D.1

The Incompleteness Theorems

C. SMORYNSKI

Contents

1. Hilbert’s Program 822
2. Godel’s theorems . 825
2.1. Preliminaries . e e e e 826

2.2. Proof of the Incompleteness Theorems . 827

2.3. Things to come . 829

3. Encoding . . ... ... . 829
3.1. Primitive recursive encoding of finite sequences 831

3.2. Primitive recursive encoding of syntax. 835

3.3. Rosser’s Theorem . 840

*3.4. Recursion theory . 841

*3.5. The formula hierarchy . Lo . . 843

4. Metamathematical properties other than consistency . . 844
4.1. Reflection principles. 844

*4.1°, Hierarchy considerations . 849

*4.2. w-consistency . N 851

4.3. Completeness properties . 854

*4.3%, Kent’s Theorem . 855

5. Two applications 856
5.1. A fix-point theorem 856

5.2. Conservation results 858

*6. The formalized completeness theorem . 860
*6.1. The Hilbert-Bernays Completeness Theorem 860

*6.2. The incompleteness theorems . 861

*6.3. Comments 863
References . . 864

* This subsection covers an advanced topic

© North-Holland Publishing Company, 1977
821

HANDBOOK OF MATHEMATICAL LOGIC
Edited by J. Barwise



822 SMORYNSKI/THE INCOMPLETENESS THEOREMS [cu. D.1, §1

1. Hilbert’s Program

Mathematics, at the turn of the century, was plagued by various
difficulties ranging from antinomies and paradoxes to inconsistencies both
formal and personal. There had been difficulties earlier in mathematics, but
these had been removed or detoured: The Greeks eventually shrugged
their shoulders and admitted irrational numbers; the analysts avoided
paradoxes involving infinitesimals by finally isolating and rigorizing the
concepts of limit and continuity. Even in set theory, the solution to the
problem of the paradoxes had been offered as early as 1908 by Zermelo:
One must first know what one is talking about before one can axiomatize a
subject. Thus, instead of taking as axioms for set theory some intuitively
obvious properties of finite sets, some obvious properties of the set of all
subsets of a given set, and yet some other obvious properties of a third
entity — a process that almost guarantees contradictions — Zermelo first
described the cumulative hierarchy and then listed axioms for this single
entity. Until recent work on large cardinals, axioms later added were
merely further properties obviously true for this hierarchy but which were
formally underivable.

Sociologists would describe what transpired next in terms of “culture
lag”. Despite the fact that a consistent set theory was available, mathemati-
cians continued to worry about consistency. Some even doubted the
consistency of arithmetic itself! To make matters worse. L.E.J. Brouwer
was making the rounds in a bizarre attempt to turn mathematics into a
religion.

When, in 1920, Hermann Weyl fell prey to Brouwer’s lunacy, David
Hilbert decided to intervene. He observed that (Reip [1970] p. 155) “What
Weyl and Brouwer do comes to the same thing as to follow in the footsteps
of Kronecker! They seek to save mathematics by throwing overboard all
that which is troublesome. .. . They would chop up and mangle the science.
If we would follow such a reform as the one they suggest, we would run the
risk of losing a great part of our most valuable treasures!”

The vehemence with which Hilbert made the above declaration is most
readily understood when one remembers that Hilbert made his name by
the use of non-constructive techniques. His solution to Gordon’s problem
in the theory of invariants (Remp [1970], Chapter V) had elicited the charge
of “theology” from Gordon. Kronecker refused to believe that the
theorem, which asserted the existence of objects satisfying some condition,
had been proven as the objects had not been explicitly constructed.
Lindemann called the technique ‘“‘unheimlich”. Thus, it is not surprising



cH. D.1, §1] HILBERT'S PROGRAM 823

that Hilbert continued (Remp [1970], p. 157) “I believe that as little as
Kronecker was able to abolish the irrational numbers ... just as little will
Weyl and Brouwer today be able to succeed. Brouwer is not, as Weyl
believes him to be, the Revolution — only the repetition of an attempted
Putsch”.

Even if Hilbert had faith in Zermelo’s set theory, he could not use it:
For, he had not to secure mathematics but to stop a Putsch. So Hilbert
proposed his Conservation Program: To justify the use of abstract tech-
niques, he would show — by as simple and concrete a means as possible —
that the use of abstract techniques was conservative — i.e. that any
concrete assertion one could derive by means of such abstract techniques
would be derivable without them.

To clarify these matters, we introduce some Hilbertian jargon whose
exact meaning was never delineated by Hilbert. First, in the domain of
concrete mathematics, there are finitistically meaningful statements and
finitistic means of proof. The finitistically meaningful statements are called
real statements and are (say) identities of the form

Vx (fx = gx),

where f, g are reasonably simple functions (e.g. primitive recursive).
Finitistic proofs correspond roughly to computations or combinatorial
manipulations. More complicated statements are merely ideal ones and, as
such, have no meaning; but they can be manipulated abstractly — just as i
is not a real number, but can be dealt with algebraically, freely using the
fact that i’ = — 1. Hilbert’s contention was that, just as the use of i leads to
no new algebraic identities, the use of ideal statments and abstract
reasoning about them would not allow one to derive any new real
statements — i.e. none which were not already derivable finitistically. To
refute Weyl and Brouwer, Hilbert required that this latter conservation
property itself be finitistically provable.

To avail itself of a finitistic treatment, the ideal statements and abstract
reasoning would have to be codified in some formal system. Then the
abstract reasoning would be codified by simple combinatorial manipula-
tions and similar simple combinatorial manipulations could be used to
demonstrate this conservation.

At this point, one could try to analyze either the reasons for Hilbert’s
belief that this could be done or the assumptions that necessarily underly
such a Program. The author does not find these topics particularly
interesting and so we skip them.

The question probably on the reader’s mind is: This is all very nice, but



824 SMORYNSKI/THE INCOMPLETENESS THEOREMS [cH. D.1, §1

where does consistency come in? For, as everyone knows, this chapter
is supposed to be about consistency. Hilbert’s Consistency Program is a
natural outgrowth of and successor to Hilbert’s Conservation Program.
There are two reasons for this:

(i) Consistency is merely the assertion that some string of symbols is not
derivable. Since derivations are simple combinatorial manipulations, this is
a finitistically meaningful statement and ought to have a finitistic proof.

(ii) Proving .consistency of the formal system encoding the abstract
concepts already establishes the conservation result!

Reason (i) is straightforward and we do not discuss it. Reason (ii) is
particularly important and we should comment on it. Let R, I denote
formal systems encoding real statements with their finitistic proofs and
ideal systems with their abstract reasoning, respectively. Let ¢ be a real
statement Vx (fx = gx). Now, if I'+ ¢, then there is a derivation, d, of ¢
from I. But, derivations are concrete objects and, for some real formula
P(x,y) encoding derivations in I,

R+P(d, o),

where "' is some code for ¢. Now, if ¢ were false, one would have fa # ga
for some a and hence,
RFP(c,"m¢")

for some c. In fact, one would have the stronger assertion
RFfx# gx — P(c, M ¢")
for some ¢, depending on x. But, if R proves consistency of I, we see
RE—1(P(d, ") A P(c, " 0)),

whence R} fx = gx, with free variable x, i.e. RFVx (fx = gx).

[The above argument is a bit vague and is rife with additional assump-
tions. To make it rigorous, we would have to get down to the basics of
encoding — which is more than we intend to do in this section. The
assumptions on P are brought out in Sections 2 and 3. A formal version of
the above argument appears in Section 4.]

The argument of the above paragraph clearly invited Hilbert to establish
his Consistency Program: To devise a finitistic means of proving the
consistency of various formal systems encoding abstract reasoning with
ideal statements.

Since the Consistency Program was as broad as the general Conservation
Program and, since it looked more tractable, Hilbert fixed on it, asserting
(MEescHkowskl [1973], p. 56):



cH. D.1, §2] GODEL'S THEOREMS 825

If the arbitrarily given axioms do not contradict each other
through their consequences, then they are true, then the
objects defined through the axioms exist. That, for me, is
the criterion of truth and existence.

In summary, Hilbert’s Consistency Program had as its goal the proof, by
finitistic means, of the consistency of strong systems. The solution would
completely justify the use of abstract concepts. The proof would success-
fully repudiate Brouwer and bring Weyl back into the fold.

It’s a shame that it couldn’t work.

2. Godel’s theorems

In 1930, while in his twenties, Kurt G6del made a major announcement:
Hilbert’s Consistency Program could not be carried out. For, he had
proven two theorems which were then considered moderately devastating
and which still induce nightmares among the infirm. Loosely stated, these
theorems are:

FirsT INCOMPLETENESs THEOREM. Let T be a formal theory containing
arithmetie. Then there is a sentence ¢ which asserts its own unprovability and
is such that:

(i) If T is consistent, T ¥ ¢.

(i) If T is w-consistent, T ¥ — ¢.

SECOND INCOMPLETENESs THEOREM. Let T be a consistent formal theory
containing arithmetic. Then
T ¥ Cony,

where Cony is the sentence asserting the consistency of T.

The Second Theorem clearly destroys the Consistency Program. For, if
R cannot prove its own consistency, how can it hope to prove the
consistency of I? (R and I are as in Section 1.) Even the First Theorem does
this since (1) the statement ¢ is real; and (2) ¢ is easily seen to be true. ((1)
requires looking at the construction of ¢; (2) is seen by observing that ¢
asserts its unproyability and is indeed unprovable.) Thus, the First
Theorem shows that the Conservation Program cannot be carried out and,
hence, that the same must hold for the Consistency Program.

Let us consider the proofs of these remarkable theorems.



826 SMORYNSKI/ THE INCOMPLETENESS THEOREMS [cH. D.1, §2

2.1. Preliminaries

The clause in each theorem that T contain arithmetic is just a means of
avoiding the problem of stating explicitly what conditions must be met.
These conditions are encodability conditions and, as G6del showed, one
can do a great deal of encoding on natural numbers. We defer until Section
3 the discussion of how the encoding is handled and discuss here what is to
be encoded and where it is to be encoded.

Throughout this chapter, T will be some fixed, but unspecified, consis-
tent formal theory. For later convenience, we assume that the encoding is
done in some fixed formal theory S and that T contains S. We do not
specify S — it is usually taken to be a formal system of arithmetic, although
a weak set theory is often more convenient. The sense in which § is
contained in T is better exemplified than explained: If S is a formal system
of arithmetic and T is, say, ZF, then T contains S in the sense that there is a
well-known embedding, or interpretation, of S in T. It is this sort of
embedding that we have in mind.

Since encoding is to take place in S, it will have to have a large supply of
constants and closed terms to be used as codes. (E.g. in formal arithmetic,
one has 0,1, ... .) S will also have certain function symbols to be described
shortly.

To each formula, ¢, of the language of T is assigned a closed term, (¢!,
called the code of ¢. [N.B. If ¢x is a formula with free variable x, then 'px!
is a closed term encoding the formula ¢x, with x viewed as a syntactic object
and not as a parameter.] Corresponding to the logical connectives and
quantifiers are function symbols, neg, imp, etc., such that, for all formulae
¢, b, Skneg('p)=—1¢!, SHimp(p',Y') = o — ¢/, etc.

Of particular importance is the substitution operator, represented by the
function symbol sub. For formulae ¢x, terms ¢t with codes 't!,

Stsub(Tpx!, 1) =Tet!.
Iteration of sub allows one to define sub,,sub,,..., such that
S "Sub"(r(pX1 M x,.],'rh], sy 't,.]) = [(Ptl t t"].

Finally, we also encode derivations and have a binary relation
Prov(x, y) (read ““x proves y’’ or “‘x is a proof of y”’) such that for closed
ti, t2: SFProvy(t), t2) iff ¢, is the code of a derivation in T of the formula
with code t,. It follows that T+ ¢ iff S F Prov.(t, @) for some closed term ¢.

If one defines

Pry(y) <> 3x Prov«(x, y),



cH. D.1, §2] GODEL'S THEOREMS 827

then one obtains a predicate asserting provability. However, it is not
always the case that

(*) Tre iff SFPr('o),

unless S is fairly sound (a term to be defined later). The reason is that the
existential quantifier in Prr makes it essentially an ideal statement: While a
consistent theory cannot prove false real statements, Vx (fx = gx), it can
prove false existential ones, 3x (fx = gx). Thus (*) can fail.

The above encoding can be carried out, however, in such a way that the
following important conditions are met for all sentences ¢,

D1 Tre implies SFPrc('o").
D2 St Pry('e")— Pra("Prs('e)).
D3 SFPrr('@") A Pr("e = ¢1)— Pro("¢h).

Conditions D1-D3 are called the Derivability Conditions.

2.2. Proof of the Incompleteness Theorems
The Incompleteness Theorems depend on the following.

2.2.1. THeoreM (Diagonalization Lemma). Let ¢ox in the language of T
have only the free variable indicated. Then there is a sentence  such that

Sty o e (yh).

[N.B. If ¢ or ¢ is not in the language of S, then by “St- -+, we mean
that the equivalence is proven in the theory 8’ in the language of T whose
only non-logical axioms are those of S. §' is conservative over S.]

Proor. Given ¢x, let 0x < ¢ (sub(x, x)) be the diagonalization of ¢. Let
m ="0x! and ¢ = m. Then we claim

Sty o("yh).

For, in S, we see that
Y < 0m < ¢(sub(m, m))
« p(sub('0x’, m)) (since m = "6x")
oe(mhoe(y). O
We apply 2.2.1 to =1 Pre(x).

2.2.2. TueoreM (First Incompleteness Theorem). Let T+ <> —1Prx('o").



828 SMORYNSKI/THE INCOMPLETENESS THEOREMS [cH. D.1, §2

Then:
(i) TFe,

(ii) under an additional assumption, T ¥ — ¢.

ProoF. (i) Observe Tt¢ implies TFPrr('¢'), by D1, which implies
T+ — ¢, contradicting the consistency of T.

(ii) The additional assumption is a strengthening of the converse to D1,
namely TFPr:("¢') implies T+ ¢.

We have T+— ¢, hence T+F—1—1Prr('@") so that T +Prr("¢') and, by the
additional assumption, T | ¢, again contradicting the consistency of T. []

2.2.3. THEOREM (Second Incompleteness Theorem). Let Conr be
—1Prr("A"), where A is any convenient contradictory statement. Then

T J‘( COHT.

Proor. Let ¢ be as in the statement of Theorem 2.2.2. We show:
St ¢ < Conr.

Observe that St¢ — —1Pr("@') implies S+¢ — —Pry('A’), since
TFA—>¢ implies SFPr('fA—>¢'), by D1, which implies
SFPrr('A")— Pr('¢'), by D3.

But ¢ = —1Pry('A") is just ¢ — Cony and we have proven half of the
equivalence.

Conversely, by D2, StPre("¢")— Prr('Prz("¢')'), which implies
SEPr:("¢") > Pre("— '), by D1, D3, since ¢ <> 71 Prr('¢"). This yields
SFPrr("@") > Pre("@ A '), by D1, D3, and logic, which implies
SFPr("¢")—> Prz('A'), by D1, D3, and logic. By contraposition,
S+ Prr('A")— 1 Pr(‘@'), which is S Conr— ¢, by definitions. [

2.2.4. CoroLLARY. S+ Conr— Conr+—cony-

Proor. By the proof of Theorem 2.2.3,
(i) SFConr— —1Pry("@l),
(ii) S+Conre ¢.
Using D2, D3, it follows that SFCony— —Pr('Con;'), so that

S+ Conyr— —1Prr("—1 Cony— A'),
which gives S+ Conr— Conri—con,r

Corollary 2.2.4 is the Formalized Second Incompleteness Theorem.
Let us finish this exposition of the proofs with two remarks:



cH. D.1, §3] ENCODING 829

2.2.5. REMARK. By the proof of the Second Theorem, the self-referential
sentence which asserts its own unprovability is equivalent to the sentence
asserting consistency. Hence, this sentence is unique up to provable
equivalence and one may correctly speak of the sentence that asserts its
own unprovability.

2.2.6. REMaRK. If the reader compares the loose statement of the First
Incompleteness Theorem given earlier with that of Theorem 2.2.2(ii), he
will notice that we dropped the reference to w-consistency. We will discuss
this concept in Section 4.2.

2.3. Things to come

Except for the discussion of the mechanics of the encoding, we have
finished proving the Incompleteness Theorems. This seems to be a good
place to insert a brief description of the sequel.

In Section 3, we discuss the encoding and some related topics. Section 4
concerns metamathematical properties other than consistency and presents
some generalizations of the Incompleteness Theorems. In Section 5, we
present two applications of the notions and results of Sections 2 and 4. The
Incompleteness Theorems are obtained by formalizing Syntax — in Section
6, we discuss what happens when one formalizes Semantics.

3. Encoding

The details of an encoding are fascinating to work out and boring to
read. The author wrote the present section for his own benefit and his
feelings will not be hurt if the reader chooses to skip it.

In expositions, one often replaces precise statements by imprecise ones,
or by precise but false ones. As an example of the latter, it is commonly
asserted that one proves the Second Incompleteness Theorem by formaliz-
ing the proof of the First. A more correct statement would be that one
formalizes D1 by D2 and then reduces the Second Theorem to the First. In
Section 2.1, we have been guilty of cheating in two places:

(i) in our vague formulation of the sense in which T contains S, and

(ii) in our remark on sub.

We discuss (i) now and (ii) in 3.2.2.

In Section 2.1 we blithely remarked that T contains S in the sense that

there is the same sort of embedding of S into T as there is of arithmetic into



830 SMORYNSKI/THE INCOMPLETENESS THEOREMS [ch. D.1, §3

set theory. In ordinary mathematical practice, the details of an embedding
can be important: Is it continuous? A homomorphism? The same holds
here. We must know, e.g., what we mean by Prr("Prr("¢')"), where ¢ is in
the language of T and Prr in that of S.

We propose to sweep all of the difficulties under the rug by strengthening
the assumption to:

(i) the language of S is contained in that of T;

(ii) the axioms of S are among those of T.
While (i) and (ii) will make life easy for us in general, they will really grease
the wheels when we discuss D2.

The usual cases considered do not satisfy these conditions; but, if one
defines T’ to be the conservative extension of T by the addition of the
symbols and axioms of S, one can usually show

(*) SFVx [Prr(x) © Pre(x)],

thus reducing the case in question to the one treated here. Theories in
which (*) does not hold are pathological and we are not interested in them.

Now that this is settled, we make some additional inessential assump-
tions. Their only use is to reduce the number of cases that need to be
considered when we define various functions representing syntactic opera-
tions (cf. 3.2). They are:

(i) The only logical connectives and quantifiers are —, —, V.

(i) S and T centain as constants only the numerals: 0,1,... .

(iii) Only numerical variables occur.

(iv) T contains infinitely many n-ary function and relation symbols for

each n.

Thus, the language of T consists of:

numerals: 0,1,. . .,

numerical variables: vo, v, ...,

n-ary function symbols: fg, f7, ...,

n-ary relation symbols: Rg, R7T, ...,

connectives: /1, —.

quantifier: V.

The other connectives and quantifier are considered to be abbreviations.

We assume that S has a pairing function { , ) with inverses 4, .. Using
them, we assign codes, which are closed terms, to the basic syntactic
objects as follows:

i~ 0,1) —1e (4,3)
1,1) - (5,5)

~

v P



cH. D.1, §3] ENCODING 831
frr QR D) VP (6,6)
R (3R, T))

Terms and formulae are finite sequences of these symbols and deriva-
tions are finite sequences of formulae. Thus, S will have to be able to
encode and manipulate finite sequences. In the following subsection, we
introduce a nice class of functions and discuss their use for such encoding.
In 3.2, we assume these functions are ‘““in” S and finish encoding syntax.
3.3, 3.4, and 3.5 discuss some generalizations of the First Incompleteness

Theorem that one can prove once one has an awareness of the encoding
opportunities available.

3.1. Primitive recursive encoding of finite sequences

Loosely put, the primitive recursive functions are those functions of
natural numbers that are obtained by recursion. Of course, to be obtained
by recursion, they must be obtained from something and, to avoid minor
unpleasantries, they must also be closed under explicit definition:

3.1.1. DeriniTION. A function f on natural numbers is primitive recursive if
it can be generated after finitely many steps by means of the following
rules:

i f(x)=0, Zero

ii f(x)=x+1, Successor

iii f(x)=x, Projection

iv f(x)=g(h(x),..., hn(x)),  Composition
fO, x) = g(x),

v Recursion

f(x +1,x)=h(f(x,x), x,x).

3.1.2. DeriNITION. A relation R C N" is primitive recursive if its represent -
ing function,
0 if R(x),
Xr(x) =
1 if " R(x)
is primitive recursive.

To facilitate the discussion of the encoding of finite sequences, we



832 SMORYNSKI/THE INCOMPLETENESS THEOREMS [cH. D.1, §3

establish a few simple closure properties of the classes of primitive
recursive functions and relations. To do this, we need a few functions.
Trivially, starting with the Zero function and iterating composition of the
Successor function, we see that all constant functions are primitive
recursive. Elementary school mathematics tells us that iterating Recursion
shows that addition, multiplication, and exponentiation are primitive
recursive Subtraction takes us out of the domain of natural numbers;
however, cut-off subtraction,

x—y ifx=y,
x—y=
0 if x <y,
is primitive recursive. For we can define it by Recursion by
x—0=x, x=(y+1)=pd(x=y),
where pd is defined by Recursion by
pd(0)=0, pd(x +1)=x.

__Two more handy functions are the sign function, sg, and its complement,
sg:
sg(0) =0, sg(x+1)=1,

sg0)=1, sgx+1)=0.

3.1.3. LeMmA (definition by cases). Let g, g, h be primitive recursive and
define f by

gi(x) ifh(x)=0,
f(x) =
gx) if h(x)#0.
Then f is primitive recursive.
PROOF. f(x)= gi(x) " sg(h(x)) + ga(x) - sg(h(x)). O
3.1.4. CoroLLARY. The relation of equality is primitive recursive.
Proor. Let h(x,y)=|x—y|=(x=y)+(y=x). O

Note that sg and sg were used in somewhat of a logical manner in the
above proof. To further illustrate this, let x, xs be the representing
functions of relations R, S. Observe:



cH. D.1, §3] ENCODING 833
X-& (%) =58 (xa (x)),
X ras(x) = sg(xr(x)+ xs(x)),
Xrvs(X)= xr(x)" xs(x).
If we define bounded quantifiers, 3y = x, Vy = x, then for R(y, x):

Xay=xr (X, X) = l_[ Xr (¥, x),

y=x

XVysxR= X—|3y5x—\R-

3.1.5. Lemma. (i) Let g(x,x) be primitive recursive. Then f, and f. are
primitive recursive, where

fl(x’x)= ;x g(y’x)’ fZ(X,x)= }l;[xg(y’x)'

(ii) If R(y.x) is a primitive recursion relation, then the relations S, T are
also primitive recursive, where

S(x,x)e>3y =xR(y, x), T(x,x)oVy=xR(y,x).
The proof of this lemma is left to the reader.

3.1.6. DeriNiTION (bounded u-operator). Let g(y,x) be a function. We
define

f(x,x)=pny <x[g(y,x)=0]

by f(x,x)=the least y <x such that g(y,x)=0, if such a y exists, and
f(x, x) = x, otherwise.

3.1.7. Lemma. If g(y,x) is primitive recursive, then so is uy <
x[g(y,x)=0].

Proor. Define
0 if Iy =x[g(yx)=0],
filx,x) =
1 if "3y =x[g(y,x)=0].

fi is primitive recursive and we may define

flx.x) = yqux(y,x)- u



834 SMORYNSKI/THE INCOMPLETENESS THEOREMS [cH. D.1, §3

We have enough tools at hand to show the primitive recursiveness of the
well-known pairing function,

(x,y)=1((x+y)y+3x +y),

and its inverses. We simply use the bounded w-operator:

(x,y)=puz<(@x+y)P+3x+y+1[2z=(x+y)l+3x+y],
mz=ux<z+1[Jy=z(x,y)=2)],
mz = py <z +1[(mzy)=z],
where we use the fact that x,y =(x, y).
To encode finite sequences, we use the Fundamental Theorem of

Arithmetic, whereby every natural number =2 has a unique representa-
tion:

a=pip-pik
where p,,...,p, are distinct primes and all n; are positive. We have the
following definitions:
i x|y<—>325y(xz=y).
ii x<yeoe3IJz=sy(y=x+z+1).
iii x isprime o> x#0Ax#IaVz=x[z|x—>z=xvz=1]
iv P» = n-th prime: p,=2,

Prs1 = ux < p,!+ 1[p. <x A x is prime].

v a€Seqera=1va>1aVx=a[p.|a—p:|a]

0 if agSeqva=1,
vi lh(a) =

px=<alp.|anrpe & a] ifaESeqra#l.

vii (@) =uy=x+1[p2'|arpl’s a].

a- [[ p&ui., ita#lab#l,
x=1lh(b)

a ifb=1na#1l,
b ifa=1.

viii a*b =

We should comment on v-viii. Seq denotes the set of sequence numbers,
i.e. those numbers with no gaps in their list of prime divisors. For such
numbers, we have



cH. D.1, §3] ENCODING 835

a= @
1=Ih(a)

If a,b are sequence numbers encoding (aq, ..., am), (bo,...,b.), respec-
tively, then a*b is a sequence number encoding the concatenation
(a0, ... Qm, bo,...,b,).

We write (ao,...,a.) for 2%*'...p&*' In particular, (a)=2*"" and
( )=1

An immediate application of these notions is the following.
3.1.8. LEMMA (course-of-values recursion). Let g, h be primitive recursive
and define f by

fO,x)=g(x),  f(x+1,x)=h(f(xx),xx),
where f(x,x)=(f(O,x),...,f(x,x)) is the course-of-values function as-

sociated with f. Then f is primitive recursive.

Proor. Observe that f is primitive recursive:
f0,x)=25%,  f(x +1,x)=f(x, x)* (R (f(x, x), x, x)).
But f(x,x)= (f(x,x)).. O

We will use this lemma in the next subsection to finish our discussion of
encoding.

3.2. Primitive recursive encoding of syntax

So far we have codes for basic syntactic objects (variables, numerals,
etc.) and a primitive recursive technique of encoding finite sequences We
now combine what we have to encode more complicated syntactic objects.

3.2.1. DeriNiTION. We generate codes for complex terms and formulae as
follows:
@) If ¢,,...,t have codes 't,,...,'s), then

rf.-"tx .. t,.] = (rfin], rtll, e rtn]),
"Rip-- 6 =R "0),..., "),

where f!', TR} are the codes assigned in the introduction.
(i) If ¢, ¢, have codes "', "¢, respectively, then

f_1‘p1=([—‘1’[¢l)' "P”¢’1=([_’], [()01,[‘!,])'



836 SMORYNSKI/THE INCOMPLETENESS THEOREMS [cH. D.1, §3
(iii) If ¢ has code '¢' and v; is a variable, then
er”P] = fv1, rv'J’ f‘P])-
[Note. This gives us the functions neg, imp: neg(x) = ("', x); imp(x, y) =

(=" xy)]

We now show that the complex syntactic notions are primitive recursive:
(i) The representing function for terms is defined by course-of-values
recursion:
0 ifJi=x[x=(0,i)vx=(1,1i)],
0 ifxE€SeqaIni=x[(x)=(2,{(ni))alh(x)=n A
AVy <n(T((x),+1)=0],

T(x) =
1 otherwise.

(ii) Similarly, one defines the representing function for formulae:

-

0 ifxESeqaIni=x[(x)o=3,(ni)alh(x)=nna
AVy < n (T((x),+1) = 0],
0 if xESeqa(x)o="""AF((x))=0nlh(x)=1,
F(x)={ ¢ if x €ESeq A (x)o="-"AF((x))=F((x)) =0lh(x)=2,
0 if xESeqa(x)o="V'aAi=x((x)=(1,i))
AF((x))=0nalh(x)=2,

| 1 otherwise.

3.2.2. Sub

In Section 2.1 we spoke of a substitution function. As it is, we need two:
one to replace a (code for a) free variable by a (code for a) term and one to
replace a (code for a) free variable by a (code for a) numeral which
supposedly designates the same number designated by a given term. The
former is needed, e.g., to recognize axioms such as Vx ¢x — ¢t. Both could
be used for the Diagonalization Lemma; but the latter is needed if one
wants a free-variable form of the Diagonalization Lemma. Other uses are
hard to describe here and we leave the function to ‘‘speak for itself’” when
we apply it later. We define the first syntactic substitution function by
course-of-values recursion, first treating terms and then formulae:



cH. D.1, §3] ENCODING 837
sub('v), i y) =y,
sub('v i, y)="ov!,  j#i
sub("frer -+ -ty i y) = ("f,sub("t,, i, y). ..., sub("t), i, y)),
sub('Rt: - t, i, y) = ("R}, sub("t,), i, y),....sub('t.. i y)),
sub(" ¢, i y) = ("' sub("e, i, y)),
sub('e —> ¢!, i, y) = (">, sub('e’, i, y),sub("¢', i, ),
sub('Vu, @', i, y)= Vo o',
sub('Vo @', i y) = (', Ty, sub("e’, i, y)),
sub(x,i,y)=0, x not of the above forms.
With this definition, one easily sees that, for any term ¢,
sub("euv, i, "t") = Tot!.
If we observe that v, occurs freely in ¢ iff sub("e', i, (0, i)) # "¢, then we

can primitive recursively define the function sub referred to in Section 2.1
by

sub(x, i, y) if i = uj <x[v occurs free in x],

sub(x, y) = {

X if i does not exist.

subs, sub,, etc. are defined by iteration.
A second important substitution function is

s(x,y)=sub(x,(0, y)).

This satisfies: If pov, has only v, free, ¢ is a closed term denoting n, then
s("ev), t) ="y, where ¢ is equivalent to ¢i. (To prove ¢ < ¢ii, one need
only show ¢ = 7. For then, substitutivity of equality yields +'pa' = ')
Moreover, if ¢ has only v, free, s("¢', x) is formally the code of a sentence.
We often abbreviate s("ex',y) by Ty,

3.2.3. Prov:

The next step is to define Provr(x, y). A derivation of ¢ is a sequence of
formulae such that each element of the sequence is either an axiom of T, a
logical axiom, or a consequence by some logical rule of earlier members of
the sequence. The logical axioms can be taken to be primitive recursive in
the sense that the set of codes of such axioms is primitive recursive. We
leave it to the reader to check this for his favorite axiomatization. Further,



838 SMORYNSKI/THE INCOMPLETENESS THEOREMS [ch. D.1, §3

by clever choice of axioms, we can assume that the only rule of inference is
modus ponens:

MP: L‘fl’,l"

We assume that the set of (codes of) axioms of T is primitive recursive.
Thus, we get:

Provr(x, y) <> x € Seq A Vi = lh(x)[(x): is a logical axiom v
v (x),is an axiom of T v
v 3jk <i((x) =imp((x), (x).))] A
Ay = (X )ineo)-

Prr(y) <> 3x Provr(x, y).

3.2.4. S, I: Numeralwise representability
A relation RC N" is said to be numeralwise represented or numerated by
a formula ¢ in S if one has, for all m,---m,,

Rm, - m, is true iff Stoem,: - m,
R is binumerated by ¢ if one also has
Rm,---m, isfalse iff Sk—om, - m,

We assume that S binumerates every primitive recursive relation. To do
this, it suffices to find a formula ¢y, for every primitive recursion function f,
such that all numerical instances of the defining equations for f are

provable. E.g. if f is defined by Recursion from g, h, then for all
ml,"-7mmm7

SEIxgr O, ..., W x)AVX [0 (0, iy, ..., gy x)— Qg (M, ..., Hn, X)),
SExp (m +1,m,..., W, x)
AVx,ye;(m,my, ..., M, y)A
Agp(m+ 1, M, ..., Ha x) = @u(y, M, My, ..., i, X))
Then, a metamathematical induction on the number of steps it takes to
generate f (and on the first argument of f in the case of definition by
recursion) shows that ¢; binumerates the graph of f.

Given that S binumerates all primitive recursive functions (and hence all
primitive recursive relations), it follows that all of the primitive recursive



cH. D.1, §3] ENCODING 839

encoding functions are binumerated: neg, imp, sub, s, and Prov+. This last
fact allows us to verify D1:

Tre & SHProve(t,'¢') for some closed term ¢,
$ S + Pl"r(rtp]).

A quick rereading of the proof of the First Incompleteness Theorem will
show that we did not need D2 and D3 to establish it. Thus we have given
(modulo only a little handwaving) a complete proof of this Theorem.

3.2.5. S, II: D2 and D3
The Second Incompleteness Theorem does not come so cheaply. For D3,
one must show

S+ Provr(a, "'¢') A Prove(b, '@ — ') — Provr(a * b = ("y), y),

with free variables a, b. To do this requires much more than mere
binumerability of primitive recursive relations: The representations must
be correct with free variables. For this, S must be able to prove not merely
each instance of the defining equations for a given primitive recursive
function, but must also prove the equations with free variables. It will also
be necessary for S to prove induction on primitive recursive relations.

The latter necessity is clear if one considers D2. D2 is a formal version of
the following sharpening of D1: If f is primitive recursive,

()  fmiomy=m > Tkfi, M, =m

> StProve(d(m, ..., M), fit, -+ - m. = m'),

for some primitive recursive function d. To see that such a d exists, observe
that a proof that fm = m (in S, and hence in T) is almost just a computation
— it will be given by a sequence of equations and implications of equations.
Thus, the existence of d satisfying (*) is not too surprising; nor is the fact
that we claim:

(*+) St fx = y — Provy(dx, 'f& = y!).

The proof, which is too long to be included here, proceeds by
metamathematical induction on the number of steps needed to generate f
and (when the recursion clause is used) formal induction on the primitive
recursive relation (**). Once one has accepted (**), the primitive recursive-
ness of Provr yields

S + Provr(x, y)— Prr("Provz(%, y)'),



840 SMORYNSKI/THE INCOMPLETENESS THEOREMS [cH. D.1, §3

and one needs only apply D1, D3 to the valid formula ¢x — 3x ¢x, to
conclude the validity of D2.

3.2.6. S, III: Choice of S

By the preceding discussion, one can adequately encode syntax in S if S

admits a representation of primitive recursive functions in such a way that
(i) the defining equations for primitive recursive functions are provable
with free variables;

(ii) induction on primitive recursive relations is provable;

(iii) computations are almost derivations of the equations they establish.
We list three examples of such theories.

(a) PRA = Primitive Recursive Arithmetic. PRA contains the numerals
0,1,... and there is a function symbol in PRA for each (definition via the
rules for the generation of primitive recursive functions of a) primitive
recursive function. In addition to some trivial axioms concerning the
constants and the successor function, the axioms of PRA are the defining
equations of the functions and induction on quantifier-free formulae.

(b) PA = Peano’s Arithmetic. PA also has the numerals as its constants,
but it only has function symbols for successor, addition, and multiplication.
The axioms consist of trivial axioms concerning the constants and the
successor function, the recursion equations for addition and multiplication,
and induction on all formulae of the language. Even proving that PA
binumerates the primitive recursive functions requires another encoding
trick. The most famous technique uses the Chinese Remainder Theorem to
encode finite sequences. Conditions (i) and (ii) are proven by formalizing
the use of the encoding of finite sequences and is non-trivial insofar as very
few texts give the details. Condition (iii) can be bypassed by observing that
the representation of a PR function can be written in the form 3x ¢, where
¢ is much simpler syntactically than the corresponding primitive recursive
function. E.g., by Matiyasevich’s Theorem, ¢ can be taken to be an
equation involving two polynomials. Thus, the formalization of
ox —> Prpa("@x') is much simpler.

(c) ZF = Zermelo-Fraenkel set theory. This is both a good and a bad
example. It is bad because the whole encoding problem is more easily
solved in a set theory than in an arithmetic theory. By the same token, it is
a good example.

3.3. Rosser’s Theorem

By Section 3.2, binumerability of primitive recursive relations in S



cH. D.1, §3] ENCODING 841

suffices for the First Incompleteness Theorem — as a condition on S. There
is still the necessity of assuming something about T —

(i) that T contain S,

(ii) that T be consistent, and

(iii) (for the second half of the theorem) that theorems of T of the form
Prz('¢') be true.
Rosser’s Theorem allows one to drop the last soundness condition on T by
using a modification of Provy: Define

Provrs(x. y) < Provy(x, y) A
AVzw =x [Prove(z, w)—y# neg(w) A w# neg(y)],
Prf(y) < 3x Provyi(x, y),

Conf < —Pr('A").

3.3.1. Rosser's THEOREM. Let T+ @ <> —1Pri('p'). Then
(i) TFe;
(i) T e,
(iii) T+ Cony.

ProoF. (i) By the consistency of T, Provy and Provy binumerate the same
relation. Hence D1* holds: T+ = +Prf("¢'). Thus, the proof of the first
part of the First Incompleteness Theorem yields the result.

(ii) This follows from (iii).

(ili) We leave this to the reader along with the remark that T is
consistent and TF—A. [

*3.4. Recursion theory

(The reader is referred to Chapter C.1 for a full discussion of recursion
theory.)

Historically, recursion theory developed out of the incompleteness

theorems. Once one knows a little recursion theory, however, it is natural
to look back.

3.4.1. DerNITION. A set S CN of natural numbers is recursively enumer-
able (r.e.) iff for some primitive recursive relation R,

Sx & 3y Rxy.

An equivalent definition is:



842 SMORYNSKI/THE INCOMPLETENESS THEOREMS [cH. D.1, §3

3.4.2. DeriNITION. A set SCN is r.e. iff S=@ or, for some primitive
recursive function f, S = ran(f).

Another useful concept is given by the following definition.

3.4.3. DerINITION. A set SC N is recursive iff S and N— S are both r.e. A
function f:N— N is recursive iff its graph (viewed as a subset of N by
means of a primitive recursive pairing function) is recursive.

The recursion-theoretic counterpart of the First Incompleteness
Theorem is:

3.4.4. THEOREM. There is an r.e. non-recursive set.

One proves this by finding an enumeration, W,, W,,..., of r.e. sets and
an r.e. set K, such that

Vxy (x,y)EK, & x € W)).

Then K ={x: (x,x)€ K,} is r.e. with a non-r.e. complement. One then
proves the First Incompleteness Theorem by showing that K can be
numeralwise represented in T. If T is sound enough, this is not too difficult
— one uses the numeralwise representation of K in S that arises from the
binumeration of the primitive recursive relation that K is the projection of.
If T is not very sound, the numeralwise representation of K in S may not be
one in T as T may Simply prove more numbers to be in K. One usually
avoids difficulties with numeralwise representations in unsound theories by
means of the following:

3.4.5. DerINITION. Let A. B CN be disjoint r.e. sets. A and B are effec-
tively inseparable iff there is a recursive function f such that for all r.e. sets
W, W, if

@ w.Nw =9,

(i) ACW, BCW,
then f(i,j) € W, U W,

3.4.6. THEOREM. Effectively inseparable r.e. sets exist.

We shall accept this on faith.

To prove that part of Rosser’s Theorem that corresponds to the First
Incompleteness Theorem, one constructs ¢, ¢ which numeralwise repre-
sent A, B, respectively, in S and for which



cH D.1, §3] ENCODING 843
(*) SEVxXx —(px A Yx).
Then, if T is a consistent formal theory, the set of (codes of) its theorems
can be shown to be r.e. and one defines

W, ={n: T+ on}, W, ={n: T+ en}. )

By (*¥), W, N W, = 0. Since T contains S and ¢ numerates A in S, it follows
that AC W, BC W, and no=f(i,j) € W, U W, Thus T ¥ @iy, 1 ¢fia.

*3.5. The formula hierarchy

The purpose of the present subsection is mainly to establish some
notation for several more advanced sections below.

Recall that S is assumed to have, for each primitive recursive function f,
a formula ¢; representing it in the strong sense of 3.2.5. ¢; is called a
primitive recursive formula, or a PR formula.

3.5.1. DeriniTiON. A formula ¢ is 2, (I1.) iff for some PR formula ¢,
@ = Q]xl e annlp,

where Q; =3 (V) and the quantifiers alternate in type. We write ¢ € 2,
(I1,), ambiguously, as ¢ is 2, (II.) or provably equivalent (in S) to a 3,
(I1,)) formula.

Thus, one has the inclusions:

_22

e
PR= zo—no\ ><

H/

2\

3.5.2. THEOREM. There is a =, truth definition for %, formulae. Ie., for each
n, there is a formula Trs, € =, with only the numerical variable x free such
that, for ¢, € 3.,

St ox ©Trs, (Tex!).

A similar result holds for II..
We omit the proof and note the following.

3.5.3. CoroLLARY. The formula Trs,(s(x,x)) is 2, non-IL.

The proof is left as an easy exercise to the reader.



844 SMORYNSKI/THE INCOMPLETENESS THEOREMS [cH. D.1, §4

It follows that all the inclusions indicated above are proper. Thus we
have a genuine hierarchy.

From our point of view, there are two uses of this Hierarchy: First, since
it is a hierarchy, we can use it to measure the complexity of formulae or of
sets of formulae. Such use is made in Section 4. A second use is not of the
Hierarchy itself taken as a hierarchy, but rather of Theorem 3.5.2: Many
set-theoretic proofs could be carried out in arithmetic if one had a truth
definition. Tarski’s Theorem asserts that there is no truth definition for the
entire language [Exercise]. By Theorem 3.5.2, there are partial truth
definitions Try, Try,... such that Tr, works up to the n-th level of the
Hierarchy. This allows the formalization of certain outwardly set-theoretic
constructions within arithmetic. An application is discussed in Section 6.

Before proceeding, it is worth noting the following.

3.5.4. Facr (demonstrable 2, completeness). If ¢ €32, then
St ex — Prr(Tpx).

This follows from the discussion of 3.2.5.

4. Metamathematical properties other than consistency

Metamathematically, consistency is a minimal assumption on a theory.
One might wish for stronger properties to hold — e.g. w-consistency. If T is
a theory about a particular structure, as PA is a theory about the semiring
of natural numbers, one might wish for even more — soundness (anything
provable is true) or completeness (anything or its negation is provable —
hence anything true is provable).

In this section, we discuss these properties. In 4.1 we consider a
soundness scheme — the Reflection Principle. w-consistency is discussed in
4.2 and its relation to the more intuitive Reflection Principle is presented.
Completeness, which we know to be false, nonetheless gives rise to
consistent schemata. These are discussed in 4.3.

4.1. Reflection principles

The First Incompleteness Theorem is proven by considering the sen-
tence that asserts its own unprovability. Under minimal assumptions, it is
clear that the sentence must be true — and hence unprovable. But what
about the sentence that asserts its own provability ? Is it true? false? It was
precisely this problem that led to the following important theorem
characterizing provable instances of the Reflection Principle:



cH. D.1, §4] PROPERTIES OTHER THAN CONSISTENCY 845
4.1.1. LoB’s THEOREM. Let ¢ be closed. Then
THPrr("e)— o iff Tthe.

PrROOF. The one direction is obvious. For the other, assume that T ¥ ¢.
Then T+ —¢ is consistent and we may appeal to the Second Incomplete-
ness Theorem to conclude that T + — ¢ does not yield Conr.—,, hence not
—1Prr("— ¢ = A'). Thus

T+ -9 ¥ 1Prr("o)).
Contraposition yields T ¥ Prr("¢')— . O

As hinted above, this solves the problem of sentences asserting their own
provability — such sentences are provable (and hence equivalent — cf. also
5.1). This also focuses our attention on the following schemata:

Local Reflection Principle

Rfn(T): Prr("¢")— ¢, ¢ closed.

First Uniform Reflection Principle

RFN(T): Vx Prr("ox')—> Vxox, ¢ has only x free.
Second Uniform Reflection Principle

RFN'(T): Vx [Prr("¢x')— ¢x], ¢ has only x free.

[A stipulation must be inserted here: As indicated by the notation 'px!,
the variable x must range over elements which can be named by constants.
Thus, we insist that the x in the uniform versions of the Reflection
Principle be a numerical variable. In fact, throughout the following, we
shall assume that all variables explictly exhibited are numerical variables,
although non-numerical variables may occur unexhibited in the formulae.]

The reflection principles are clearly schematic assertions of soundness —
anything provable is true. As such, they immediately imply consistency
and, thus, we see that they are underivable in T. Of course, Theorem 4.1.1
tells us more than this: It characterizes the provable instances of Rfn(T).
Nonetheless, it may be instructive to restate the First and Second Incom-
pleteness Theorems in terms of the reflection principles:

4.1.2. FirsT INCOMPLETENESs THEOREM. For some true, unprovable ¢,

T¥Pr('oN)— 0.



846 SMORYNSKI/ THE INCOMPLETENESS THEOREMS [cu. D.1, 84
4.1.3. SEcOND INCOMPLETENESs THEOREM. For any refutable o,

T ¥ Pr:("@")— o.

Let us check that these statements are equivalent to the more familiar
versions. The First Incompleteness Theorem is no problem if we specify
that the true unprovable sentence we have in mind is the one asserting its
own unprovability. Then Theorem 4.1.1 simply yields

T¥Pr("e)—> ¢ iff TKeo,

where the two equivalents are the two versions of the First Incompleteness
Theorem. For the Second Incompleteness Theorem, observe that, for
refutable ¢, the following are equivalent over T:

Prr('¢')=> ¢ —Pre('@") —1Prr('A') Cony.

Theorem 4.1.1 again yields the equivalence of the two versions.

Thus, Lob’s Theorem is a generalization of the incompleteness
theorems. While this alone would justify taking a closer look at the
reflection principles, it might be worth our while to mention another
motivating factor. Recall that the main impetus behind Hilbert’s Consis-
tency Program was the fact that consistency was equivalent to soundness
for real statements:

4.1.4. THEOREM. OQOver S, the following are equivalent:
(i) Conr;
(ii) Rfnp,(T);
(iii) RFNp,(T);
(iv) RFNp,(T);
where the subscript “I1,” indicates restriction of the schemata to ¢ €11,.

Proor. The implications (iv)— (iii)— (ii) are fairly direct. (ii)— (i) follows
from the above observation that Cony <> (Prr("@')— ¢) for any refutable ¢
— one merely chooses such a ¢ €11,.

(i)—> (iv). Let ¢ €II, have only x free. Then —¢x €3, and, by
demonstrable 3,-completeness (see 3.5),

(*) St—1¢x — Prr("m x7).
But
(**) S+ Conrt Prr(f@x')— 1 Pre('— ox ),

whence (*) and (**) combine to give

S+ ConytPre(Tpi')— ox. O



cH. D.1, §4] PROPERTIES OTHER THAN CONSISTENCY 847

The interested reader is referred to 5.2 for some applications of Theorem
4.1.4. For the moment, we simply use it as our second reason to justify our
interest in reflection principles: Consistency is equivalent to a restricted
Reflection Principle.

Having decided that reflection principles are worth studying, we may as
well begin. First, let us observe that the schemata are listed in full
generality. For one thing, we must restrict ourselves to schemata since the
sentence

Vx [Prr("ox ') = Tr("px)],

where Tr('¢') asserts “¢ is true”’, cannot be asserted in T. For, by Tarski’s
Theorem on Truth Definitions, there can be no truth definition for T within
T itself (cf. 3.5). Further, extra variables in either version of the uniform
scheme can be contracted by means of a pairing function, reducing the
general scheme to the two listed. A  hybrid, eg.
Vx [Vy Pr:("@xy')— Vyoxy], is clearly implied by the several variable
Second Uniform Reflection Principle. Finally, we have the following
theorem.

4.1.5. THEOREM (Feferman). RFN(T) and RFN'(T) are equivalent over S.

PrROOE. Obviously, the instance, Vx Prr('@x')—>Vx ¢x, of RFEN(T) is im-
plied by the corresponding instance of RFN'(T). REN'(T). The converse
requires a minor (but often useful) lemma:

4.1.6. LEmmaA. SFPrr("Prova(y, 'ox')— @x').

Proor. (a) By D1 and D3,
St Provz(y, '¢x')— Prr("@x')
— Prr("Prove(y, 'px')— o).
(b) Since — Provr € PR, we similarly have
S+ 1 Provy(y, 'ex')— Prr("—1 Prove(y, 'ex'))
— Prr("Prove(y, @i ') — @x').
Combining (a) and (b) yields the lemma. [

To complete the proof of Theorem 4.1.5, let ¢ be given and observe

SHVx [Pre("px!)— px] < Vxy [Prove(y, 'ox)— ¢x].



848 SMORYNSKI/ THE INCOMPLETENESS THEOREMS [cH. D.1, §4

But the right-hand side of this equivalence is derivable in S + RFN(T) by
Lemma 4.1.6. 0

Before proceeding further, it is amusing to note the following provable
instance of reflection:

(*) St3y Pre("Prov(y, '¢'))) > 3y Prove(y,'¢"),

i.e. SFy Prr("Provx(y,'¢'))— Prr("@'). (*) follows immediately from
Lemma 4.1.6 and condition D3 and we leave its derivation to the reader.
By Theorem 4.1.4 and the Second Incompleteness Theorem, the variable y
on the right side of (*¥) cannot in general denote the same code for a
derivation as the y on the left. We can also see this by appeal to the
following free-variable form of Lob’s Theorem:

4.1.7. THEOREM. Let ¢ have only x free. Then
THVYx Pre("ox') > ox] iff THVxex.

We omit the proof.

So far, we have shown that the use of reflection principles allows a
generalization of the incompleteness theorems, that Conr is equivalent to a
restriction of the Reflection schemata, and that RFN(T) is as general as
RFN/'(T) and further schemata with additional variables. We ought to ask
ourselves the simple question: How much of an improvement is Reflection
over Consistency? Obviously, consistency does not imply soundness —e.g.
T =PA+ 1 Cong, is consistent but not sound as —Congs is a false
theorem of T. (For this same T, however, T+ Con:+FRFN(T) — for
T+—Conr.) A first step is given by the following simple lemma:

4.1.8. LEMMA. Let ¢ be closed. Then
(i) T+ ¢ + RIn(T) - REn(T + ¢),
(ii) T+ ¢ + RFEN(T)F RFN(T + ¢).

Proor. Observe that for any ¢, we have the following over S:
StPrr, ('Y e Prr(e —¢'). O
4.1.9. CorOLLARY. Let ¢ be closed.
(i) Let T+ ¢ be consistent. Then T + ¢ ¥ Rfn(T).

(ii) Let T’ be a consistent finite extension of T. Then T'¥ Rin(T).
(iii) If T + Cony is consistent, then T + Cony ¥ Rin(T).



cH. D.1, §4] PROPERTIES OTHER THAN CONSISTENCY 849
*4.1*. Hierarchy considerations

By Corollary 4.1.9, neither Rfn(T) nor RFN(T) is implied by any finite
set of axioms consistent with T. We devote the rest of this subsection to
discussing an often useful improvement of this in the uniform case. For this
purpose, we must use the notions and notations of the Formula Hierarchy
(discussed in 3.5). This material is less detailed and may be omitted on first
reading.

Let RFNy, (T) denote the restriction of the scheme RFN(T) to formulae
in Il,. Similarly, one defines RFNjg, (T), RFEN{,(T), and RFN;,(T). A first
result is:

4.1.10. THEOREM. Qver S, the following are equivalent (k =0):
(i) RFN3(T),
(ii) RFNp,.,(T),
(i.a) RFNgz,(T),
(ii.a) RFN, . (T).

The equivalences (x) <> (x.a) follow by taking a closer look at the proof of
Theorem 4.1.5. The implications (ii)— (i), (ii.a)— (i.a) are trivial as 3, C
II..,. For the converses, one uses provable closure under numerical
substitution: S Prr('Vx ox')— Vx Prr('ox').

In terms of the Hierarchy, Lemma 4.1.8 can be restated:

4.1.11. THEOREM. Let ¢ € Il be closed and let n = k. Then
(i) S+ ¢ + Ring, (T) - Rfns, (T+ ¢),
(i) S+ ¢ + RFN;, (T)F RFN;, (T + ¢).

This is seen by observing that, if ¢ €2, then ¢ > ¢ €EZ..

Using a Il truth definition for II, formulae, it can be shown that
RFNy,(T) can be written as a single I, sentence. Bearing this in mind, we
have:

4.1.12. CoroLLARY. (i) T+ RFNs, . (T)F RFNg,, (T + RFNp,. (T)), kK =0.
(ii) T+ RFNp,.(T)+ RFNp, (T + RENy, (T)), k = 1.
(iii) If T + RFNp, (T) is consistent, then

T + RFNp, (T) ¥ Rfns, (T), k =1.

(iii") If T+ Conr is consistent, then



850 SMORYNSKI/THE INCOMPLETENESS THEOREMS [cH. D.1, §4

T + Conr ¥ Rfns (T).

Proor. Parts (i) and (ii) follow from Theorems 4.1.10 and 4.1.11. Parts (iii)

and (iii') are simple applications of the incompleteness theorems in the
forms of Theorems 4.1.2 and 4.1.3. O

By Corollary 4.1.12, RFN is not implied by any (consistent) bounded set
of its instances. The following theorem of Kreisel and Levy improves this
immensely:

4.1.13. EssenTiAL UNBOUNDEDNESS THEOREM. Let n be given. Let U be an
re. theory (not necessarily containing S) in the language of T. If
T+ RFN(U), then no consistent extension of U by a set A of 3., sentences
implies all theorems of T. In partic'ular, T cannot be axiomatized over U by
any set of 2, axioms.

Proor. Let Tr, be a X, truth definition for 3, formulae. Define ¢ by
S b < Vx [Tr, (x) > = Pro(imp(x, "¢ ))].

Intuitively, ¢ asserts its unprovability from any true 3, sentence.
(a) Since T +RFN(U), it follows that

T+FVx [Pry(imp(x, '¢"))— (Tr.(x)— ¢)].
Thus
Ty —>Vx [ Tr.(x) v 1 Pry(imp(x, '¢"))]

— Vx [Tr.(x)— 1 Pry(imp(x, '¢'))] = ¢.

Thus T+ .

(b) Suppose U+ A4 extends T; A CZ.. Then U+ A +¢. We now show
that this implies the inconsistency of U+ A: Since U + 4 | ¢, it follows that
U+ X+ ¢ for some finite X C A. Let ¢ = A X. Then Ut ¢ — . But this
implies

(@) T+Pro('o — y').

Since T+ ¢,

(ii) THPry('e = ¢)— 1 Tr. (‘o).
But ¢ €2, and

(iii) Tte oTr.("¢"),

and (i)-(iii) yield T+—. O



cH. D.1, §4] PROPERTIES OTHER THAN CONSISTENCY 851

The Essential Unboundedness Theorem is a useful tool for proving
unboundedness theorems — results of the form: Axiomatizing T, over T,
requires arbitrarily complicated formulae. The most basic example is that
in which T,=PC:

4.1.14. DeriNiTiON. T is said to be reflexive if TFRFN(PC), where PC
denotes the predicate calculus (as formulated in the language of T).

We remark that, by Lemma 4.1.8, if T is reflexive, T +F RFN(U) for all
finite subsystems U of T. In particular, T+ Cony for such U.

4.1.15. RErLEXIVENESS THEOREM. PA and ZF are reflexive.

The usual proof of this theorem is too long to be given here. For ZF, we
can give the following simple proof: By formalized induction on the length
of a derivation,

ZF +Vx [Prec("px')— Va (Trans(a) A x € a — ¢“@x))],

where ¢ “ denotes the relativization of ¢ to a and Trans(a) asserts that a
is transitive. By the set-theoretic reflection principle,

ZF+Vx [ ox— 3a [Trans(a) A x € a A 71 “x]],
whence
ZF FVx [Prec('ox!)— ox].

As corollaries, we see that (i) the induction scheme of PA is notimplied
by any bounded set of its instances. and (ii) one cannot bound all the
schemata of ZF.

*4.2. w-consistency

The concept of w-consistency was introduced by Gaodel for the purpose
of stating the hypotheses needed for the First Incompleteness Theorem.
The w-consistency of T is neither the optimal nor the most intuitive
condition sufficient for the theorem. Nonetheless, its use here is so firmly
entrenched in the literature that we are obligated to comment on it.

Informally, w-consistency is the property that holds of T if the following
two conditions are not simultaneously satisfied for any ¢:

(i) TFHIxex;

(i) TF—¢0,—¢1,....

Formally, w-consistency can be represented (in varying degrees of general-
ity) by (modifications of) the following scheme:



852 SMORYNSKI/THE INCOMPLETENESS THEOREMS [cH. D.1, §4

4.2.1.
Prr("3x px")— Ix 11 Pre ("1 91 ).

Let 1-Conr denote the restriction of 4.2.1 to ¢ € PR possessing only one
free variable.

4.2.2. FORMALIZED FIRST INCOMPLETENESS THEOREM. Let ¢ be —1Prr('o').
Then:

(i) T+ Congt+—1Pr('e)),

(ii) T+ 1-Cong 1 Prr("— o).

Proor. Part (i) was shown in the course of the proof of the Second
Incompleteness Theorem.
For part (ii), let ¢ = Vxyx, ¢ € PR. Then

T+ 1-Cons FPre("m@')— 3x — Pro("¢x ) — Ix — ¢,

by demonstrable 3,-completeness (3.5.4). Thus,

(*) T+ 1-Con FPr('— )= 0
(%) — PrT([tp’).
But 1-Con; yields Conr since it asserts the unprovability of something.
Thus, by (i),

T+ 1-Conr - —1Pre(o'),

which, with (**), yields (ii)). O

Probably the most important thing to notice about the above proof is
that 1-Conr was used only to derive (*): Prr("m¢')— —1¢, for closed

¢ €I, — i.e., 1-Cony was used only to derive Rfns(T). Conversely,
Rfns,(T) can be used to derive 1-Conr:

S + Rfng (T) F Prr("Ax ox')—> Ix o,
— 3Ax O Pr("px’),

since 71 @x < Pry('— ¢x') by demonstrable PR-completeness and the fact
that Rfng,(T) implies Cony.

By the preceding paragraph, Rfns (T) and 1-Conr are equivalent. Since
the statement 4.2.1 of w-consistency is easily seen to be ;, Corollary 4.1.12
shows that we cannot expect such behavior to hold for more than some
very special cases.



cH. D.1, §4] PROPERTIES OTHER THAN CONSISTENCY 853

4.2.3. DeriNniTION. We define the following formal schemata representing
w-consistency:

Local w-consistency

w-Conr: Prr(Qxpx')— 3x 1 Pre("m i), ¢ has only x free,
Uniform w-consistency

@-CONp: Vy [Pre("Fx oxy")— 3x —1Prr("—19xy')], ¢ has only x,y free,
Global w-consistency

w-CONf: Vo [Prr(Fxeox")— Ix 11 Pro (" px "),

where Vo indicates quantification over codes of formulae possessing only
one free variable.

We hasten to emphasize the fact that, unlike the case with reflection
principles, we have here a global representation of the given concept as
well as the local and uniform ones. The reason is simply that we only use ¢
in 4.2.1 in the form of a code and not, as with reflection, as a subformula of
some larger formula. Thus, we can quantify over all ¢ in the present
context.

It is not hard to see that w-CONfF w-CON¢t w-Conr over S. Local
schemata are usually difficult to deal with and so we ignore w-Conr. Thus,
we are interested in w-CONY and w-CON; — and in their hierarchical
restrictions:

4.2.4. DeriNITION. Let kK =1. The restriction of w-CONy to formulae
¢ €2, is termed k-CON; and the corresponding informal concept is
called k-consistency.

Observe that, via a 3, truth definition for X, formulae, the correspond-
ing restriction of w-CON¥ (V¢ » Vo € 3, ) is equivalent to (k + 1)-CONy.
Further, as in Theorem 4.1.10, k-CONy is equivalent to the corresponding
restriction for ¢ € Il,.

The following theorem characterizes these notions in terms of the more
intuitive reflection principles:

4.2.5. THEOREM. Qver S, we have
i k-CON < RFNp, . (T), (k =1,2)
ii k-CONy < RFNp(T+ RFNp, (T)), (k =2)



854 SMORYNSKI/THE INCOMPLETENESS THEOREMS [cH. D.1, §4
iii w-CONg & RFN,, (T + RFN(T)),
iii’ w-CON§ & RFN,,(T + w-CONy).

The proof is rather long and we omit it. Some related results are covered
in Chapter D.2.

[As an aside, we would like to mention the following: The formula
hierarchy can, as an obvious use, be applied to obtain quantitative
refinements- of various results. See e.g. 4.1°. Theorem 4.2.5 gives an
application of a different order: The explication of w-consistency as a
Reflection Principle (iii) presupposes an understanding of the expression
“II5”. I.e. one must know something about the formula hierarchy even to
state the relation between w-consistency and soundness.]

4.3. Completeness properties
Somewhat loosely, the First Incompleteness Theorem asserts that consis-
tent strong formal theories are incomplete. Nonetheless, there are consis-
tent schemata asserting completeness. We (need) consider only the local
versions:
Syntactic completeness
SynComps: Prr("e") v Pre('— '), closed o.
Semantic completeness
SemCompy: ¢ = Prr('@'), closed ¢.
w-completeness
w-Compr: Vx Pre('ex')— Prr('Vxox'), ¢ has only x free.

Without further ado, we state:

4.3.1. THEOREM. The following are equivalent over S:
(i) — Cony;
(i) SynCompr;
(iii) SemCompr;
(iv) w-Compr.

Proor. Obviously (i)— (ii), (iii), (iv).
(ii)— (i) We appeal to a Formalized Rosser’s Theorem: If ¢ is
= Pri(¢"), then

S+ ConrF 1 Prr(e"), 7 Pre("— o),



cH. D.1. §4] PROPERTIES OTHER THAN CONSISTENCY 855

whence
S + SynCompr + — Conr.

(iii)— (i) Here, one takes ¢ = Conr and applies the Second Incomplete-
ness Theorem. We omit the details in favor of the following case:
(iv)— (i) Let ¢x = —1Provy(x,'A'). By Lemma 4.1.6,

SFVx Prr('— Provy(x, 'AT)),
whence
S + w-Compr + Pre('Vx 1 Prove(x, 'A7)")

FPre(Pre((AT) > A1)
FPre(AY),
by the Formalized L6b’s Theorem: S F Pr('Prr("@')— )= Pr('e"). O

*4.3%. Kent’s Theorem

By Theorem 4.3.1(iii), the scheme ¢ — Prr(¢'), is equivalent to —1 Cony
and, hence, is not in general derivable — not even when restricted to
¢ €11, (namely ¢ = Conr). We also know, from 3.5.4, that the subscheme
ox = Pre("px'), ¢ €3, is derivable. The following Theorem of Kent
shows that the situation is even more complicated yet:

4.3.2. THEOREM. For any n, there is a sentence ¢ such that
(i) Ste = Prs('o');
(i) For no ¢ €3, does S+ ¢ < U.

Proor. First, let y be such that for no ¢ € 3, consistent with S do we have
(*) S+yty or S+yk—y.

To construct such a y, we take a hint from the Essential Unboundedness
Theorem and let

X ©Vx [Tr,(x)—> 1 Prs'(imp(x, ' ))],

where Tr, is a 3, truth definition for 2, formulae. Mimicking the proof of
Rosser’s Theorem, we see that () fails for all ¢ € %, consistent with S.

Now let ¢ be x APrs(A"). Clearly (i) holds. To see (ii), suppose
Sto < for y €3,. Ther St — ¢, so Sk, since otherwise (*) is
true. Since m ¢ is T (x APrs('A")), SF—1 ¢, so SFPrs('A)— —x, con-
tradicting — () since S+ Prs('A') is consistent. [J



856 SMORYNSKI/THE INCOMPLETENESS THEOREMS [cH. D.1, §5
5. Two applications
5.1. A fix-point theorem
By diagonalization, one easily finds sentences ¢, y such that
Sty Pr('y"), SkyxyoPr('y").

The proof of the Second Incompleteness Theorem and Lob’s Theorem,
respectively, yielded the interesting facts that ¢ and x were not only
unique, but explicitly definable:

S+ ¢ « Conre 1Pr('A)),
Sty ot,
where t = truth. An older proof of Lob’s Theorem uses the fix-point,
0 < (Pr+("6")— ¢),
for any given ¢. A little algebra soon reveals
8 < (Prr("e)— ),

whence 6 too is explicitly definable — this time from the remaining
variable. These turn out not to be isolated examples, but rather instances of
a general result.

To obtain a simple statement of this result, we consider a propositional
language with propositional variables p, q,r,...; the usual connectives, A,
v, T, —; propositional constants t, f for truth and falsity; and a modal
operator O to stand for provability. This will be an interpreted system
rather than a deductive one: Given an assignment, p » ¢,, of sentences to
propositional variables, we obtain a translation ¢, for each formula a of
the propositional language:

Pacb=Pa®Pp  O= A,V,>;
Poa="10a;  ¢o. = Prr(ed).

If a(py,...,p.) is a formula of the propositional language and we assign ¢
to p, then we write a(¢,..., ¥.) fOr @ag....p, i-€. for the result of
substituting each ¢, for the corresponding p; and Prr for O.

5.1.1. Tueorem (De Jongh’s Fix-Point Theorem'). Let a(p, q) be such that
p occurs only inside the scope of 0. Then, for some B(q) and all sentences
Y1, ..., Y, of the language of T,

' A proof of Theorem 5.1.1 has now been published in SAMBIN [0000].



cH. D.1, §5] TWO APPLICATIONS 857

SEB(¥) < a(B(¥), ¥).

Further, B({) is, up to provable equivalence, the only fix-point of a.

The proof of this is too complicated to be included here. However, we
can prove the following special case:

5.1.2. THEOREM. Let a(p,q)= a'(0y(p,q), q), where in a'(x,y) the vari-
able x does not occur inside the scope of a O. Then the fix-points of a are
determined parametrically by

B(q)=a'[Ov(a'(t,q).9). 9]

Proor. Although we are interested in establishing the result with sen-
tences ¢ replacing the variables ¢, the propositional notation is more
convenient. An expression 8(q) <> 8'(q) is understood accordingly.

Since the Diagonalization Lemma holds, we may assume that we have a
p such that Fp < a(p, q). It will follow from this that +p < B(q).

5.1.3. LEMMA. Forall r,t,8, ret, O(reot)Fé(r)e 8(1).

This follows from the derivability conditions by induction on the length
of 6. We omit the proof.
To prove Theorem 5.1.2, we first show:

(%) FOy(p,q)<Oy(a't, q),q).

By the fix-point assumption, Fp < a'(0v(p, q),q). Thus, since Ovy(p, q)
does not occur inside the scope of O in a’,

(*+) Oy(p,@)FOY(p,q) ot
Fa'(Oy,q)<a't,q)Fp < a'(t,q).

The derivability conditions yield

(%) Ov(p.q)FO0Y(p, @) O < a'(t, 9)).

Applying the lemma to (**), (***), we immediately have

Oy(p,q)FOy(a'(t, q),9),

i.e. half of (x).
For the converse, assume Oy (p,q) A 1 y(p, q). Then

Oy(.q)ry(p,q)Fy(a'(t.q),q),



858 SMORYNSKI/THE INCOMPLETENESS THEOREMS [cH. D.1, §5
by the same reasoning as above. Contraposition yields

y(a't q),9) FOy (p,9)— v(p, q),
whence

Ov(a't. 9),9)—>0@Y(p.9)—> v(p.4)—>0v(p. 9),
by the Formalized L&b’s Theorem,
StPr("Pre("@')— ¢') > Prr(f").
This completes the proof of (*).
To conclude the proof, observe
B(g)=a'[Oy(a't,q),q), 9] < a'(Oy(p, q),q) by (*)
©p,

the latter'by choice of p. O

5.1.4. ExampLE. We list: (i) a(p,q), () a'(p,q), (i) y(p,q), (@v)
Ov(a'(t,q),9), (v) B(q), and (vi) a final simplification of (v):

(@) (®) (c) (d)
@ —0p Op Op—gq O(p—4q)
(i) -p P p—q p
(iii) p P p p—q
(iv) Ot Ot O@t—gq) Ot—q)
v) =0t Ot O—q)—q O@®—q)
(vi) =0t t Ogq—q Ogq

5.2. Conservation results

In this section, we present some conservation results of Kreisel.

Recall that Hilbert’s Conservation Program called for a proof that the
use of ideal statements and abstract reasoning led to no new real theorems.
While the incompleteness theorems showed that this is in general impossi-
ble, they do not rule out the possibility of success in special cases. In fact,
we will even use the Second Incompleteness Theorem in establishing one
conservation result

First, we present the main result:

5.2.1. ConseErRVATION THEOREM. Let ¢ €11,. Then TF¢ = S+ Con:t ¢.

Proor. Let ¢ €11, and suppose T+ ¢. D1 yields S+ Prr("¢'). But Cony is
equivalent to RFNp,(T) over S by Theorem 4.1.4, whence S + Cont t . [



cH. D.1, §5] TWO APPLICATIONS 859
The next two results are corollaries:
5.2.2. THEOREM. Let ¢ €II,.'Then T+ 1 Conrto > Tk .
ProOF.
T+ Conrk¢ = T+ Conrimcons ¢, by Theorem 5.2.1
: T + COl’lT + @,
by the Formalized Second Incompleteness Theorem. But we have

T+ Contt o, T+ —Conrt o,
whence T+, O

5.2.3. THEOREM. Let T, T' contain S and let
(*) T+Vx [Provr(x, '¢')— Prov+(tx, 'y)]

for some primitive recursive term t. Then St+Prx("e')— Pr:("y").

Proor. By the Conservation Theorem,
S + Cons b (*) F 1 Pre("')— = Pre(To ),
by contraposition. Now absorb Conr into —Prr('¢') and contrapose

again. [

5.2.4. CoroLLARY (Relative Consistency Theorem). Let T, T' contain S
and let

S+Vx [Provr(x, 'A")— Provy(tx, 'A")]
for some primitive recursive term t. Then SF Cony— Cony.

The corollary is worth commenting on. By the Second Incompleteness
Theorem, one cannot prove consistency of strong theories within weak
theories. Sometimes, the consistency of a strong theory is genuinely in
doubt and one can give a relative consistency result, e.g.

(**) Congzg— Conzg+—cH.

A throwback to Hilbert’s Consistency Program is the demand that the
proof of (**) be carried out within as weak a system as possible. Epis-
temologically, there is no need to give a proof of (**) in, say, PRA: For, the
value of (**) depends entirely on the acceptance of ZF and one might as



860 SMORYNSKI/THE INCOMPLETENESS THEOREMS [cH. D.1, §6

well prove (**) in the latter theory — a technically easier undertaking.
However, we can avoid philosophical bickering; for, by Corollary 5.2.4, if
this is done at all nicely, it automatically follows that (**) can be proven in
the weaker theory — namely PRA. Thus, there is nothing to argue about
here. ‘

In the last paragraph, we pointed out how one conservation result caused
a potential philosophical problem to vanish. Usually, the value of conserva-
tion results is that they allow one to use stronger techniques to shorten
proofs and conserve one’s energy. We refer the reader to Chapter D.3 for
quantitative information.

*6. The formalized completeness theorem

There are several possible advanced topics that one could discuss. The
close relation between induction principles and reflection principles (often
bearing the misnomer, ‘“‘consistency proofs”) is discussed in Chapter D.2.
One could discuss efforts to complete a formally incomplete theory by the
iterated addition of reflection principles. Another topic concerns proof-
theoretic applications of the reflection principles.

We shall discuss the formalized completeness theorem and use it to give
model-theoretic proofs of the incompleteness theorems.

In this section, we set S = PA.

*6.1. The Hilbert-Bernays Completeness Theorem

Formalizing the Henkin completeness proof within PA yields:

6.1.1. HiLBERT-BERNAYS COMPLETENESS THEOREM. Let U have a primitive
recursive set of axioms. There is a A, set of formulae, Try, such that in
PA + Cony one can prove that this set defines a model of U:

PA + Cony+ Vx (Pry(x)— Trum (x)).

Let us explain this: A formula ¢ is said to be A, if it can be written both
as a 2, and a II, formula. Theorem 6.1.1 asserts that, modulo Cony, one
can prove in PA the existence of a model of U whose truth definition is A..

The meaning of this is best understood by a description of the proof,
which is just an arithmetization of the set-theoretic one: One adds to the
language of U an infinite primitive recursive set of new constants co, ci, . . .,
and adds the axiom



cH. D.1, §6] THE FORMALIZED COMPLETENESS THEOREM 861
(%) Ixpx = @ (cre)

for each formula ¢. One then enumerates all sentences o, @1, ... of this
augmented language and defines a complete theory by starting with U and
adding, at step n, ¢, or — ¢, — according to whether ¢, is consistent with
what has been chosen before or not. The construction is readily described
within PA. Assuming Cony, one can also prove that the construction never
terminates. The resulting set of sentences forms a complete theory which,
by virtue of the axioms (*), forms a model of U. Inspection shows that the
truth definition of the model is A..

*6.2. The incompleteness theorems

Scott was the first to observe that one can give a model-theoretic proof of
the First Incompleteness Theorem:

6.2.1. FirsT INCOMPLETENESs THEOREM. There is a sentence ¢ such that
(i) PA¥ ¢ and (ii) PA¥ T o.

ProoF. Assume PA is complete. Then, since PA is true, PA F Congs and we
can apply Theorem 6.1.1 to obtain a formula Try which gives a truth
definition for a model of PA. Choose ¢ by

PA+g &1 Tru('el).

We claim PA ¥ ¢, PA ¥ — ¢. For if PA+ ¢, then PAFTry ("¢') so PAF— .
Similarly, PAF—1¢ implies PAF . [J

We shall discuss this proof a little later. First, we wish to prove the
Second Incompleteness Theorem. For this, we need some notation:

6.2.2. DeriniTION. Let I, N be models of PA. If IN is definable in N (even
in the weak sense that the atomic relations of I are N-definable), we write
M<aN.

The Hilbert-Bernays Completeness Theorem yields immediately the
fact: If N k=PA + Cong,a, then there is an I such that M <, N.

The usefulness of this notion is given by the following.

6.2.3. LemMMAa. Let I, N be models of PA, M <4N. Then WM is definably an
end-extension of N — i.e. there is a unique N-definable isomorphic
embedding of N into M as an initial segment of M.



862 SMORYNSKI/THE INCOMPLETENESS THEOREMS [cH. D.1, §6

Proor. The proof is straightforward: O obviously maps onto Ox. Extend
the map, say F, by

F(S»x)= Sw(Fx),

where S denotes the successor functions of the models. The recursion
equations in 2N and induction in N verify that F is an isomorphism of N
onto an initial segment of M. [

Using this lemma, we may present Kreisel’s proof of the following.
6.2.4. SECOND INCOMPLETENESS THEOREM. PA ¥ Conga.

PrROOF. Let ¢, ¢1,... be an enumeration of sentences of the language
described in the proof of 6.1.1. That proof can be viewed as an attempt to
choose an infinite consistent path through the following tree:

/ N\ /\

¢ 2!

AVANVAVAN

ez P2 2 ¢z P2 @2

.

We may assume for definiteness that the construction proceeds by taking
the leftmost consistent path. Choose ¢ such that PAF ¢ & 1 Trw("e"), for
the truth definition, Trs, of the model constructed. Let ¢ = ¢, in the
enumeration. The tree, as defined to the ne-th level, is absolute. L.e. it is the
same in every model. (Note: This is not true for the infinite tree simply
because any non-standard model IR will encode a level for on for
non-standard integers N. But the finite trees are fixed.)

Assume PA F Conga. Let = PA. Then there is a model, N, definable in
No: N1 <aNo. But N, is also a model of Cone, and there is an N, < N,
Repeating, we get an infinite sequence,



cH. D.1. §6] THE FORMALIZED COMPLETENESS THEOREM 863
No>a Ny >a Ny >0+,
such that (say)
Nob @y FETT Oy, T Q- .

We now use construction to derive a contradiction. Given N, let
@' ={pim i ..., pmed) denote the portion of the path used in construct-
ing N,., — where o) = ¢, ¢; =1 ¢, and ¢; € {0, 1}. Recall that ¢’ is the
leftmost consistent path (as viewed) in N..

Either using facts that Prea is 2, and that 3, sentences are preserved

under end-extensions, or using D2 and the fact that
PA + Conga F V¢ (Prea("¢) = Tru ("9)),

one sees that ¢'"' can never lie to the left of ¢'. For, once R, says that a
sequence is inconsistent, every resulting %; will also assert its inconsis-
tency. Put differently, larger models can allow new proofs (even of
inconsistencies) e.g. by means of non-standard axioms encoded by infinite
integers; but they cannot erase old proofs.

Thus ¢'*' cannot lie to the left of ¢'. Furthermore, ¢'*' # ¢' since

e 1-e, e, .
npi+l = nol 6> =) "o
@ no @no "0 @ s

Thus the path ¢'*' lies properly to the right of ¢".

But the tree determined by ¢, ..., @, is finite and there are only 2™*'
different paths through this tree. This contradicts the assumption
PAt+Conps by which we obtained an infinite sequence of paths:
o e',.... O

*6.3. Comments

With Theorems 6.2.1 and 6.2.4, we have gone full circle: We have gotten
back to the results with which we began this chapter. The present proofs
differ somewhat from the originals and it is worth making a few compari-
sons.

Let us first comment on the forms of the independent sentences given by
the two proofs of the First Incompleteness Theorem. “The’ sentence
which asserts its own unprovability is

(i) unique up to provable equivalence;

(ii) I, and hence true.

“The” sentence asserting its falsity in the model constructed is
(i) not unique — for, if ¢ &1 Try ('¢'), then

e Trm(mel);



864 SMORYNSKI/THE INCOMPLETENESS THEOREMS

(ii"y A; and, by (i’), there is no obvious way of deciding its truth or
falsity.

(ii') can be gotten around as follows: One of ¢, ¢ is true. Let
Jx Vyyxy be the 3, form of the true statement. Then, for some n,
x = Vy iy is true. But PA ¥ x as one would then have PAF3x Vy ¢xy.
But PA ¥ — x since x is true.

The model-theoretic proof of the First Incompleteness Theorem given
here is similar to the classical one — for, once one assumes completeness,
Try is the same as Prea. The model-theoretic proof of the Second
Incompleteness Theorem differs radically from the classical one and we
note some differences in the sort of information they yield:

(i) The classical proof readily vyields the formalized version,
PA F Congs — Conpa+—conea- Further, it applies directly to weaker theories
like PRA.

(ii) While the classical proof yields the existence of some model in which
Cong, fails, the model-theoretic one shows that, for any presentation of the
Henkin construction (as given by the encoding, the enumeration
©o, 1, - - -, €tC.), there is a number m such that, for any model N of PA, the
sequence

(*) m>dml>d"'y

determined by the given presentation, must stop after fewer than m steps
with a model in which Cong, is false. (Of course, by the classical proof,
there is a presentation of the Henkin construction with a very short
sequence (*) — simply let ¢, = —1 Conea. The present proof works for all
enumerations o, ... .)

References

The following is a very biased selection of the many papers on the topic
of this chapter. It includes some papers whose contents were not discussed

FEFERMAN, S.
[1962] Transfinite recursive progressions of axiomatic theories, J. Symbolic Logic, 27,
259-316.
GODEL, K.
[1931] Uber formal unentscheidbare Sitze der Principia Mathematica und verwandter
Systeme, I, Monatsh. Math. Phys., 38, 173-198.
HASENJAGER, G.
[1953] Eine Bemerkung zu Henkin’s Beweis fiir die Vollstdndigkeit des Pridikatenkalkiils
der ersten Stufe, J. Symbolic Logic, 18, 42-48.



REFERENCES 865

HiLBERT, D. and P. BERNAYS
[1970] Grundlagen der Mathematik, 1 (Springer, Berlin, 2nd ed.).
JErosLow, R.G.
[1973] Redundancies in the Hilbert-Bernays derivability conditions for Godel’s second
incompleteness theorem, J. Symbolic Logic, 38, 359-367.
KEenNT, C.F.
[1973] The relation of A to Prov'A' in the Lindenbaum sentence algebra, J. Symbolic
Logic, 38, 295-298.
KREISEL, G. and A. LEVY
[1968] Reflection principles and their use for establishing the complexity of axiomatic
systems, Z. Math. Logik Grundlagen Math., 14, 97-142.
KREISEL, G. and G. TAKEUTI
[1974] Formally self-referential propositions in cut-free classical analysis and related
systems, Dissertationes Math., 118, 1-50.
LoB, M.H.
[1955] Solution of a problem of Leon Henkin. J. Symbolic Logic, 20, 115-118.
MESCHKOWSKI, H.
[1973] Hundert Jahre Mengenlehre (Deutscher Taschenbuch Verlag, Miinchen).
REeID, C.
[1970] Hilbert (Springer, Berlin).
ROSSER, J.B.
[1936] Extensions of some theorems of Godel and Church, J. Symbolic Logic, 1, 87-91.
SAMBIN, G.
[0000] An effective fixed-point theorem in intuitionistic diagonalizable algebras, Studia
Logica, to appear.
SMORYNsKI, C.
[0000] w-consistency and reflection, in: Proceedings of the 1975 Logic Colloquium at
Clermont-Ferrand, to appear.
SoLovay, R.
[1976] Provability interpretations of modal logic, Isr. J. Math., 25, 287-304.



