience to take
anything on trust about what was or wasn’t ‘rekursiv ’ or – as we would now put it – primitive
recursive. He therefore had to do all the hard work of explicitly showing how to define these
properties by a long chain of definitions by composition and recursion.

However, assuming only a very modest familiarity with the ideas of computer programs and
p.r. functions, we can perhaps short-cut all that effort and be entirely persuaded by the following:

Proof. To determine whether Term(n), proceed as follows. Decode n: that’s a mechanical exer-
cise. Now ask: is the resulting expression a term? That is to say, is it ‘0’, a variable, or built
up from ‘0’ and/or variables using just the successor, addition and multiplication functions?
That’s algorithmically decidable. The length of the first decoding stage of the computation will
be bounded by a simple function of the length of n: similarly for the second stage of the com-
putation, deciding whether the decoded expression – if there is one – is a term. Neither stage
will involve any open-ended search. Of course, these computations involve shuffling strings of
symbols; but – run on a real computer – those will in effect become computations done on binary
numbers. And if the whole computation can therefore be done ultimately without unbounded
searches, using only ‘for’ loops operating on numbers, the numerical properties and relations
which are decided by the whole procedure must be primitive recursive.

Similarly we can mechanically decide whether Wff (n) or Sent(n). Decode n again. Now ask:
is the result an a wff or a sentence of LA? In each case, that’s algorithmically decidable, without
any open-ended searches. And again, what’s computably decidable without open-ended searches
is primitive-recursively decidable.

29.4 Prf is a p.r. relation

In this subsection, we’ll focus on the theory PA. But again, similar remarks will apply mutatis
mutandis to any sensibly axiomatized theory.

We introduce another definition:

Defn. 40. Again having fixed on our scheme of Gödel numbering, the numerical relation Prf (m,n)
is defined to hold when m is the super g.n. of a proof in PA of the sentence with g.n. n.

We have, as you might expect, a corresponding theorem:

Theorem 31. Prf (m,n) is a p.r. relation.

Again we’ll given an informal argument:

Proof. To determine whether Prf (m,n), proceed as follows. First doubly decode m: that’s a
mechanical exercise. Now ask: is the result a sequence of PA wffs? That’s algorithmically decidable
(since it is decidable whether each separate string of symbols is a wff). If it does decode into
a sequence of wffs, ask: is this sequence a properly constructed PA proof? That’s decidable too
(check whether each wff in the sequence is either an axiom or is an immediate consequence of
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previous wffs by one of the rules of inference of PA’s Hilbert-style logical system). If the sequence
is a proof, ask: does its final wff have the g.n. n? That’s again decidable. Finally ask whether
Sent(n) is true. Putting all that together, there is a computational procedure for telling whether
Prf (m,n) holds. Moreover, at each and every stage, the computation involved is once more a
straightforward, bounded procedure that doesn’t involve any open-ended search.

A similar result, as we said will hold for the corresponding Prf T relation for any theory T which
is like PA in this respect: we can mechanically check whether a string of wffs constitutes a T -proof
without having to engage in any open-ended search. Any normally presented formalized theory
will be like this. (In fact, we could reasonably have built that requirement into a sharper version
of Defn. 3.)

29.5 Our results are robust!

We’ve just shown that some properties and relations like Term and Prf are p.r. decidable. But
note, Term(n) – for example– is to hold when n is the code number of a term of LA according to
our Gödel numbering scheme. However, our numbering scheme was fairly arbitrarily chosen. We
could, for example, shuffle around the preliminary assignment of basic codes to get a different
numbering scheme; or (more radically) we could use a scheme that isn’t based on powers of
primes. So could it be that a property like Term is p.r. when defined in terms of our arbitrarily
chosen numbering scheme and not p.r. when defined in terms of some alternative but equally
sensible scheme?

Well, what counts as ‘sensible’ here? The key feature of our Gödelian scheme is this: there is
a pair of algorithms, one of which takes us from an LA expression to its code number, the other
of which takes us back again from the code number to the original expression – and moreover,
in following through these algorithms, the length of the computation is a simple function of
the length of the LA expression to be encoded or the size of the number to be decoded. The
algorithms don’t involve open-ended computations using unbounded searches: in other words,
the computations can be done just using ‘for’ loops.

So let S be any other comparable coding scheme, which similarly involves a pair of algorithmic
methods for moving to and fro between LA expressions and numerical codes (where the methods
don’t involve open-ended searches). And suppose S assigns code n1 to a certain LA expression.
Consider the process of first decoding n1 to find the original LA expression and then re-encoding
the expression using our Gödelian scheme to get the code number n2 (strictly, we need to build
in a way of handling the ‘waste’ cases where n1 isn’t an S-code for any wff). By hypothesis, this
process will combine two simple computations which just use ‘for’ loops. Hence, there will be a
primitive recursive function which maps n1 to n2. Similarly, there will be another p.r. function
which maps n2 back to n1.

Let’s say:

Defn. 41. A coding scheme S for LA mapping expressions to numbers is acceptable iff there is
a p.r. function tr which ‘translates’ code numbers according to S into code numbers under our
official Gödelian scheme, and another p.r. function tr−1 which converts code numbers under our
scheme back into code numbers under scheme S.

Then we’ve just argued that being acceptable in this sense is at least a necessary condition for
being an intuitively ‘sensible’ numbering scheme.

We immediately have

Theorem 32. A property like Term defined using our official Gödelian coding scheme is p.r. if
and only if the corresponding property TermS defined using scheme S is p.r., for any acceptable
scheme S.

Proof. Let the characteristic functions of Term and TermS be term and termS respectively. Then
termS (n) = term(tr(n)), hence termS will be p.r. by composition so long as term is p.r.; and
similarly term(n) = termS (tr−1 (n)), hence term is p.r. if termS is. So, in sum, Term is p.r. iff
TermS is p.r.: the property’s status as p.r. is not dependent on any particular choice of coding
scheme (so long as it is acceptable).
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In sum, our result that Term is p.r. is robust with respect to any sensible choice of coding scheme:
similarly with the other results, in particular the result about Prf .

30 Some cute notation

There’s one other main idea we need in the next episode and which we’ll introduce in this, namely
the idea of ‘diagonalization’. But before explaining that in §32, let’s pause to introduce a really
pretty bit of notation.

Assume we have chosen some system for Gödel-numbering the expressions of some language
L. Then

Defn. 42. If ϕ is an L-expression, then we’ll use ‘pϕq’ in our logicians’ augmented English to
denote ϕ’s Gödel number.

Borrowing a species of quotation mark is appropriate because the number pϕq can be thought of
as referring to the expression ϕ via our coding scheme. (Sometimes, we’ll write the likes of pUq
where U abbreviates an LA wff: we mean here, of course, the Gödel-number for the unabbreviated
original wff that U stands in for.)

So far so good. But in the book, I use this very same notation also to stand in for standard
numerals inside our formal language, so that (in our second usage), in abbreviated L-expressions,
‘pϕq’ is shorthand for L’s standard numeral for the g.n. of ϕ. In other words, inside formal
expressions ‘pϕq’ stands in for the numeral for the number pϕq.

A simple example to illustrate:

1. ‘SS0’ is an LA expression, the standard numeral for 2.

2. On our numbering scheme pSS0q, the g.n. of ‘SS0’, is 221 · 321 · 519.

3. So, by our further convention in the book, we can also use the expression ‘pSS0q’ inside
(a definitional extension of) LA, as an abbreviation for the standard numeral for that g.n.,
i.e. as an abbreviation for ‘SSS . . . S0’ with 221 · 321 · 519 occurrences of ‘S’ !

This double usage – outside a formal language to denote a g.n. of a formal expression and inside
a formal language to take the place of a standard numeral for that g.n. – should by this stage
cause no confusion at all. I could have alternatively used in the book the common practice of
always overlining abbreviations for standard numerals: we would then indicate the numeral for
the g.n. number pSS0q by the slightly messy ‘pSS0q’. Many writers do this. But I thought that
aesthetics recommended my fairly common and rather prettier convention.

I still think that was a reasonable decision: but in these notes, in the interests of maximal
clarity – if only as a helpful ladder that you can throw away once climbed! – I will here use the
clumsier notation. So, to avoid any possibly misunderstandings, we’ll adopt:

Defn. 43. Used in L-expressions, ‘pϕq’ is shorthand for L’s standard numeral for the g.n. of ϕ.

So: naked corner quotes belong to augmented English; overlined corner quotes are an abbreviatory
device in the relevant formal language L.

31 Consistency sentences – a very first look

Consider the PrfZ relation for e.g. ZFC set theory. This, like the corresponding relation for any
formalized theory is p.r.: so e.g. PA can capture this relation using a two-place predicate PrfZ.

Now consider the wff ∀x¬PrfZ(x, p⊥q). This arithmetical sentence is true if no number numbers
a proof-in-ZFC of absurdity. So the arithmetical sentence ‘says’ that ZFC is consistent.

If PA can prove it, then we would have an arithmetic proof of the consistency of standard set
theory. Even better, if we can do this is in a theory weaker than PA: the weaker the resources
needed to run the arithmetic consistency proof, the better for Hilbert’s programme. So can PA
prove it?

Can you stand the suspense?
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• The idea of diagonalization

• How to construct a ‘canonical’ Gödel sentence

• If PA is sound, it is negation incomplete

• Generalizing that result to sound p.r. axiomatized theories whose language extends LA

• ω-incompleteness, ω-inconsistency

• If PA is ω-consistent, it is negation incomplete

• Generalizing that result to ω-consistent p.r. axiomatized theories which extend Q

• The historical First Theorem

The pieces we need to prove the First Theorem are finally all in place. So in this episode we at
long last learn how to construct ‘Gödel sentences’ and use them to prove that PA is incomplete.
We also show how to generalize the result to other theories.

Let’s quickly review the background that needs to be in place for the arguments to come.
You need to understand the following:

i. We can fix on some acceptable scheme for coding up wffs of PA’s language LA by using
Gödel numbers (‘g.n.’ for short), and coding up PA-proofs – i.e. sequences or other arrays
of wffs – by super Gödel numbers. Similarly later for coding up wffs and proofs of other
theories. (§29)

ii. Notation: If ϕ is an expression, then we’ll denote its Gödel number in our logician’s English
by ‘pϕq’. We use ‘pϕq’ as an abbreviation inside LA for the standard numeral for pϕq. Note
that later, when we start generalizing Gödel’s results to other theories, we’ll use the same
notation for Gödel numberings of other languages. (§30)

iii. Prf (m,n) is the relation which holds just if m is the super g.n. of a sequence of wffs that
is a PA proof of a sentence with g.n. n (assume we’ve fixed on some definite version of PA).
This relation is p.r. decidable. (§29.4)

iv. Any p.r. function or relation can be expressed by a wff of PA’s language LA. In particular,
we can choose a Σ1 wff which ‘canonically ’ expresses a given p.r. relation by recapitulat-
ing its p.r. definition (or more strictly, by recapitulating the definition of the relation’s
characteristic function). (§24)

v. Any p.r. function or relation can be captured in Q and hence in PA (and captured by a Σ1

wff which canonically expresses it). (§26)

For what follows, it isn’t necessary that you remember the proofs of the claims we’ve just sum-
marized: but do check that you at least fully understand what the various claims say.
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32 The idea of diagonalization

Gödel is going to tell us how to construct a wff G in PA that is true if and only if it is unprovable
in PA (assuming PA is consistent). We now have an inkling of how he can do that: wffs can
contain numerals which refer to numbers which – via Gödel coding – are correlated with wffs.

Gödel’s construction will involve taking an open wff that we’ll abbreviate U, or by U(y) when
we want to emphasize that it contains just ‘y’ free. This wff has g.n. pUq. And then – the crucial
move – Gödel substitutes the numeral for U’s g.n. for the free variable in U. So the key step
involves forming the wff U(pUq).

This substitution operation is called diagonalization, which at first sight might seem an odd
term for it. But in fact, Gödel’s construction involves something quite closely akin to the ‘di-
agonal’ construction we encountered in §7, where we matched the index of a wff ϕn(x) (in an
enumeration of wffs with one free variable) with the numeral substituted for its free variable, to
form ϕn(n). Here, in our Gödelian diagonal construction, we match U’s Gödel number – and we
can think of this as indexing the wff in a list of wffs – with the numeral substituted for its free
variable, and this will yield the Gödel sentence U(pUq).

Now note the following additional point. Given the wff U, it can’t matter much whether we do
the Gödelian construction by forming (i) U(pUq) (as Gödel himself did in 1931) or alternatively
by forming (ii) ∃y(y = pUq ∧ U(y)). For (i) and (ii) are trivially equivalent. But it in fact makes
a few technical details go slightly easier if we do things the second way – so that motivates our
official definition in IGT :

Defn. 44. The diagonalization of ϕ is ∃y(y = pϕq ∧ ϕ).

It should go without saying that there is no special significance to using the variable ‘y’ for the
relevant variable here! But we’ll keep this choice fixed, simply for convenience.

Diagonalization is, evidently, a very simple mechanical operation on expressions. In fact,

Theorem 33. There is a p.r. function diag(n) which, when applied to a number n which is the
g.n. of some wff, yields the g.n. of that wff’s diagonalization.

Proof. Consider this procedure. Decode the g.n. n = pϕq to get some expression ϕ (assume we
have some convention for dealing with ‘waste’ cases where we don’t get an expression). Then
form ϕ’s diagonalization, ∃y(y = pϕq ∧ ϕ). Then work out the g.n. of this result to compute
diag(n). This procedure doesn’t involve any unbounded searches. So we again will be able to
program the procedure using just ‘for’ loops. Hence diag is a p.r. function

33 Constructing a Gödel sentence

In this section, we construct a Gödel sentence for PA in particular. But the mode of construction
will evidently generalize – a point we return to in the next section. First, another definition:

Defn. 45. The relation Gdl(m,n) is defined to hold just when m is the super g.n. for a PA proof
of the diagonalization of the wff with g.n. n.

Theorem 34. Gdl(m,n) is p.r. decidable.

Proof. Either we can informally note that we can mechanically check whether Gdl(m,n) holds
without open-ended searches.

Or we can note that Gdl(m,n) holds, by definition, when Prf (m, diag(n)). The characteristic
function of Gdl is therefore definable by composition from the characteristic function of Prf and
the function diag , and hence is p.r., given facts (iv) and (v) from the preamble.

Now Gdl can be expressed in LA by a Σ1 wff (by fact vi), which in fact captures Gdl in PA
(by fact vii). Of course there won’t be a unique such Σ1 wff. For a start, there will be more than
one way of constructing a full definition of the (characteristic function) for the p.r. relation Gdl ,
so more than one way of tracking such a definition. But we’ll adopt the following definition:

Defn. 46. Gdl(x, y) stands in for some Σ1 wff which canonically expresses and captures Gdl.
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And we next follow Gödel in first constructing the corresponding wff

Defn. 47. U(y) =def ∀x¬Gdl(x, y).

(For reasons that will become clear in just a moment, you can think of that U as standing for
‘unprovable’.) And now we diagonalize U, to give

Defn. 48. G =def ∃y(y = pUq ∧ U(y)).

Trivially, G is equivalent to U(pUq). Or unpacking that a bit, G is equivalent to ∀x¬Gdl(x, pUq).
G – meaning of course the LA sentence you get when you unpack the abbreviations! – is our

‘Gödel sentence’ for PA. We might indeed call it a canonical Gödel sentence for three reasons: (a)
it is defined in terms of a wff that we said canonically expresses/captures Gdl , and (b) because
it is roughly the sort of sentence that Gödel himself constructed, so (c) it is the kind of sentence
people standardly have in mind when they talk of ‘the’ Gödel sentence for PA.

Note that G will be horribly long when spelt out in unabbreviated LA. But in another way,
it is relatively simple. In the terminology of §17, we have the easy result that

Theorem 35. G is Π1.

Proof. Gdl(x, y) is Σ1. So Gdl(x, pUq) is Σ1. So its negation ¬Gdl(x, pUq) is Π1. Hence ∀x¬Gdl(x, pUq)
is Π1 too. Its logical equivalent G is therefore also Π1.

And now the key observation:

Theorem 36. G is true if and only if it is unprovable in PA.

Proof. Consider what it takes for G to be true (on the interpretation built into LA of course),
given that the formal predicate Gdl expresses the numerical relation Gdl .

G is true if and only if for all numbers m it isn’t the case that Gdl(m, pUq). That is to say,
given the definition of Gdl , G is true if and only if there is no number m such that m is the code
number for a PA proof of the diagonalization of the wff with g.n. pUq. But the wff with g.n. pUq
is of course U; and its diagonalization is G.

So, G is true if and only if there is no number m such that m is the code number for a PA
proof of G. But if G is provable, some number would be the code number of a proof of it. Hence
G is true if and only if it is unprovable in PA.

34 The First Theorem – the semantic version

34.1 If PA is sound, it is incomplete

Suppose PA is a sound theory, i.e. it proves no falsehoods (because its axioms are true and its
logic is truth-preserving). If G (which is true if and only if it is not provable) could be proved in
PA, then PA would prove a false theorem, contradicting our supposition. Hence, G is not provable
in PA.

But that shows that G is true. So ¬G must be false. Hence ¬G cannot be proved in PA
either, supposing PA is sound. In Gödel’s words, G is a ‘formally undecidable’ sentence of PA (see
Defn. 6).

Which establishes

Theorem 37. If PA is sound, then there is a true Π1 sentence G such that PA 0 G and PA 0 ¬G,
so PA is negation incomplete.

If we are happy with the semantic assumption that PA’s axioms are true on interpretation and
so PA is sound, the argument for incompleteness is as simple as that – or at least, it’s that simple
once we have constructed G.
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34.2 Generalizing the proof

The proof evidently generalizes. Suppose T is any theory at all, that is put together so that we
can mechanically check whether a purported T -proof is indeed a kosher proof without going off on
an open-ended search. Then, assuming a sensible scheme for Gödel-number wffs of T , the relation
Prf T (m,n) which holds when m numbers a proof of the wff with number n will be primitive
recursive again. Let’s say that a theory is p.r. axiomatized when it is indeed axiomatized so as to
make Prf T primitive recursive: then indeed any normal theory you dream up which is formally
axiomatized is p.r. axiomatized.

Suppose now that T ’s language includes the language of basic arithmetic, LA (see Defn. 8), so
T can form standard numerals, and we can form the diagonalization of a T -wff. Then we can also
define the relation GldT (m,n) which holds when m numbers a T -proof of the diagonalization of
the wff with number n. This too will be primitive recursive again.

Continuing to suppose that T ’s language includes the language of basic arithmetic, T will be
able to express the p.r. relation GldT by a Σ1 wff GldT . Then, just as we did for PA, we’ll be
able to construct the corresponding Π1 wff GT . And then exactly the same argument as before
will show, more generally,

Theorem 38. If T is a sound p.r. axiomatized theory whose language contains the language of
basic arithmetic, then there will be a true Π1 sentence GT such that T 0 GT and T 0 ¬GT , so T
is negation incomplete.

Which is our first, ‘semantic’, version of the general Incompleteness Theorem!

34.3 Comparisons

Compare Theorem 38 with our initially announced

Theorem 1. If T is a sound formal axiomatized theory whose language contains the language
of basic arithmetic, then there will be a true sentence GT of basic arithmetic such that T 0 GT

and T 0 ¬GT , so T is negation incomplete.

Our new theorem is stronger in one respect, weaker in another. But the gain is much more than
the loss.

Our new theorem is stronger, because it tells us more about the character of the undecidable
Gödel sentence – namely it has minimal quantifier complexity. The unprovable sentence GT is a
Π1 sentence of arithmetic, i.e. is the universal quantification of a decidable condition. As far as
quantifier complexity is concerned, it is on a par with Goldbach’s conjecture that every number
is such that, if even and greater than two, it is the sum of two primes (for note it is decidable
whether a number is the sum of two primes). Indeed it is sometimes said that a Gödel sentence
like GT is of Goldbach type.

Our new theorem is weaker, however, as it only applies to p.r. axiomatized theories, not to
formalized theories more generally. But that’s not much loss. For what would a theory look like
that was axiomatized but not p.r. axiomatized? It would be a matter, for example, of only being
able to tell what’s an axiom on the basis of an open-ended search: but that would require a
very unnatural way of specifying the theorem’s axioms in the first place. As we just noted, any
normally presented axiomatized theory will be p.r. axiomatized. (We can in fact extend Gödel’s
theorem to cover the case of abnormally though still decidably axiomatized theories – but that
really is a minor extension.)

34.4 Our Incompleteness Theorem is better called an incompletability
theorem

Here, we just repeat the argument of §3.2: but the point is central enough to bear repetition.
Suppose T is a sound p.r. axiomatized theory which can express claims of basic arithmetic. Then
by Theorem 38 we can find a true GT such that T 0 GT and T 0 ¬GT . That doesn’t mean that
GT is ‘absolutely unprovable’ in any sense: it just means that GT -is-unprovable-in-T .
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Now, we might want to ‘repair the gap’ in T by adding GT as a new axiom. So consider the
theory T ′ = T+GT . Then (i) T ′ is still sound (for the old T -axioms are true, the added new axiom
is true, and the logic is still truth-preserving). (ii) T is still a p.r. axiomatized theory, since adding
an specified axiom to T doesn’t commit us to any open-ended searches to determine what is an
axiom of the augmented theory. (iii) We haven’t changed the language. So our Incompleteness
Theorem applies, and we can find a sentence G′T such that T ′ 0 GT ′ and T ′ 0 ¬GT ′ . And since
T ′ is stronger than T , we have a fortiori, T 0 GT ′ and T 0 ¬GT ′ . In other words, ‘repairing the
gap’ in T by adding GT as a new axiom leaves some other sentences that are undecidable in T
still undecidable in the augmented theory.

And so it goes. Our theorem tells us that if we keep chucking more and more additional true
axioms at T , our theory will still remain negation-incomplete, unless it either stops being sound
or stops being p.r. axiomatized. In a good sense, T is incompletable.

Now do pause here: have a think, have a coffee!
Are you absolutely clear about how G is constructed? Are you absolutely clear why it is true

iff and only if unprovable? Do you understand why it it must be formally undecidable assuming
PA is sound? Do you understand how and why the result generalizes?

If you answer ‘no’ to any of those, re-read more carefully! If you answer ‘yes’ to all, excellent:
on we go . . .

35 ω-completeness, ω-consistency

Before we turn to the second version of the First Incompleteness Theorem – the version that
downgrades the semantic assumption that we’re dealing with a sound theory to the much weaker
syntactic assumption that the theory is consistent (and a bit more) – we need to pause to define
two key notions.

Techie note: in this section, take the quantifiers mentioned to be arithmetical ones – if nec-
essary, therefore, replacing ∀xϕ(x) by ∀x(Nx→ ϕ(x)), where ‘N’ picks out the numbers from the
domain of the theory’s native quantifiers (see Defn. 8).

Defn. 49. A theory T is ω-incomplete iff, for some open wff ϕ(x), T can prove ϕ(n) for each
natural number m, but T can’t go on to prove ∀xϕ(x).

We saw in §13.3 that Q is ω-incomplete: that’s because it can prove each instance of 0 + n = n,
but can’t prove ∀x(0 + x = x). We could repair ω-incompleteness if we could add the ω-rule (see
§14.1), but that’s an infinitary rule that is not available in a formalized theory given the usual
finitary restrictions on the checkability of proofs. We instead added induction to Q hoping to
repair as much incompleteness as we could: but, as we’ll see, PA remains ω-incomplete (assuming
it is consistent).

Defn. 50. A theory T is ω-inconsistent iff, for some open wff ϕ(x), T can prove each ϕ(n) and
T can also prove ¬∀xϕ(x).

Or, entirely equivalently, we could of course say that T is ω-inconsistent if, for some open wff
ϕ′(x), T ` ∃xϕ′(x), yet for each number n we have T ` ¬ϕ′(n).

Note that ω-inconsistency, like ordinary inconsistency, is a syntactically defined property: it
is characterized in terms of what wffs can be proved, not in terms of what they mean. Note
too that, in a classical context, ω-consistency – defined of course as not being ω-inconsistent! –
trivially implies plain consistency. That’s because T ’s being ω-consistent is a matter of its not
being able to prove a certain combination of wffs, which entails that T can’t be inconsistent and
prove all wffs.

Now compare and contrast. Suppose T can prove ϕ(n) for each m. T is ω-incomplete if it
can’t also prove something we’d like it to prove, namely ∀xϕ(x). While T is ω-inconsistent if it
can actually prove the negation of what we’d like it to prove, i.e. it can prove ¬∀xϕ(x).

So ω-incompleteness in a theory of arithmetic is a regrettable weakness; but ω-inconsistency
is a Very Bad Thing (not as bad as outright inconsistency, maybe, but still bad enough). For
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evidently, a theory that can prove each of ϕ(n) and yet also prove ¬∀xϕ(x) is just not going to
be an acceptable candidate for regimenting arithmetic.

That last observation can be made vivid if we temporarily bring semantic ideas back into play.
Suppose the theory T is given a arithmetically standard interpretation, by which we here mean
just an interpretation which takes numerical quantifiers as running over a domain comprising the
natural numbers, and on which T ’s standard numerals denote the intended numbers (with the
logical apparatus also being treated as normal, so that inferences in T are truth-preserving). And
suppose further that on this interpretation, the axioms of T are all true. Then T ’s theorems will
all be true too. So now imagine that, for some ϕ(x), T does prove each of ϕ(0), ϕ(1), ϕ(2), . . . . By
hypothesis, these theorems will then be true on the given standard interpretation; so this means
that every natural number must satisfy ϕ(x); so ∀xϕ(x) is true since the domain contains only
natural numbers. Hence ¬∀xϕ(x) will have to be false on this standard interpretation. Therefore
¬∀xϕ(x) can’t be a theorem, and T must be ω-consistent.

Hence, contraposing, we have

Theorem 39. If T is ω-inconsistent then T ’s axioms can’t all be true on an arithmetically
standard interpretation.

Given that we want formal arithmetics to have axioms which are all true on a standard inter-
pretation, we must therefore want ω-consistent arithmetics. And given that we think e.g. PA is
sound on its standard interpretation, we are committed to thinking that it is ω-consistent.

36 The First Theorem – the syntactic version

36.1 If PA is consistent, it can’t prove G

So far, we have actually only made use of the weak result that PA’s language can express the
relation Gdl . But remember Defn. 46: our chosen Gdl doesn’t just express Gdl but captures it.
Using this fact about Gdl, we can again show that PA does not prove G, but this time without
making the semantic assumption that PA is sound.

Theorem 40. If PA is consistent, PA 0 G.

Proof. Suppose G is provable in PA. If G has a proof, then there is some super g.n. m that
codes its proof. But by definition, G is the diagonalization of the wff U. Hence, by definition,
Gdl(m, pUq).

Now we use the fact that Gdl captures the relation Gdl . That implies that, since Gdl(m, pUq),
we have (i) PA ` Gdl(m, pUq).

But since G is logically equivalent to ∀x¬Gdl(x, pUq), the assumption that G is provable comes
to this: PA ` ∀x¬Gdl(x, pUq). The universal quantification here entails any instance. Hence (ii)
PA ` ¬Gdl(m, pUq).

So, combining (i) and (ii), the assumption that G is provable entails that PA is inconsistent.
Hence, if PA is consistent, there can be no PA proof of G.

36.2 If PA is consistent, it is ω-incomplete

Here’s an immediate corollary of that last theorem:

Theorem 41. If PA is consistent, it is ω-incomplete.

Proof. Assume PA’s consistency. Then we’ve shown that PA 0 G, i.e.,

1. PA 0 ∀x¬Gdl(x, pUq).
Since G is unprovable, that means that no number is the super g.n. of a proof of G. That is to
say, no number numbers a proof of the diagonalization of U. That is to say, for any particular
m, it isn’t the case that Gdl(m, pUq). Hence, again by the fact that Gdl captures Gdl , we have

2. For each m, PA ` ¬Gdl(m, pUq).
Putting ϕ(x) =def ¬Gdl(x, pUq), the combination of (1) and (2) therefore shows that PA is ω-
incomplete.
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36.3 If PA is ω-consistent, it can’t prove ¬G
We’ll now show that PA can’t prove the negation of G, without assuming PA’s soundness: we’ll
just make the syntactic assumption of ω-consistency.

Theorem 42. If PA is ω-consistent, PA 0 ¬G.

Proof. Suppose ¬G is provable in PA. That’s equivalent to assuming

1. PA ` ∃xGdl(x, pUq).
Now suppose too that PA is ω-consistent. Then, as we remarked before, that implies that PA is
consistent. So if ¬G is provable, G is not provable. Hence for any m, m cannot code for a proof
of G. But G is (again!) the wff you get by diagonalizing U. Therefore, by the definition of Gdl ,
our assumptions imply that Gdl(m, pUq) is false, for each m. So, by the requirement that Gdl
captures Gdl , we have

2. PA ` ¬Gdl(m, pUq) for each m.

But (1) and (2) together make PA ω-inconsistent after all, contrary to hypothesis. Hence, if PA
is ω-consistent, ¬G is unprovable.

36.4 Putting together the syntactic Incompleteness Theorem for PA

Let’s put all the ingredients together. Recall that G is a Π1 sentence (i.e. of the same quantifier
complexity as e.g. Goldbach’s Conjecture). And we know from Theorem 36 that G is true if and
only if it is unprovable. That observation put together with what we’ve shown so far this section
entails

Theorem 43. If PA is consistent, then there is a Π1 sentence G such that PA 0 G, and if PA
is ω-consistent PA 0 ¬G, so – assuming ω-consistency and hence consistency – PA is negation
incomplete.

36.5 Generalizing the proof

The proof for Theorem 43 evidently generalizes. Suppose T is a p.r. axiomatized theory which
contains Q – so (perhaps after introducing some new vocabulary by definitions) the language
of T extends the language of basic arithmetic, and T can prove Q’s axioms. Then assuming a
sensible scheme for Gödel-numbering wffs of T , the relation GdlT (m,n) which holds when m
numbers a T -proof of the diagonalization of the wff with number n will be primitive recursive
again.

Since T can prove everything Q proves, T will be able to capture the p.r. relation GldT by
a Σ1 wff GldT . Just as did for PA, we’ll be able to construct the corresponding Π1 wff GT . And,
exactly the same arguments as before will then show, more generally,

Theorem 44. If T is a consistent p.r. axiomatized theory which contains Q, then there will
be a Π1 sentence GT such that T 0 GT , and if T is ω-consistent, T 0 ¬GT , so T is negation
incomplete.

When people refer to ‘The First Incompleteness Theorem’ (without qualification), they typically
mean something like this second general result, deriving incompleteness from syntactic assump-
tions.

Let’s emphasize that last point. Being p.r. axiomatized is a syntactic property; containing Q
is a matter of Q’s axioms being derivable; being consistent here is a matter of no contradictory
pair ϕ, ¬ϕ being derivable – all syntactic notions. The chains of argument that lead to this
theorem depend just on the given syntactic assumptions, via e.g. the proof that Q can capture
all p.r. functions – another claim about a syntactically definable property. That’s why I’m calling
this the syntactic Incompleteness Theorem. (Of course, we are interested in various syntactically
definable properties because of their semantic relevance: for example, we care about the idea of
capturing p.r. functions because we are interested in what an interpreted theory might be able
to prove in the sense of establish-as-true. But it is one thing for us to have a semantic motivation
for being interested in a certain concept, it is another thing for that concept to having semantic
content.)
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36.6 Comparisons

Compare Theorem 44 with our initially announced

Theorem 2. For any consistent formal axiomatized theory T which can prove a certain modest
amount of arithmetic (and has a certain additional desirable property that any sensible formalized
arithmetic will share), there is a sentence of basic arithmetic GT such that T 0 GT and T 0 ¬GT ,
so T is negation incomplete.

Our new theorem fills out the old one in various respects, but it is weaker in another respect.
But the gain is much more than the loss.

Our new theorem tells us more about the ‘modest amount of arithmetic’ that T is assumed
to contain and it also spells out the ‘additional desirable property’ which we previously left
mysterious (and we now know the condition is only applied in half the theorem). Further it tells
us more about the undecidable Gödel sentence – namely it has minimal quantifier complexity,
i.e. it is a Π1 sentence of arithmetic. Our new theorem is weaker, however, as it only applies to
p.r. axiomatized theories, not to formal axiomatized theories more generally. But we’ve already
noted that that’s not much loss. (And we can in fact go on to make up the shortfall).

37 The historical First Theorem

Theorem 44, or something like it, is what people usually mean when they speak without qualifi-
cation of ‘The First Incompleteness Theorem’. But since the stated theorem refers to Robinson
Arithmetic Q (developed by Robinson in 1950!), and Gödel didn’t originally know about that
(in 1931), our version can’t be quite what Gödel originally proved. But it is a near miss.

Looking again at our analysis of the syntactic argument for incompleteness, we see that we
are interested in theories which extend Q because we are interested in theories which can capture
p.r. relations like Gdl . It’s being able to capture Gdl that is the crucial condition for a theory’s
being incomplete. So let’s say

Defn. 51. A theory T is p.r. adequate if it can capture all primitive recursive functions and
relations.

Then, instead of mentioning Q, let’s instead explicitly write in the requirement of p.r. adequacy.
So, by just the same arguments,

Theorem 45. If T is a p.r. adequate, p.r. axiomatized theory whose language includes LA, then
there is Π1 sentence ϕ such that, if T is consistent then T 0 ϕ, and if T is ω-consistent then
T 0 ¬ϕ.

And this is pretty much Gödel’s own general version of the incompleteness result. I suppose that
it has as much historical right as any to be called Gödel’s First Theorem.1

For in his 1931 paper, Gödel first proves his Theorem VI, which with a bit of help from his
Theorem VIII shows that the formal system P – which is his simplified version of the hierarchical
type-theory of Principia Mathematica – has a formally undecidable Π1 sentence (or sentence ‘of
Goldbach type’, see §34.3). Then he immediately generalizes:

In the proof of Theorem VI no properties of the system P were used besides the
following:

1. The class of axioms and the rules of inference (that is, the relation ‘immediate
consequence’) are [primitive] recursively definable (as soon as we replace the
primitive signs in some way by the natural numbers).

2. Every [primitive] recursive relation is definable [i.e. is ‘capturable’] in the system
P .

1‘Hold on! If that’s the First Theorem, we didn’t need to do all the hard work showing that Q and PA are p.r.
adequate, did we?’ Well, yes and no. No, proving this original version of the Theorem of course doesn’t depend
on proving that any particular theory is p.r. adequate. But yes, showing that this Theorem has real bite, showing
that it applies to familiar arithmetics, does depend on proving the adequacy theorem.
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Therefore, in every formal system that satisfies the assumptions 1 and 2 and is ω-
consistent, there are undecidable propositions of the form (x)F (x) [i.e. ∀xF (x)], where
F is a [primitive] recursively defined property of natural numbers, and likewise in
every extension of such a system by a recursively definable ω-consistent class of
axioms.

Which gives us our Theorem 45.

At this point, make sure you really understand at least what the core theorems in this episode
mean. Then read IGT, Chs. 16 and 17.

And then re-read those chapters! – for they are at the very heart of the book, and of this
course.

Then when you feel reasonably confident of the techie details, have a look at Ch. 18 (perhaps
skipping §18.3).
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We’ve now proved our key version of the First Theorem, Theorem 44. If T is the right kind of
ω-consistent theory including enough arithmetic, then there will be an arithmetic sentence GT

such that T 0 GT and T 0 ¬GT . Moreover, GT is constructed so that it is true if and only if
unprovable-in T (so it is true). We won’t rehearse the construction and the arguments from the
last episode again here.

This episode starts by proving the key theorem again by a slightly different route – via the
so-called Diagonalization Lemma. The interest in doing this is that the same Lemma leads to
two other important theorems due to Rosser and Tarski.

38 Provability predicates

Recall that, for a p.r. axiomatized theory T , Prf T (m,n) is the relation which holds just if m is
the super g.n. of a sequence of wffs that is a T proof of a sentence with g.n. n. This relation
is p.r. decidable (see §29.4). Assuming T extends Q, T can capture any p.r. decidable relation,
including Prf T (§26). So we can legitimately stipulate

Defn. 52. PrfT (x, y) stands in for a T -wff that canonically captures Prf T ,

for there will indeed be such a wff. NB, for some of what follows, any wff PrfT that captures
Prf T will do (it doesn’t have to be ‘canonical’ in the sense of Defn. 36): but it’s convenient to
fix on some canonical way, hence Σ1 way, of capturing Prf T . Next, we say:

Defn. 53. Put ProvT (y) =def ∃v PrfT (v, y): such an expression is a provability predicate for T .

ProvT (n) is true, of course, on the standard arithmetic interpretation of T just if n numbers a T -
theorem, i.e. a wff for which some number numbers a proof of it. Which means that ProvT (pϕq)
is true just when ϕ is a theorem. Hence the aptness of the label ‘provability predicate’ for ProvT .
Note, if ProvT is built from a canonical PrfT it is also Σ1.

So our observation that GT is so constructed that it is true if and only if unprovable-in T can
in fact be expressed inside T itself, by the wff GT ↔ ¬ProvT (pGTq).

And now a key observation: T doesn’t just express this fact but can quite easily prove it too,
i.e. we have T ` GT ↔ ¬ProvT (pGTq). More on this claim below, §40.3.
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39 The Diagonalization Lemma

39.1 Introducing the Lemma

Now, when we think through a demonstration that there is some sentence δ (in fact our old
friend GT ) such that T ` δ ↔ ¬ProvT (pδq), we notice an interesting generalization. Take any
open sentence ϕ(x) at all – i.e. not just ¬ProvT (x) – then we can always find some sentence δ or
other such that T ` δ ↔ ϕ(pδq). This generalized result is called The Diagonalization Lemma
(and was first explicitly isolated by Carnap as a principle that could be seen as underlying Gödel’s
incompleteness proof).

39.2 Proving the Lemma

First a reminder of something familiar:

Defn. 15. The theory T captures the one-place function f by the open wff ϕ(x, y) iff, for any
m,n,

i. if f(m) = n, then T ` ϕ(m, n),
ii. if f(m) 6= n, then T ` ¬ϕ(m, n).

Now let’s introduce what is a variant idea of capturing, evidently closely related to that one,
namely:

Defn. 54. The theory T captures∗ the one-place function f by the open wff ϕ∗(x, y) iff, for any
m,n, if f(m) = n, then T ` ∀y(ϕ∗(m, y)↔ y = n).

It’s trivial that a wff that captures* f will also capture f (why?). And there’s nearly a converse:

Theorem 46. If T extends Q, then if f is captured by some wff ϕ, then there’s also a wff ϕ∗

which captures∗ f .

There’s a little trick for defining a capturing∗ ϕ∗ from a capturing ϕ, a trick which is explained in
§12.2 of the book. But I’m not going to explain that here – it would be seriously boring to delay
over the details. (And when I do a second edition of the book, I’m tempted to define capturing∗

from the off, and then we wouldn’t need the boring details!) So take the mini-theorem on trust,
and work out how to prove it from the book if you must!

Now some more reminders:

Defn. 44. The diagonalization of ϕ is ∃y(y = pϕq ∧ ϕ).

Theorem 33. There is a p.r. function diag(n) which, when applied to a number n which is the
g.n. of some wff, yields the g.n. of that wff’s diagonalization.

And following on from those, here’s a new definition. If T is a theory that contains Q, it can
capture (and hence capture∗) all p.r. functions, then so in particular it can capture∗ the function
diag . Hence we put

Defn. 55. DiagT (x, y) is a T -wff which captures∗ diag.

And now we can officially state and then prove

Theorem 47 (Diagonalization Lemma). If T extends Q, and ϕ is a one-place open sentence of
T ’s language, then there is sentence δ such that T ` δ ↔ ϕ(pδq).

Note by the way, T here doesn’t have to be a nicely axiomatized theory – just containing Q is
enough.

To avoid unsightly rashes of subscripts, let’s henceforth drop subscript T s. Then we can argue
like this:

Proof. Put α =def ∀z(Diag(y, z)→ ϕ(z)), and let δ be the diagonalization of α. Since diago-
nalizing α zields δ, we have diag(pαq) = pδq. Hence (a) T ` ∀z(Diag(pαq, z)↔ z = pδq) since
by hypothesis Diag captures∗ diag in T . But just from the definition of δ it is equivalent to
∀z(Diag(pαq, z)→ ϕ(z)), and any theory containing a trivial amount of logic can prove that, so
in particular (b) T ` δ ↔ ∀z(Diag(pαq, z)→ ϕ(z)). Hence, substituting the provable equivalents
from (a) into (b), we have T ` δ ↔ ∀z(z = pδq→ ϕ(z)), which trivally gives T ` δ ↔ ϕ(pδq).

2



I promised that it was going to be easy!
Finally, a bit of jargon before proceeding. By a certain abuse of mathematical terminology,

we say

Defn. 56. If δ is such that T ` δ ↔ ϕ(pδq), then it is said to be a fixed point for ϕ.

So the Diagonalization Lemma is often called the Fixed Point Theorem – every one-place open
sentence has a fixed point.

40 Incompleteness from the Diagonalization Lemma

You could skip this section at a first reading. What we do is first recover the First Incompleteness
Theorem from the Diagonalization Lemma, and then fulfil our promise to show directly that
T ` GT ↔ ¬ProvT (pGTq).

40.1 Recovering the First Theorem

First we have the following general observation about provability predicates (as a reality check,
ask yourself where subscript T ’s really belong in this statement and its proof):

Theorem 48. Suppose T is p.r. axiomatized, contains Q, and some sentence or other γ is a
fixed point for ¬Prov – i.e., T ` γ ↔ ¬Prov(pγq). Then (i) if T is consistent, T 0 γ. And (ii) if
T is ω-consistent, T 0 ¬γ.

Proof. (i) Suppose T ` γ. Then T ` ¬Prov(pγq). But if there is a proof of γ, then for some m,
Prf (m, pγq), so T ` Prf(m, pγq), since T captures Prf by Prf. Hence T ` ∃x Prf(x, pγq), i.e. we
also have T ` Prov(pγq), making T inconsistent. So if T is consistent, T 0 γ.

(ii) Suppose T ` ¬γ. Then T ` Prov(pγq), i.e. T ` ∃x Prf(x, pγq). But given T is consistent,
there is no proof of γ, i.e. for every m, not-Prf (m, pγq), whence for every m, T ` ¬Prf(m, pγq).
So we have a ϕ such that T proves ∃xϕ(x) while it refutes each instance ϕ(m), which makes T
ω-inconsistent. So if T is ω-consistent, T 0 ¬γ.

But now note that the general Diagonalization Lemma implies as a special case

Theorem 49. There exists a sentence γ such that T ` γ ↔ ¬Prov(pγq).

Moreover, since Prov is Σ1, ¬Prov is Π1, and the diagonalization construction produces a Π1

fixed point γ. So putting those last two theorems together, we immediately recover Theorem 44.

40.2 Relating old and new

Briefly: how does the specific Gödel sentence G as we originally constructed it via the definitions
in §33 stand to the generic Gödel sentences γs we’ve just been talking about?

Well, how does our proof of the Diagonalization Lemma tell us to construct a γ such that T `
γ ↔ ¬Prov(pγq)? It says: first form a wff α = ∀z(Diag(y, z)→ ¬Prov(z)), and then diagonalize
α to get γ. So think more about α. Unpacking a bit, α is ∀z(Diag(y, z)→ ¬∃xPrf(x, z)), which is
equivalent to ∀x∀z¬(Diag(y, z) ∧ Prf(x, z)), i.e. to ∀x¬∃z(Diag(y, z) ∧ Prf(x, z)).

But now note that ∃z(Diag(y, z) ∧ Prf(x, z)) captures the Gdl relation. So this makes α pretty
much like ∀x¬Gdl(x, y) – and hence γ (the diagonalization of α) is pretty like G (the diagonaliza-
tion of ∀x¬Gdl(x, y)).

40.3 Proving our old GT is in fact a fixed point for ¬ProvT
But let’s now directly check that our old GT is in fact a fixed point for ¬ProvT , by giving a direct
proof of

Theorem 50. If T is p.r. axiomatized and contains Q, T ` GT ↔ ¬ProvT (pGTq).

But don’t get bogged down in this proof – I repeat it here from the book, just for the record.
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Proof. Recall, dropping subscripts,

G =def ∃y(y = pUq ∧ U),

where ‘pUq’ stands in for the numeral for U’s g.n.: further recall

U =def ∀x¬Gdl(x, y)

where Gdl(x, y) captures our old friend, the relation Gdl , where Gdl(m,n) holds when m codes
for a proof of the diagonalization of the wff with number n (a proof in T , of course!).

Now, by definition then,

Gdl(m,n) =def Prf (m, diag(n)).

But the one-place p.r. function diag is captured* by an open wff Diag(x, y). We can therefore
now retrospectively fix on the following definition:

Gdl(x, y) =def ∃z(Prf(x, z) ∧ Diag(y, z)).

And now let’s do some elementary manipulations:

G↔ ∀x¬Gdl(x, pUq)
↔ ∀x¬∃z(Prf(x, z) ∧ Diag(pUq, z)) (definition of Gdl)
↔ ∀x∀z¬(Prf(x, z) ∧ Diag(pUq, z)) (pushing in the negation)
↔ ∀z∀x¬(Prf(x, z) ∧ Diag(pUq, z)) (swapping quantifiers)
↔ ∀z(Diag(pUq, z)→ ¬∃x Prf(x, z)) (rearranging after ‘∀z’)
↔ ∀z(Diag(pUq, z)→ ¬∃v Prf(v, z)) (changing variables)
=def ∀z(Diag(pUq, z)→ ¬Prov(z)) (definition of Prov)

Since this is proved by simple logical manipulations, that means we can prove the equivalence
inside the formal first-order logic built into Q and hence in T . So

T ` G↔ ∀z(Diag(pUq, z)→ ¬Prov(z)).

Now, diagonalizing U yields G. Hence, just by the definition of diag , we have diag(pUq) = pGq.
Since by hypothesis Diag captures* diag as a function, it follows by definition that

T ` ∀z(Diag(pUq, z)↔ z = pGq).

Putting those two results together, we immediately get

T ` G↔ ∀z(z = pGq→ ¬Prov(z)).

But the right-hand side of that biconditional is trivially equivalent to ¬Prov(pGq). So we’ve
proved the desired result.

41 Tarski’s Theorem

In a way, Rosser’s Theorem which – as it were – tidies up the First Theorem by enabling us to
get rid of the assumption of ω-consistency is the natural next topic to look at. And that’s what
I do in the book. But here let’s proceed in a different order and next visit two other peaks which
can be reached via the Diagonalization Lemma: the path is very straightforward, but it leads to
a pair of rather spectacular results that are usually packaged together as Tarski’s Theorem.

41.1 Truth-predicates and truth-definitions

Recall a familiar thought: ‘snow is white’ is true iff snow is white. Likewise for all other sensible
replacements for ‘snow is white’. In sum, every instance of ‘ϕ’ is true iff ϕ is true. And that’s
because of the meaning of the informal truth-predicate ‘true’.

Suppose we have fixed on some scheme for Gödel numbering wffs of the interpreted arith-
metical language L. Then we can define a corresponding numerical property True as follows:
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True(n) is true iff n is the g.n. of a true sentence of L.

Now imagine we have some expression T(x) which is suitably defined to expresses this numerical
property True, and let L′ be the result of adding T(x) to our initial language L. (For the moment,
we leave it open whether L′ is just L, which it would be if T(x) is in fact already definable from
L’s resources.)

Then, for any L-sentence ϕ, we have

ϕ is true iff True(pϕq) iff T(pϕq) is true.

Hence, for any L-sentence ϕ, every corresponding L′-sentence

T(pϕq)↔ ϕ

is true. Which motivates our first main definition:

Defn. 57. An open L′-wff T(x) is a formal truth-predicate for L iff for every L-sentence ϕ,
T(pϕq)↔ ϕ is true.

And here’s a companion definition:

Defn. 58. A theory Θ (with language L′ which includes L) is a truth-theory for L iff for some
L′-wff T(x), Θ ` T(pϕq)↔ ϕ for every L-sentence ϕ.

Equally often, a truth-theory for L is called a ‘definition of truth for L’.
So: in sum, a truth-predicate T is a predicate that applies to (the Gödel numbers for) true

sentences, and so expresses truth, and a truth-theory is a theory which proves the right T-
biconditionals.

41.2 The undefinability of truth

Suppose T is a nice arithmetical theory with language L. An obvious question arises: could T be
competent to ‘define’ truth for its own language (i.e., can T include a truth-theory for L)? And
the answer is immediate:

Theorem 51. No consistent theory T which includes Q can define truth for its own language.

Proof. Assume T defines truth for L, i.e. there is an L-predicate T(x) such that T ` T(pϕq)↔ ϕ
for every L-sentence ϕ. Since T is has the right properties, the Diagonalization Lemma applies,
so applying the Lemma to ¬T(x), we know that there must be some sentence L – a Liar sentence!
– such that

1. T ` L↔ ¬T(pLq).

But, by our initial assumption, we also have

2. T ` T(pLq)↔ L.

It is immediate that T is inconsistent, contrary to hypothesis. So our assumption must be wrong:
T can’t define truth for its own language.

41.3 The inexpressibility of truth

That first theorem puts limits on what a nice theory can prove about truth. But with very modest
extra assumptions, we can put limits on what a theory’s language can even express about truth.

Consider our old friend LA for the moment, and suppose that there is an LA truth-predicate
TA that expresses the corresponding truth property TrueA. The Diagonalization Lemma applies,
in particular to the negation of TA(x). So we know that for some LA sentence L,

1. Q ` L↔ ¬TA(pLq).

But (and here comes the extra assumption we said we were going to invoke!) everything Q proves
is true, since Q’s axioms are of course true and its logic is truth preserving. So
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2. L↔ ¬TA(pLq)

will also be a true LA wff. But, by the assumption that TA is a truth-predicate for LA,

3. TA(pLq)↔ L

must be true too. (2) and (3) immediately lead to contradiction again. Therefore our supposition
that TA is a truth-predicate has to be rejected. Hence no predicate of LA can even express the
numerical property TrueA.

The argument evidently generalizes. Take any language L rich enough for us to be able to
formulate in L something equivalent to the very elementary arithmetical theory Q (that’s so we
can prove the Diagonalization Lemma again). Call that an arithmetically adequate language.
Then by the same argument, assuming Q is a correct theory,

Theorem 52. No predicate of an arithmetically adequate language L can express the numerical
property TrueL (i.e. the property of numbering a truth of L).

This tells us that while you can express syntactic properties of a sufficiently rich formal theory
of arithmetic (like provability) inside the theory itself via Gödel numbering, you can’t express
some key semantic properties (like arithmetical truth) inside the theory.

41.4 A moral

Suppose T is a nice theory. Then (1) there are some numerical properties that T can capture
(the p.r. ones for a start); (2) there are some properties that T can express but not capture (for
example the property of Gödel-numbering a T -theorem – see the book, §21.4); and (3) there
are some properties that T ’s language L cannot even express (for example TrueL, the numerical
property of numbering-a-true-L-wff).

It is not, we should hasten to add, that the property TrueL is mysteriously ineffable, and
escapes all formal treatment. A richer theory T ′ with a richer language L′ may perfectly well be
able to capture TrueL. But the point remains that, however rich a given theory of arithmetic
is, there will be limitations, not only on what numerical properties it can capture but even on
which numerical properties that particular theory’s language can express.

42 The Master Argument

Our results about the non-expressibility of truth of course point to a particularly illuminating
take on the argument for incompleteness.

For example: truth in LA isn’t provability in PA, because while PA-provability is expressible
in LA, truth-in-LA isn’t. So assuming that PA is sound so that everything provable in it is true,
this means that there must be truths of LA which it can’t prove. Similarly, of course, for other
nice theories.

And in a way, we might well take this to be the Master Argument for incompleteness, revealing
the true roots of the phenomenon. Gödel himself wrote (in response to a query)

I think the theorem of mine that von Neumann refers to is . . . that a complete epis-
temological description of a language A cannot be given in the same language A,
because the concept of truth of sentences in A cannot be defined in A. It is this
theorem which is the true reason for the existence of undecidable propositions in the
formal systems containing arithmetic. I did not, however, formulate it explicitly in
my paper of 1931 but only in my Princeton lectures of 1934. The same theorem was
proved by Tarski in his paper on the concept of truth.

In sum, as we emphasized before, arithmetical truth and provability in this or that formal system
must peel apart.

How does that statement of Gödel’s square with our emphasis back in §3 on the impor-
tance that he placed on the syntactic version of the First Theorem? Well, Gödel was a realist
about mathematics: he believed in the real existence of mathematical entities, and believed that
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our theories (at least aim to) deliver truths about them. But that wasn’t the dominant belief
among those around him concerned with foundational matters. As I put it before, for various
reasons (think logical positivism, think Hilbertian instrumentalism), the very idea of truth-in-
mathematics was under some suspicion. So even though semantic notions were at the root of
Gödel’s insight, it was extremely important – given the intended audience – to show that you
don’t need to deploy those semantic notions to prove incompletenenss.

43 Rosser’s Theorem

43.1 Rosser’s basic trick

One half of the First Theorem requires the assumption that we are dealing with a theory T which
is not only consistent but is ω-consistent. But we can improve on this in two different ways:

1. We can keep the same undecidable sentence GT while invoking the weaker assumption of
so-called ‘1-consistency’ in showing that T 0 ¬GT .

2. Following Barkley Rosser, we can construct a different and more complex sentence RT such
that we only need to assume T is plain consistent in order to show that RT is formally
undecidable.

Since Rosser’s clever construction yields the better result, that’s the result we’ll talk about here
(I say something about 1-consistency in the book).

So how does Rosser construct an undecidable sentence RT for T? Well, essentially, where
Gödel constructs a sentence GT that indirectly says ‘I am unprovable in T ’, Rosser constructs a
‘Rosser sentence’ RT which indirectly says ‘if I am provable in T , then my negation is already
provable’ (i.e. it says that if there is a proof of RT with super g.n. n, then there is a proof of ¬RT

with a smaller code number).

43.2 Implementing the trick

Consider the relation Prf T (m,n) which holds when m numbers a T -proof of the negation of the
wff with number n. This relation is obviously p.r. given that Prf T is; so assuming T is has the
usual properties it will be captured by a wff PrfT (x, y). So let’s consider the Rosser provability
predicate defined as follows:

Defn. 59. RProvT (x) =def ∃v(PrfT (v, x) ∧ (∀w ≤ v)¬PrfT (w, x)).

Then a sentence is Rosser-provable in T – its g.n. satisfies the Rosser provability predicate – if
it has a proof (in the ordinary sense) and there’s no ‘smaller’ proof of its negation.

Now we apply the Diagonalization Lemma, not to the negation of a regular provability pred-
icate (which is what we just did to get Gödel’s First Theorem again), but to the negation of the
Rosser provability predicate. The Lemma then tells us,

Theorem 53. Given that T is p.r. axiomatized and contains Q, then there is a sentence RT

such that T ` RT ↔ ¬RProvT (pRT q).

We call such a sentence RT a Rosser sentence for T .
Another semantic incompleteness result is immediate:

Theorem 54. If T is a sound p.r. axiomatized theory including Q (and because sound therefore
consistent), T 0 RT and T 0 ¬RT , where RT is a Rosser sentence

Proof. Assume T ’s soundness, then its theorems are true, and RT is true if and only if it is
not Rosser-provable. Suppose RT were a theorem. Then it would be true since all theorems are
true. So it is not Rosser-provable, which means that ‘if RT is provable, ¬RT is already provable’
would be true, and also this conditional would have a true antecedent. We can infer that ¬RT

is provable. Which makes T inconsistent, contrary to hypothesis. Therefore RT is unprovable.
Which shows that the material conditional ‘if RT is provable, ¬RT is already provable’ has a
false antecedent, and hence is true. In other words, RT is true. Hence its negation ¬RT is false,
and is therefore unprovable since only truths are provable in a sound theory.

7



As we said, however, in order to show that neither RT nor ¬RT is provable we do not need the
semantic assumption that T is sound. The syntactic assumption of T ’s consistency is enough.

43.3 Rosser’s Theorem

We can now show that

Theorem 55. Let T be consistent p.r. axiomatized theory including Q and let ρ be any fixed
point for ¬RProvT (x). Then T 0 ρ and T 0 ¬ρ.

And since the Diagonalization Lemma tells us that there is a fixed point, it follows that T has
an undecidable sentence RT , without now requiring ω-consistency. Sadly, however – and there’s
no getting away from it – the proof of Theorem 55 is messy and very unpretty. Masochists can
check out the proof of Theorem 21.2 in the book (on p. 178). We then have to do more work
to beef up that proof idea to show that in fact (as with Gödel’s original proof) we can find a
Π1 sentence which is undecidable so long as T is consistent (that work is done on p. 179). You
do not need to know these proofs! – just that they exist, so we get Rosser’s Theorem (compare
Theorem 45):

Theorem 56. If T is a p.r. adequate, p.r. axiomatized theory whose language includes LA, then
there is Π1 sentence ϕ such that, if T is consistent then T 0 ϕ and T 0 ¬ϕ.

And that’s enough – at least in these notes – about the First Incompleteness Theorem. There’s
quite a bit more in the book, in Chs 19–23, which I’m not going to be covering in lectures.
Enthusiasts will want to devour the lot! – but let me especially highlight the sections which
amplify this episode, and then the sections you ought to know about for general logical purposes
anyway:

1. More on the topics in the episode: §§19.1–19.3, Ch. 20, §21.1–21.6: browse through Ch. 23.

2. For second-order arithmetics: §§22.1–22.6.
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• ConT , a canonical consistency sentence for T

• The Formalized First Theorem

• The Second Theorem

• Why the Second Theorem matters

• What it takes to prove it

This episode introduces – at last – the Second Incompleteness Theorem, says just something
about why it matters, and about what it takes to prove it.

Just two very quick reminders before we start. We said

Defn. 52. PrfT (x, y) stands in for a T -wff that canonically captures Prf T ,

Defn. 53. Put ProvT (y) =def ∃v PrfT (v, y): such an expression is a provability predicate for T .

And then recall we proved:

Theorem 50. If T is p.r. axiomatized and contains Q, T ` GT ↔ ¬ProvT (pGTq).

44 The Second Theorem introduced

44.1 Definitional preliminaries

We haven’t put any requirement on the particular formulation of first-order logic built into Q
(and hence any theory which contains it). It may or may not have a built-in absurdity constant.
But henceforth, let’s use the sign ‘⊥’ in the following way:

Defn. 60. ‘⊥’ is T ’s built-in absurdity constant if it has one, or else it is an abbreviation for
‘ 0 = 1’.

If T contains Q, T of course proves 0 6= 1. So on either reading of ‘⊥’, if T proves ⊥, it is
inconsistent. And if T ’s logic is standard and it is inconsistent, then it will prove ⊥.

Now consider the wff ¬ProvT (p⊥q). That is true if and only if T doesn’t prove ⊥, i.e. (given
what we’ve just said) if and only if T is consistent. That evidently motivates the definition

Defn. 61. ConT abbreviates ¬ProvT (p⊥q).

Note by the way that since ProvT is Σ1, ConT is Π1. For obvious reasons, the arithmetic sentence
ConT is called a canonical consistency sentence for T .

Or at least, ConT is the crispest definition of a consistency sentence for T . There are alter-
natives. Here’s another pretty natural one. Suppose Contr(x, y) captures the p.r. relation which
holds between two numbers when they code for a contradictory pair of sentences, i.e. one codes
for some sentence ϕ and the other for ¬ϕ. Then we could put
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Defn. 62. Con′T =def ¬∃x∃y(ProvT (x) ∧ ProvT (y) ∧ Contr(x, y)).

But, on modest assumptions, this sort of definition and its variants are equivalent: so we’ll stick
to the crisp one.

44.2 The Formalized First Theorem

One half of the First Theorem tells us that, for suitable T (nicely axiomatized, containing Q),

(1) If T is consistent then GT is not provable in T .

(Remember, we only need the idea of ω-consistency for the other half of the First Theorem).
Now, we can faithfully express (1) inside T itself by

(2) ConT → ¬ProvT (pGT q).

But now reflect that the informal reasoning for the First Theorem is in fact rather elementary
(we needed no higher mathematics at all, just simple reasoning about arithmetic matters). So
we might well expect that if T contains enough arithmetic, it should itself be able to replicate
that elementary reasoning.

In other words, if T is strong enough, then T can not only express (half) of the First Theorem
via the wff abbreviated (2), but should be able to prove it too! – so we’d hope to have

Theorem 57. For strong enough T , T ` ConT → ¬ProvT (pGT q).

Call such a result the Formalized First Theorem for the relevant provability predicate. Suppose
for now that we can indeed prove such a result.

44.3 The unprovability of consistency

We’ve just reminded ourselves of Theorem 50 which says that T ` GT ↔ ¬ProvT (pGT q). So
putting that together with Theorem 57, we get

(3) if T ` ConT , then T ` GT .

But we know from the First Theorem that,

(4) If T is consistent, T 0 GT .

So the Formalized First Theorem immediately yields the unprovability of the relevant consistency
sentence.

Theorem 58. For strong enough T , if T is consistent, then T 0 ConT .

Which is a somewhat vague version of the Second Incompleteness Theorem: roughly, for the right
kind of theories T and the right kind of consistency sentences, T can’t prove its own consistency
sentences.

Obviously, we need to say something about what counts as a ‘strong enough T ’; but our vague
statement will do as a very first introduction. Indeed, this is about as much as Gödel says in his
original 1931 paper where he too didn’t spell out the details.

45 How interesting is the Second Theorem?

You might well think: ‘OK, so we can’t derive ConT in T . But that fact is of course no evidence at
all against T ’s consistency, since we already know from the First Theorem that various true claims
about unprovability – like the standardly constructed Gödel sentence GT – will be underivable in
T . On the other hand, if – per impossibile – we could have given a T proof of ConT , that wouldn’t
have given us any special evidence for T ’s consistency: we could simply reflect that even if T were
inconsistent we’d still be able to derive ConT , since we can derive anything in an inconsistent
theory! Hence the derivability or otherwise of a canonical statement of T ’s consistency inside T
itself can’t show us a great deal.’

But, on reflection, the Theorem does yield some plainly important and substantial corollaries,
of which the most important is this:
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Theorem 59. Suppose S is a consistent theory, strong enough for the Second Theorem to apply
to it, and W is a fragment of S, then W 0 ConS.

That’s because, if S can’t prove ConS , a fortiori part of S can’t prove it .
So, for example, we can’t take some problematic rich theory like set theory which extends

arithmetic and show that it is consistent by (i) using arithmetic coding for talking about its
proofs and then (ii) using uncontentious reasoning already available in some relatively weak,
purely arithmetical, theory.

Which means that the Second Theory – at least at first blush – sabotages Hilbert’s Programme
(see §28.3 in these notes, and in the longer discussions in IGT ).

46 What does it take to prove the Second Theorem?

46.1 Sharpening the Second Theorem

ProvT (y) abbreviates ∃v PrfT (v, y); and PrfT is a Σ1 expression. So arguing about provability
inside T will involve establishing some general claims involving Σ1 expressions. And how do we
prove quantified claims? Using induction is the default method.

It therefore looks quite a good bet that T will itself be able to prove (the relevant half of)
the First Theorem for T , i.e. we will have T ` ConT → ¬ProvT (pGT q), if T has Σ1-induction
– meaning that T ’s axioms include (the universal closures of) all instances of the first-order
Induction Schema where the induction predicate ϕ is no more complex than Σ1. So let’s define

Defn. 63. A theory is Σ-normal, if it is p.r. axiomatized, contains Q, and also also includes
induction at least for Σ1 wffs.

Then the following looks a plausible conjecture

Theorem 60. If T is Σ-normal, then T proves the formalized First Theorem, and so if T is
consistent, T 0 ConT .

(Warning: ‘Σ-normal’ is my shorthand: there seems to be no standard term here.) That sharpens
our vaguely stated Theorem 58; and this better version is indeed provable. We won’t give a full
proof, however: but in the rest of the episode, we’ll say something about how the details get filled
in.

46.2 The box notation

To improve readability, let’s introduce some notation. We will henceforth abbreviate ProvT (pϕq)
simply by 2Tϕ. If you are familiar with modal logic, then you will immediately recognize
the conventional symbol for the necessity operator. And the parallels and differences between
‘“1 + 1 = 2” is provable (in T )’ and ‘It is necessarily true that 1 + 1 = 2’ are highly suggestive.
These parallels and differences are the topic of ‘provability logic’, the subject of a contemporary
classic, Boolos’s The Logic of Provability.

So in particular, ¬ProvT (pGT q) can be abbreviated ¬2TGT . Thus in our new notation, the
Formalized First Theorem is T ` ConT → ¬2TGT . Moreover, ConT can now alternatively be
abbreviated as ¬2T⊥.

However, we will very often drop the explicit subscript from the box symbol and elsewhere,
and let context supply it.

46.3 The ‘Derivability Conditions’ and a tiny amount of history

First a standard definition: we will say (dropping subscripts)

Defn. 64. The derivability conditions hold in T if and only if, for any T -sentences ϕ, ψ,

C1. If T ` ϕ, then T ` 2ϕ,

C2. T ` 2(ϕ→ ψ)→ (2ϕ→ 2ψ),
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C3. T ` 2ϕ→ 22ϕ.

We can then prove

Theorem 61. If T is Σ-normal, then the derivability conditions hold for T .

Theorem 62. If T is Σ-normal and the derivability conditions hold for T , then T proves the
formalized First Theorem.

These two theorems together evidently entail Theorem 60, so we can concentrate on them. Now,
proving Theorem 61 in detail is a seriously tedious task, and I don’t propose to do it here, nor
do I do it in the current edition of IGT either – though I do outline proof-sketches there in
§§26.1–26.3. But we will here prove Theorem 62.

But first, a very small amount of history. As we remarked before, Gödel himself didn’t prove
the Formalized First Theorem for his particular formal theory P. The hard work was first done
for a different theory by David Hilbert and Paul Bernays in their Grundlagen der Mathematik
of 1939: the details of their proof are in fact due to Bernays, who had discussed it with Gödel
during a transatlantic voyage.

Now, Hilbert and Bernays helpfully isolated ‘derivability conditions’ on the predicate ProvT ,
conditions whose satisfaction is indeed enough for a theory T to prove the Formalized First The-
orem. Later, Martin H. Löb gave a rather neater version of these conditions: and it is his version
which has become standard and features in our definition above. The derivability conditions are
consequently sometimes called the HBL conditions.

46.4 Deriving the Formalized First Theorem

As announced, we’ll now prove Theorem 62. We assume T is Σ-normal (in fact, all we need is
that it is p.r. axiomatized and contains Q), and that the derivability conditions hold, and aim to
show (dropping subscript ‘T ’s) T ` Con→ ¬2G.

Proof. First, since T is p.r. axiomatized and contains Q, Theorem 50 holds. So, in our new
symbolism, we have T ` G↔ ¬2G.

Second, note that for any theory T containing Q, T ` ¬⊥ (either by the built-in logic, or
because we’ve put ⊥ =def 0 = 1). And simple logic will show that, for any wff ϕ, we have

T ` ¬ϕ→ (ϕ→ ⊥).

Given the latter and the derivability condition (C1), this means

T ` 2(¬ϕ→ (ϕ→ ⊥)).

So given the derivability condition (C2) and using modus ponens, it follows that for any ϕ

A. T ` 2¬ϕ → 2(ϕ→ ⊥).

We now argue as follows:

1. T ` G→ ¬2G Half of Thm 50
2. T ` 2(G→ ¬2G) From 1, given C1
3. T ` 2G→ 2¬2G From 2, given C2
4. T ` 2¬2G → 2(2G→ ⊥) Instance of A
5. T ` 2G→ 2(2G→ ⊥) From 3 and 4
6. T ` 2G→ (22G→ 2⊥) From 5, given C2
7. T ` 2G→ 22G Instance of C3
8. T ` 2G→ 2⊥ From 6 and 7
9. T ` ¬2⊥ → ¬2G Contraposing

10. T ` Con→ ¬2G Definition of Con

Which gives us the Formalized First Theorem (and hence, as before, the Second Incompleteness
Theorem).
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• Curry’s Paradox

• Löb’s Theorem

• Löb’s Theorem implies the Second Incompleteness Theorem again

• ConT as an undecidable sentence

• Consistent theories that ‘prove’ their own inconsistency

• What’s still to come . . .

This episode starts by introducing Curry’s Paradox, and we then use the simple core reasoning
that leads to the paradox to prove a theorem, which we can call Curry’s Theorem.

Then we locate some variant reasoning that generates a version of Curry’s Paradox which uses
weaker assumptions about truth,) and we show that this reasoning can be mirrored by reasoning
about the provability predicate for any theory which contains enough arithmetic, and that yields
Löb’s Theorem.

We’ll see that Löb’s Theorem immediately entails the Second Incompleteness theorem (and
indeed, vice versa). Very roughly then, we could say that as Gödel’s First Incompleteness The-
orem stands to the Liar Paradox, Gödel’s Second Theorem stands to Curry’s Paradox.

We then note some additional facts about consistency sentences, in particular remarking that
there are consistent theories that ‘prove’ their own inconsistency (how can that be? – because
they are ω-inconsistent and so are unreliable theories which tell fibs about the natural numbers!).

We finish with a quick overview of where the rest of IGT goes, but – at least in these lectures
– we can’t follow the story any further here.

47 From Curry to Löb

47.1 How to prove that the moon is made of green cheese

We seemingly can construct a sentence that in effect says of itself e.g. ‘if I am true, then the
moon is made of green cheese (after all, I’ve apparently just constructed one!). Let’s replace the
indexical ‘I’ with a suitable definite description, and then symbolize that sentence by simply δ,
and let’s put ϕ for ‘the moon is made of green cheese’.

Then, by definition, δ holds just in case, if δ is true, then ϕ. Assuming the usual equivalence
between δ and δ’s being true – an assumption we’ll revisit – then we have δ ↔ (δ → ϕ). And
now we can argue as follows (and because I’m among logical friends, I’ll regiment the argument
Fitch-style: but do remember that – for the moment – this is just supposed to tidy up informal
reasoning about an informal claim).
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1 δ ↔ (δ → ϕ) Given, by definition(!?)

2 δ Supposition

3 δ → (δ → ϕ) From biconditional 1

4 δ → ϕ Modus Ponens from 2, 3

5 ϕ Modus Ponens from 2, 4

6 δ → ϕ Conditional Proof from subproof 2 to 5

7 (δ → ϕ)→ δ From biconditional 1

8 δ Modus Ponens from 6, 7

9 ϕ Modus Ponens from 6, 8

So the moon is indeed made of green cheese!
This sort of argument was known to medieval logicians, but was rediscovered by Haskell

Curry in 1942, hence Curry’s Paradox. Why ‘paradox’? Because propositions like (1) seem to
be available to us, given we can construct self-referential sentences (surely often harmless, as in
‘This sentence contains five words’) and we have a truth-predicate for which, intuitively, δ is true
holds if and only if δ. Yet evidently something has gone wrong.

Can we pin the blame on anything after the starting assumption at line (1)? At least at first
sight, seemingly not, for we have only used intuitively secure reasoning about the conditional:
there is, for example, no vacuous discharge or other dodgy move. True, we do use the supposition
at line (2) and also the conditional at line (6) twice; but why should that matter?1

So, at least at first sight, the blame seems to fall squarely on the original assumption that
there is such a δ as makes (1) hold. That’s perhaps no great surprise. For the claim ‘if I am true,
then the moon is made of green cheese’, seems to be in the same ball-park as the liar statement
‘I am not true’. And we all know the sort of trouble that that gets us into! (Though also we
know how difficult it is to give principled reasons for avoiding such trouble.)

Still, there is something new being revealed by Curry’s Paradox, namely that there is a
paradox of intuitively the same general kind as the Liar Paradox, but which doesn’t explicitly
involve negation. So even if boxing clever with negation might provide a response to the Liar
Paradox (we might go paraconsistent, for example, and allow a proposition and its negation
sometimes to be true together), this sort of approach isn’t going to immediately transmute into
a way of dealing with Curry’s Paradox. And we might reasonably think that that is an initial
strike against such an approach to the Liar.

47.2 Curry’s theorem, and two implications

Let’s now go more formal, and turn the informal reasoning for a paradox into formal reasoning
for a theorem.

So, we will say that a theory T – take that as usual to be a properly formalized theory – has
a standard conditional (and associated standard biconditional) if the reasoning in our displayed
proof in the previous section goes through, once we grant the given assumption at the first line.
In other words, T allows Modus Ponens, non-vacuous Conditional Proof, and doesn’t restrict
the re-use of data. Then we have evidently have the following formal result we can call Curry’s
Theorem:2

Theorem 63. If theory T has a standard conditional, and if for every sentence ϕ of T ’s language
there is some corresponding sentence δ such that T ` δ ↔ (δ → ϕ), then T is inconsistent.

1OK, there are restricted systems of substructural logics that care about the re-use of data, for that sort of
thing can matter in computer science. But it is one thing to be interested in such formal systems because we
want, e.g., ways of keeping track of the re-use of data, and another thing entirely to suppose that such re-use is
actually fallacious.

2I’d better remark that this is not a standard label.
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For if the condition of this theorem is satisfied, then for all ϕ, T proves some δ ↔ (δ → ϕ)
and hence – by the reasoning given above – T proves ϕ. And proving every sentence ϕ, T is
inconsistent.

Let’s draw two conclusions from this abstract but simple result. Both are closely related to
things we already know. Still, it is always nice and can often be illuminating to get at variants
of old conclusions by new routes.

So first let’s apply Curry’s Theorem to set theory. The naive comprehension theorem, recall,
says that

For any monadic condition χ(x), ∃1y∀x(x ∈ y ↔ χ(x)).

We already know that naive comprehension leads to trouble via Russell’s Paradox in a theory
equipped with a sensible negation. But Curry’s Theorem shows that naive comprehension still
leads to trouble however we doctor negation so long as the conditional remains standard:

Theorem 64. If T is a set theory with a standard conditional and naive comprehension, it is
inconsistent.

Proof. Choose ϕ as you like, and then put χ(x) =def (x ∈ x → ϕ). Applying comprehension,
there is a set we can dub τ such that T ` ∀x(x ∈ τ ↔ (x ∈ x → ϕ)). So, in particular,
T ` τ ∈ τ ↔ (τ ∈ τ → ϕ). Put δ for τ ∈ τ and we are done; we’ve shown that for any ϕ you
choose, there’s a δ such that T proves δ ↔ (δ → ϕ). So such a T is inconsistent by Curry’s
Theorem, contrary to hypothesis.

Our next application takes us back to issues about truth again. Suppose theory T has enough
arithmetic to prove a Diagonalization Lemma, so that for every one-place open sentence ϕ(x)
of T ’s language, there is some fixed point sentence δ such that T ` δ ↔ ϕ(pδq) where pδq is
T ’s numeral for pδq, the Gödel number of δ on some sensible coding scheme. Let’s say that such
a theory ‘knows some arithmetic’ (because, of course, even containing the very weak Robinson
arithmetic is enough for T to prove the Diagonalization Lemma).

Let’s also say that T ‘has a naive theory of truth’ if we can form an open sentence T(x) in
T such that T ` T(pδq) ↔ δ unrestrictedly, for every sentence δ (i.e. all ‘T-biconditionals’ are
provable). Then we have a version of Tarski’s theorem (compare Theorem 51):

Theorem 65. If T is consistent, has a standard conditional and knows some arithmetic, it can’t
also have a naive theory of truth.

Proof. Assume for reductio that T has a naive theory of truth. Choose ϕ as you like, and consider
the one-place open sentence T(x) → ϕ. The Diagonalization Lemma tells us that for some δ, T
proves δ ↔ (T(pδq) → ϕ). By the assumption that T ` T(pδq) ↔ δ, it follows that T proves
δ ↔ (δ → ϕ). So by Curry’s Theorem, T would be inconsistent.

In sum, you can’t get a consistent naive set theory, or consistently add a naive treatment
of truth to a theory which knows about arithmetic, just by boxing clever with negation and/or
swallowing certain contradictions and banning the “arguing past contradictions” which produces
explosion. As Geach remarked long ago when commenting on a Curry-like argument in his 1955
Analysis note ‘On “insolubilia”’ – a title that reminds us that there are medieval antecedents to
these discussions – “If we want to retain the naive view of truth, or the naive view of classes . . . ,
then we must modify the elementary rules of inference relating to ‘if’.”

47.3 Proving the moon is made of green cheese, again

Let’s now, for brevity’s sake, rewrite ‘T(pδq)’ as ‘>δ’. (This is perhaps a bit naughty, as the
suggested new notation hides some Gödel-numbering, which is like hiding quotation marks. But
it is safe enough if we keep our wits about us. We’ll use the different type face for ‘>’ to remind
ourselves that it isn’t itself the truth-predicate T but an abbreviation for a complex expression
involving the truth-predicate.)

Then the derivation of Theorem 3 depends on the assumption that (for any δ) T ` >δ ↔ δ.
But of course for other ‘modalities’ we don’t have this kind of general ‘modal collapse’. So we
won’t be able directly to transpose the reasoning so far to give results about other cases.
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But in fact, we don’t the need the full content of the ‘naive theory of truth’ to get a version
of Curry’s paradox; and this new version will carry over to other ‘modalities’.

To explain, suppose we are dealing with a T-predicate in a theory T for which the following
principles hold (schematically in ϕ, ψ):

>0. T ` >ϕ→ ϕ,

>1. T ` >(ϕ→ ψ)→ (>ϕ→ >ψ),

>2. T ` >ϕ→ >>ϕ,

>3. If T ` ϕ then T ` >ϕ.

These principles are parallel to those that hold for the modality S4, and we know that modality
in S4 doesn’t collapse, so we know that these principles don’t entail that T has a full naive
truth-theory and can always prove >ϕ↔ ϕ.

Now let’s again put ϕ for ‘the moon is made of green cheese’, and let δ say of itself ‘if I am
true, then the moon is made of green cheese’, so we have δ ↔ (>δ → ϕ). We again argue to the
conclusion ϕ, but this time using less that a full naive truth-theory but just assuming we are
entitled to the S4-ish principles we’ve just given.

1 δ ↔ (>δ → ϕ) Given, by definition(!?)

2 δ → (>δ → ϕ) From biconditional 1

3 >(δ → (>δ → ϕ)) By the rule of proof T3 from 2

4 >δ → >(>δ → ϕ) Using an instance of T1 and then Modus Ponens from 3

5 >δ → >>δ By T2

6 >δ Supposition

7 >>δ Modus Ponens from 5, 6

8 >(>δ → ϕ) Modus Ponens from 4, 6

9 >>δ → >ϕ Using an instance of T1 and then Modus Ponens from 8

10 >ϕ Modus Ponens from 7, 9

11 >ϕ→ ϕ By T0

12 ϕ Modus Ponens from 10, 11

13 >δ → ϕ Conditional Proof from subproof 6 to 12

14 (>δ → ϕ)→ δ From biconditional 1

15 δ Modus Ponens from 13, 14

16 >δ by T3, since we’ve proved 15

17 ϕ Modus Ponens from 13, 16

The conditional rules used here are the standard ones, so we again get a slightly sharpened take
on Curry’s paradox and a slightly sharpened theorem. The paradox is that it seems that we can
form self-referential sentences, and our ordinary truth-predicate should satisfy (informal versions
of) >0 to >3. The improved version of Theorem 65 is

Theorem 66. If T is consistent, has a standard conditional and knows some arithmetic, it can’t
also have a truth-predicate T for which conditions >0 to >3 hold.

Proof. Assume for reductio that T has a truth-predicate for which conditions >0 to >3 hold.
Take any ϕ and form the predicate T(x) → ϕ. Since T knows some arithmetic, so proves the
Diagonalization Lemma, there is some δ such that T ` δ ↔ (T(pδq) → δ), i.e. in shorthand
T ` δ ↔ (>δ → δ). The proof then continues as above to derive ϕ. Since ϕ was arbitrary, that
makes T inconsistent, contrary to hypothesis.
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47.4 Löb’s Theorem

Now, conditions >1 to >3 on the ‘modality’ > (defined from the truth-predicate T(x)) exactly
match, numbering apart, the so-called derivability conditions on 2 (which we defined from the
provability-predicate Prov(x)). Here are those conditions again:

Defn. 64. The derivability conditions hold in T if and only if, for any T -sentences ϕ, ψ,

C1. If T ` ϕ, then T ` 2ϕ,

C2. T ` 2(ϕ→ ψ)→ (2ϕ→ 2ψ),

C3. T ` 2ϕ→ 22ϕ.

So again let ϕ be any sentence, and consider the wff (Prov(z)→ ϕ). Assuming T can prove
the general Diagonalization Lemma (Theorem 47), we’ll have the particular case that there is a
δ such that T can prove δ ↔ (Prov(pδq)→ ϕ), or for short, T ` δ ↔ (2δ → ϕ). Then, at in the
case where T also proves 2ϕ→ ϕ, so we can replicate line 12 of the proof, the proof above goes
through again, just with ‘2’ substituted for >.

Which proves the following theorem:

Theorem 67 (Löb). If T knows some arithmetic, and the derivability conditions hold, then if
T ` 2ϕ→ ϕ then T ` ϕ.

This is a bit of a surprise: we might have expected that a theory which has a well-constructed
provability-predicate should ‘think’ that if it can prove ϕ then indeed ϕ, i.e. we might have
expected that in general T ` 2ϕ → ϕ. But not so. A respectable theory T can only prove this
if in fact it can already show that ϕ.

47.5 On a question of Henkin’s

By the Diagonalization Lemma applied to the unnegated wff Prov(x), there is a sentence H such
that T ` H↔ Prov(pHq) – i.e., we can use diagonalization again to construct such a sentence H
that ‘says’ that it is provable (compare the Gödel sentence that ‘says’ it is unprovable). Henkin
asked: is H provable?

It is. For by hypothesis, T ` Prov(pHq)→ H, i.e. T ` 2H→ H; so T ` H by Löb’s Theorem.

47.6 The Second Incompleteness Theorem again

The argument from Löb’s Theorem to Gödel’s Second Theorem is indeed swift! Assume the
conditions for Löb’s Theorem apply. Then as a special case we get that if T ` 2⊥ → ⊥ then
T ` ⊥. Hence, if T 0 ⊥, so T is consistent, then T 0 2⊥ → ⊥, hence T 0 ¬2⊥ hence (just by
definition of Con), T 0 Con.

There’s a converse too, i.e. the Second Theorem quickly entails Löb’s Theorem (IGT , p. 231).
So the two theorems come to much the same.

So the situation is this. What Gödel saw in proving the first theorem, in the broadest terms,
is that when we move from talking about truth to talking about provability, Liar-style reasoning
can lead not to paradox but a theorem. Much later, Löb spotted that, similarly, when we move
from talking about truth to talking about provability, Curry-paradox style reasoning again leads
not to paradox but to the Second Theorem.

48 Other excitements

We’ll assume throughout this section that T is such that the derivability conditions hold (Σ-
normality suffices, see Def. 63).
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48.1 GT and ConT are provably equivalent in T

We know from Theorem 62 that T ` Con→ ¬2G (suppressing subscripts!).
Now note the following result which says that T knows that, if it can’t prove ϕ, it must be

consistent.

Theorem 68. For any sentence ϕ, T ` ¬2ϕ → Con.

Proof. We argue as follows:

1. T ` ⊥ → ϕ Logic!
2. T ` 2(⊥ → ϕ) From 1, given C1
3. T ` 2⊥ → 2ϕ From 2, given C2
4. T ` ¬2ϕ → ¬2⊥ Contraposing
5. T ` ¬2ϕ → Con Definition of Con

So, since T can’t prove Con, T doesn’t entail ¬2ϕ for any ϕ at all. Hence T doesn’t ever ‘know’
that it can’t prove ϕ, even when it can’t.

In sum, suppose that T the usual sort of theory: by (C1), T knows all about what it can prove;
but we’ve now shown that it knows nothing about what it can’t prove.

Now, as a particular instance of this, we have T ` ¬2G → Con. So putting that together
with Theorem 62, we have T ` Con↔ ¬2G. And now combine that with Theorem 50 which tells
us that T ` G↔ ¬2G, and low and behold we’ve shown

Theorem 69. If T is Σ-normal then T ` Con↔ G.

This means that, not only do we have T 0 Con, we also have (assuming T is ω-consistent)
T 0 ¬Con. In other words, Con is formally undecidable by T .

But Con is not self-referential in any way, however loosely interpreted.That observation should
scotch once and for all any lingering suspicion that the incompleteness phenomena are somehow
inevitably tainted by self-referential paradox.

48.2 Theories that ‘prove’ their own inconsistency

An ω-consistent T can’t prove ¬ConT , as we’ve just noted. By contrast, a consistent but ω-
inconsistent T might well have ¬ConT as a theorem!

The proof is pretty trivial, once we note a simple lemma. Suppose S and R are two p.r.
axiomatized theories, which share a deductive logic; and suppose every axiom of the simpler
theory S is also an axiom of the richer theory R. Evidently, if the richer R is consistent, then
the simpler S must be consistent too. And the arithmetical claim that encodes this fact can be
formally proved. Contraposing,

Theorem 70. Under the given conditions, ` ¬ConS → ¬ConR.

Proof. Suppose ¬ConS , i.e. suppose ∃v PrfS(v,⊥). Hence for some a, PrfS(a,⊥). And that implies
PrfR(a,⊥). Why? Because the difference between the unpacked definitions of PrfS and PrfR –
the definitions which formally reflect what counts as (the code for) an S proof and an R proof –
will just be that the latter needs some more disjuncts to allow for the extra axioms that can be
invoked in an R proof. So it follows that ∃v PrfR(v,⊥), i.e. ¬ConR. And the inferences here only
use first-order logic.

Now let’s put that theorem to use. Take the simpler theory S to be PA (which is Σ-normal!).
And let the richer theory R be PA augmented by the extra axiom ¬ConPA.

By definition, R ` ¬ConPA. So using our lemma we can conclude R ` ¬ConR. R is ω-
inconsistent (why? because that means R ` ¬GR, which it wouldn’t be the case if R were
ω-consistent). But it is consistent if PA is (why? because we know from the Second Theorem
that if R proved a contradiction, and hence PA ` ConPA, then PA would be inconsistent). So,

Theorem 71. Assuming PA is consistent, the theory R = PA + ¬ConPA is a consistent theory
which ‘proves’ its own inconsistency.
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And since R proves ¬ConR,

Theorem 72. The consistent theory R is such that R+ ConR is inconsistent.

What are we to make of these apparent absurdities? Well, giving the language of R its stan-
dard arithmetical interpretation, the theory is just wrong in what it says about its inconsistency!
But on reflection that shouldn’t be much of a surprise. Believing, as we no doubt do, that PA
is consistent, we already know that the theory R gets things wrong right at the outset, since it
has the false axiom ¬ConPA. So R doesn’t really prove (establish-as-true) its own inconsistency,
since we don’t accept the theory as correct on the standard interpretation.

Now, the derivability conditions hold for theories that contain PA, so they will hold for R.
Hence by Theorem 69, R ` ConR ↔ GR. So since R ` ¬ConR, R ` ¬GR. Hence the ω-inconsistent
R also ‘disproves’ its own true canonical Gödel sentence. That’s why the requirement of ω-
inconsistency – or at least the cut-down requirement of 1-consistency explained in the book –
has to be assumed in the proof that arithmetic is incomplete, if we are to prove it by constructing
an original-style Gödel sentence like GR.

There’s lots more in the book around and about these issues, in Chaps 24–28. If you are going to
read more, however, perhaps the three things to concentrate on are these. First, the discussion of
Hilbert’s Programme in the first half of Chap. 28 (as the topic is historically important). Second,
the quick remarks about minds and machines later in Chap. 28. And then – for enthusiasts –
there are the more intricate arguments in Chap. 27 leading up to discussion of what Gödel called
the ‘best and more general version’ of the Second Theorem.

49 What’s still to come . . .

And here, my lectures this year have to end. But the book carries on. So let me very briefly
indicate where the book now goes, and how it links in with what we’ve done so far.

OK: We have now proved Gödel’s First Incompleteness Theorem and outlined a proof of his
Second Theorem.

And it is worth stressing that the ingredients used in our discussions so far have really been
extremely modest. We introduced the ideas of expressing and capturing properties and functions
in a formal theory of arithmetic, the idea of a primitive recursive function, and the idea of coding
up claims about relations between wffs into claims about relations between their code-numbers.
We showed that some key numerical relations coding proof relations for sensible theories are p.r.,
and hence can be expressed and indeed captured in any theory that includes Q. Then we have
worked Gödelian wonders with these very limited ingredients. But we haven’t need to deploy any
of the more sophisticated tools from the logician’s bag of tricks.

Note, in particular, that in proving our formal theorems, we haven’t yet had to call on
any general theory of computable functions or (equivalently) on a general theory of effectively
decidable properties and relations. (Recall: the p.r. functions are not all the computable functions,
by Theorem 23.)

Compare our informal early theorems

Theorem 4. No consistent, sufficiently strong, axiomatized formal theory is decidable.

Theorem 5. A consistent, sufficiently strong, axiomatized formal theory cannot be negation
complete.

A ‘sufficiently strong theory’ is, recall, one which can capture at least all effectively decidable
numerical properties. So both those informal theorems do deploy the informal notion of effective
decidability. And to prove an analogue of the undecidability theorem and to get the early in-
completeness theorem to fit together nicely with our later official Gödelian proof, we’ll therefore
need to give a proper formal treatment of decidability.

And that shapes the main tasks in the remaining chapters of IGT . In more detail

1. We first extend the idea of a primitive recursive function in a natural way, and define
a wider class of intuitively computable functions, the µ-recursive functions. We give an
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initial argument for Church’s Thesis that these µ-recursive functions indeed comprise all
total numerical functions which are effectively computable. (So the suggestion is that we
can trade in the informal notion of effective decidability for the formally defined notion of
recursive decidability.)

2. We already know that Q, and hence PA, can capture all the p.r. functions: we next show that
they can capture all the µ-recursive functions. The fact that Q and PA are in this sense
recursively adequate immediately entails that neither theory is decidable – and it isn’t
mechanically decidable either what’s a theorem of first-order logic. We can also quickly
derive the formal counterpart of the informal incompleteness theorem, Theorem 5.

3. We then turn to introduce another way of defining a class of intuitively computable func-
tions, the Turing-computable functions: Turing’s Thesis is that these are exactly the effec-
tively computable functions. We go on to outline a proof of the pivotal technical result that
the Turing-computable (total) functions are in fact just the µ-recursive functions again. So
Church’s Thesis and Turing’s Thesis come to the same.

4. Next we prove another key limitative result (i.e. a result, like Gödel’s, about what can’t
be done). There can’t be a Turing machine which solves the halting problem: that is to
say, there is no general effective way of telling in advance whether an arbitrary machine
with program Π ever halts when it is run from input n. We show that the unsolvability of
the halting problem gives us another proof that it isn’t mechanically decidable what’s a
theorem of first-order logic, and it also entails Gödelian incompleteness again.

5. The fact that two independent ways of trying to characterize the class of computable
functions coincide supports what we can now call the Church-Turing Thesis, which underlies
the links we need to make e.g. between formal results about what a Turing machine can
decide and results about what is effectively decidable in the intuitive sense. We finish the
book by discussing the Church–Turing Thesis further, and consider its status.
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