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Finite Model Theory

This talk is motivated by applications of logic in computer science, in
particular to computational complexity and algorithmic graph theory.

Finite Model Theory. We are interested in definability and model-checking in
classes of finite structures.

Finite structures:
databases, transition systems, finite graphs as models in algorithms, ...

Classes of structures:

• We are interested in uniform definability in classes of structures,
e.g. is a query definable within the class of all databases, etc.

• Similarly, we will study the problem of evaluating a formula within a
class of structures, e.g. the class of all databases, the class of all
finte graphs, etc.

Proviso. All structures in this talk will be finite (unless said otherwise)
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Model-Checking
In this talk we are primarily interested in evaluating formulas of a logic L
in classes C of finite structures.

The Model-Checking ProblemMC(L, C):

Given: Finite structure A := (A, σ) ∈ C
Formula ϕ ∈ L

Problem: Decide A |= ϕ?

Note. In this talk we will only consider model-checking for formulas
without free variables.

We write MC(L) if C is the class of all structures over some signature.

Applications.
Verification. Model-checking is widely studied in computer-aided

verification, where mostly temporal logics are used.

Databases. Efficient evaluation of formulas/database queries.

Complexity Theory. Formulas describe computational problems.
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A Connection to Complexity Theory

Many standard computational problems on graphs are NP-complete, e.g.

• Dominating Set (find a min. set of vertices neighbours to all others)

• 3-Colourability (3-colour a graph without monochromatic edges)

• Hamiltonian path (find a path containing every vertex exactly once)

Study classes of graphs (planar graphs, graphs of bounded genus, ...) on
which some of these problems become tractable.

Logical approach. Instead of designing algorithms for each problem
individually, formulate the problems in a logical language and design
model-checking algorithms on these classes of graphs.
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Model-Checking

Monadic Second-Order Logic.
First-Order Logic by quantification over sets of elements.

Formula building rules.

• ∃Xϕ, ∀Xϕ: there is a/for all sets of elements ϕ holds

• ∃xϕ, ∀xϕ: there is an/for all elements ϕ holds

• Boolean connectives and atomic formulas

Example. In the language σ := {E} of graphs G := (V ,E) we can write

∃C1∃C2∃C3
︸ ︷︷ ︸

there are sets

C1, C2, C3

(

∀x
3∨

i=1

Ci(x)

︸ ︷︷ ︸

ev. node has a col.

∧ ∀x∀y(E(x , y) →
3∧

i=1

¬(Ci(x) ∧ Ci(y)))

︸ ︷︷ ︸

endpoints of edges have different colours

)

to say that a graph is 3-colourable.
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Monadic Second-Order Logic on Graphs

There is a subtlety in how we encode graphs as logical structures.

Standard encoding.Signature σg := {E}.
A graph G := (V ,E) is encoded as σg-structure G := (V ,E)

Incidence encoding.Signature σi := {V ,E , inc}.
A graph G := (V ,E) is encoded as σi -structure G := (V ∪ E , σ) with

• VG := V (G), EG := E(G) and

• (x ,e) ∈ incG if the vertex x ∈ V (G) is incident to edge e ∈ E(G)

Over the incidence encoding we can say in MSO that a graph has a
Hamiltonian cycle, which we cannot say in the standard encoding.

∃P ⊆ E
(
P forms a path and every vertex occurs exactly once on P

)

We will refer to MSO as MSO2 whenever we mean the incidence
encoding and to MSO if we use the standard encoding.
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Complexity of Model-Checking Problems
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Complexity of Monadic Second-Order Model-Checking

Given: Finite structure A := (A, σ)
MSO-formula ϕ

Problem: Decide A |= ϕ

Naïve algorithm: Evaluation following the structure of the formula

• Existential second-order quantification: ϕ := ∃Xψ

for all U ⊆ A check whether (A,X 7→ U) |= ψ

• Existential first-order quantification: ϕ := ∃xψ

for all a ∈ A check whether (A, x 7→ a)ψ

• Boolean connectives ∧,∨,¬: easy

• Atomic formulae: direct look up in the structure

Running time and space:

Time: exponential in |ϕ| and |A|

Space: linear in both |ϕ| and |A|
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Complexity of Monadic Second-Order Model-Checking

Theorem: Monadic Second-Order Model-Checking MC(MSO) is
PSPACE-complete.

This is even true for MC(MSO,A) for a fixed two element structure A.

Proof. Reduction from satisfiability for Quantified Boolean Formulae

Data complexity.
Study the complexity of evaluating a fixed formula in input structures.

There are fixed formulas in MSO for which model-checking is NP-hard.
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Complexity of First-Order Model-Checking

Naïve algorithm gives running time and space:

time: O(l · nm) l : length of ϕ m: quantifier rank of ϕ
space: O(m · log n) n: size of A

Theorem: First-Order Model-Checking MC(FO) is PSPACE-complete.

This is even true for MC(FO,A) for a fixed two element structure A.

Proof. Reduction from satisfiability for Quantified Boolean Formulae

Theorem.For any fixed ϕ, (data complexity)

MC(ϕ,Str) ∈ AC0 ⊆ LOGSPACE ⊆ PTIME

However:Running time O(l · nm)
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Complexity of MSO revisited

Theorem: Monadic Second-Order Model-Checking MC(MSO) is
PSPACE-complete.

There are fixed formulas in MSO for which model-checking is NP-hard.

On the other hand. For every fixed ϕ ∈ MSO, deciding whether ϕ is true in a
finite tree given as input can be done in linear time.

More precisely, MC(MSO, TREE) can be solved in time

f (|ϕ|) · |T |,

where |T | is the size of the tree and f is a computable function.

Hence, by restricting the class of admissible inputs we can achieve much
better model-checking results.
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Parametrized Complexity

Fixed-Parameter tractability. A model-checking problem is fixed-parameter
tractable (fpt) if it can be solved in time

f (|ϕ|) · |A|c ,

where c is a constant and f is a computable function.

Similarly, problems such as Dominating Set are fixed-parameter tractable
on a class C of graphs if on input G ∈ C and k it can be decided in time
f (k) · |G|c whether G contains a dominating set of size k .

FPT is the class of all fixed-parameter tractable problems.

Comparable to PTIME in classical complexity.

The rôle of NP is played by a hierarchy of classes W[1], W[2], ...
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Structural Characterisation of Model-Checking Problems

In the terminology of parametrized complexity:

MSO-model-checking is fpt on the class of finite trees.

Question. What are the largest/most general classes of graphs on which
MSO becomes tractable?

And the same question applies to first-order logic.

Research programme.For each of the natural logics L such as FO or MSO,
identify a structural property P of classes C of graphs such that MC(L, C)
is tractable if, and only if, C has the property P

We may not always get an exact characterisation, there may be gaps.

But such a characterisation would give an easy tool to assess whether
MSO-model-checking is tractable on some class.
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Structural Characterisation of Model-Checking Problems

To achieve such a characterisation we need

• upper bounds: tractability of model-checking on specific classes of
graphs.

Such results are known as algorithmic meta-theorems

• lower bounds: results establishing intractability of model-checking
problems if certain structural parameters are not given.
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Structural Characterisation of Model-Checking Problems

To achieve such a characterisation we need

• upper bounds: tractability of model-checking on specific classes of
graphs.

Such results are known as algorithmic meta-theorems

Part I of this tutorial

• lower bounds: results establishing intractability of model-checking
problems if certain structural parameters are not given.

Part II of this tutorial
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Upper Bounds on the Complexity of Model-Checking Problems
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An Overview of Graph Parameters
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The Composition Method
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Feferman-Vaught Style Theorems

Notation:

G: graph v : tuple of vertices

tpMSO(G, v): full MSO-type of v in G (all MSO-formulae true at v )

tpMSO
q (G, v): class of MSO-formulae of quantifier-rank ≤ q true at v

analogously for tpFO and tpFO
q
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Feferman-Vaught Style Theorems

Theorem.Let G,H be graphs

v ∈ V (G) w ∈ V (H)

u ∈ V (G) such that u = V (G) ∩ V (H)

For all q ≥ 0,

tpq(G ∪ H,uvw) is determined by tpq(G,uv) and tpq(uw)

Furthermore, there is an algorithm that computes tpq(G ∪ H,uvw) from
tpq(G,uv) and tpq(uw).
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This suggests a model-checking algorithm on graphs which can
recursively be decomposed into sub-graphs of constant size.
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This suggests a model-checking algorithm on graphs which can
recursively be decomposed into sub-graphs of constant size.

graphs of bounded tree-width
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Tree-Width

The tree-width of a graph measures its similarity to a tree.

A graph has tree-width ≤ k if it can be covered by sub-graphs of size
≤ (k + 1) in a tree-like fashion.
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Tree-Width

Definition:
A tree-decomposition of a graph G is a pair T := (T , (Bt)t∈V T ) where

• T is a (directed) tree

• Bt ⊆ V (G) for all t ∈ V T

such that

1. for every edge {u, v} ∈ E(G) there is t ∈ V (T ) with u, v ∈ Bt

2. for all v ∈ V (G) the set {t : v ∈ Bt} is non-empty and connected.

The width of T is max{|Bt | − 1 : t ∈ V (T )}

The tree-width tw(G) of G is the minimal width of any of its tree-dec.

Definition: A class C has bounded tree-width if there is a constant k ∈ N

such that tw(G) ≤ k for all G ∈ C.
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2. for all v ∈ V (G) the set {t : v ∈ Bt} is non-empty and connected.

The width of T is max{|Bt | − 1 : t ∈ V (T )}

The tree-width tw(G) of G is the minimal width of any of its tree-dec.

Definition: A class C has bounded tree-width if there is a constant k ∈ N

such that tw(G) ≤ k for all G ∈ C.
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Examples

Example 1:Trees/Forests have tree-width 1

Proposition: Acyclic graphs are precisely the graphs of tree-width 1.
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Examples

Example 2:

1 2

3 4

5

6 7 8

9

10 11

1,3,11

1,3,6,11 1,3,4,11

1,6,9,11 1,2,3,4 3,4,7,11

1,5,6,9 6,9,10,11 4,7,8,11
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Courcelle’s Theorem

Theorem: (Courcelle 1990)

For any class C of bounded tree-width

MC(MSO2, C)
Input: Graph G ∈ C, ϕ ∈ MSO2

Parameter: |ϕ|
Problem: Decide G |= ϕ

is fixed-parameter tractable (linear time for each fixed ϕ).

MSO2: tree-width of a graph equals tree-width of its incidence encoding.

Example: 3-COLOURABILITY

∃C1∃C2∃C3
︸ ︷︷ ︸

there are sets

C1, C2, C3

(

∀x
3∨

i=1

Ci(x)

︸ ︷︷ ︸

ev. node has a col.

∧ ∀x∀y(E(x , y) →
3∧

i=1

¬(Ci(x) ∧ Ci(y)))

︸ ︷︷ ︸

endpoints of edges have different colours

)
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First Ingredient: Computing Tree-Decompositions

Theorem: (Arnborg, Corneil, Proskurowski, 1987)

The problem

TREE-WIDTH
Input: Graph G and k ∈ N

Problem: tree-width(G) ≤ k?

is NP-complete.

Theorem: (Bodlaender 1996)
There is an algorithm that, given a graph G constructs a
tree-decomposition of minimal width in time

O(2tw(G)3
|G|).

Hence, if C is a class of graphs of tree-width at most k then for all G ∈ C
we can compute an optimal tree-decomposition in linear time.
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Second Ingredient: Feferman-Vaught Style Theorems

Theorem.Let G,H be graphs

v ∈ V (G) w ∈ V (H)

u ∈ V (G) such that u = V (G) ∩ V (H)

For all q ≥ 0,

tpq(G ∪ H,uvw) is determined by tpq(G,uv) and tpq(uw)

Furthermore, there is an algorithm that computes tpq(G ∪ H,uvw) from
tpq(G,uv) and tpq(uw).
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Courcelle’s Theorem: Algorithm
Given: Graph G of tree-width ≤ k fixed MSO-formula ϕ of q.r. q

1. Compute a tree-decomposition T := (T , (Bt)t∈V T ) of G

2. Compute the MSOq-type tpMSO(Bt) for each leaf t

3. Bottom up, compute tpMSO
q (G[

⋃

t≺s Bs],Bt) for each t ∈ V (T )

MSOq-type of Bt in G[
⋃

t≺s Bs] (graph induced by
⋃

t≺s Bs)

4. Check whether ϕ ∈ tpMSO
q (G,Br ) at the root r of G

1 2

3 4

5

6 7 8

9

10 11
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Courcelle’s Theorem
Theorem: (Courcelle 1990)

For any class C of bounded tree-width

MC(MSO2, C)
Input: Graph G ∈ C, ϕ ∈ MSO

Parameter: |ϕ|
Problem: Decide G |= ϕ

is fixed-parameter tractable (linear time for each fixed ϕ).

What about the parameter dependence?

Theorem: (Frick, Grohe, 01)

1. Unless P=NP, there is no fpt-algorithm for MSO model checking on
trees with elementary parameter dependence.

2. Unless FPT=W[1], there is no fpt-algorithm for FO model checking
on trees with elementary parameter dependence.
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An Overview of Graph Parameters
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The Locality Method for First-Order Logic
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Locality of First-Order Logic

Notation: Let G be a graph e.g. the Gaifman graph of a structure

distG(u, v) : length of the shortest path between u and v

NG
r (v) := {u ∈ V (G) : distG(u, v) ≤ r}

NG
r (v): r -neighbourhood of v in G.

Definition:
A formula ϕ(x) ∈ FO is r -local if for all graphs G and all v ∈ V (G)

G |= ϕ(v) ⇐⇒ G
[
Nr (v)

]
|= ϕ(v).

Hence, truth at v only depends on the vertices around v .
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Gaifman’s Theorem

Theorem: (Gaifman, 1982)
Every first-order sentence ϕ ∈ FO is equivalent to a Boolean combination
of basic local sentences.

Basic local sentence:

ϕ := ∃x1 . . . ∃xm

∧

i 6=j

dist(xi , xj)> 2r ∧
k∧

i=1

ψ(xi).

where ψ is r -local.

Remark: Gaifman’s proof is constructive.

Theorem: (Dawar, Grohe, K., Schweikardt, 07)

For each k ≥ 1 there is ϕk ∈ FO[{E}] of length O(k4) such that every
equivalent sentence in Gaifman-NF has length at least tower(k).

(similar lower bounds for Feferman-Vaught and preservation thms)
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First-Order Logic on Bounded Degree Graphs

Theorem: (Seese, 1996)

Let C be a class of graphs of maximum degree at most d ≥ 1.

MC(FO, C)
Input: Graph G ∈ C, ϕ ∈ FO

Parameter: |ϕ|
Problem: Decide G |= ϕ

is fixed-parameter tractable (linear time fpt algorithm).

Proof. By Gaifman’s theorem it suffices to consider formulae of the form

∃x1 . . . ∃xm

∧

1≤i<j≤m

dist(xi , xj) > 2r ∧
k∧

i=1

ψ(xi)

for some r -local formula ψ(x).
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Proof of Theorem

Suppose

ϕ := ∃x1 . . . ∃xm

∧

1≤i<j≤m

dist(xi , xj) > 2r ∧
m∧

i=1

ψ(xi)

for some r -local formula ψ(x).

Let G be a graph of maximum degree d .

Find m vertices of distance > 2r whose r -neighbourhoods satisfy ψ.
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First Step

Algorithm: First Step

for all v ∈ V (G) O(n)

• compute Nr (v) O(d r ) = O(1)

• test whether Nr (v) |= ψ(v) O(1)
(constant size neighbourhood)

if it does, colour the vertex red

Running time: O(n)
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Second Step: Greedy Approach

Let Q be the set of red vertices.

Algorithm: Second Step

L := ∅

while Q 6= ∅ do
choose v ∈ Q
L := L ∪ {v}
Q := Q \ N2r (v)

od
if |L| ≥ m then accept
else

Assume m = 4

all red vertices are within a 2r -neighbourhood of an element of L

if G
[
N2r (L)

]
|= ∃x1 . . . xm(

∧

i 6=j dist(xi , xj) > 2r ∧
∧

i “xi is red”
)

accept else reject

Running time: O(n)
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First-Order Logic on Bounded Degree Graphs

Theorem: (Seese, 1996)

Let C be a class of graphs of maximum degree at most d ≥ 1.

MC(FO, C)
Input: Graph G ∈ C, ϕ ∈ FO

Parameter: |ϕ|
Problem: Decide G |= ϕ

is fixed-parameter tractable (linear time fpt algorithm).

But wait:

The proof shows much more ...

... for, where did we use bounded degree?
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... for, where did we use bounded degree?
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First Step

Algorithm: First Step

for all v ∈ V (G) O(n)

• compute Nr (v) O(d r ) = O(1)

• test whether Nr (v) |= ψ(v) O(1)
(constant size neighbourhood)

if it does, colour the vertex red

Running time: O(n)
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Second Step: Greedy Approach

Let Q be the set of red vertices.

Algorithm: Second Step

L := ∅

while Q 6= ∅ do
choose v ∈ Q
L := L ∪ {v}
Q := Q \ N2r (v)

od
if |L| ≥ m then accept
else

all red vertices are within a 2r -neighbourhood of an element of L

if G
[
N2r (L)

]
|= ∃x1 . . . xk (

∧

i 6=j dist(xi , xj) > 2r ∧
∧

i “xi is red”
)

accept else reject

Running time: O(n)
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Local Model Checking

Essentially:

• We need to be able to test r -local formulae ψ(x) in
r ′-neighbourhoods

Here: r , r ′ depend on the original formula ϕ and hence are constant

(part of the parameter).
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Local Model Checking

Theorem:Let C be a class of graphs such that the following is fpt:

LOCAL-FO-MC(C)
Input: ϕ ∈ FO, Graph G ∈ C,v1, . . . , vk ∈ V (G), and r ∈ N

Parameter: r + k + |ϕ|
Problem: Decide G

[
NG

r (v1, . . . , vk )] |= ϕ

Then first-order model checking is fixed-parameter tractable on C.

Consequences:For efficient first-order model checking, it suffices if every
neighbourhood in a graph is “well-behaved”.

Not the whole graph needs to have small tree-width, but only its
neighbourhoods.
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Localisation of Graph Invariants
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Graph Invariants

Definition:
A graph invariant is a function f : GRAPHS → N.

A class C has bounded f , if there is a constant k : N such that f (G) ≤ k
for all G ∈ C.

Examples:

• f : G 7→ ∆(G) (max. degree in G)
classes of bounded degree

• f : G 7→ tw(G) (tree-width of G)
classes of bounded tree-width

• f : G 7→ mec(G) (mec(G): minimal order of a clique Km 6� G)
classes excluding a minor

STEPHAN KREUTZER COMPLEXITY OF MODEL-CHECKING PROBLEMS 44/81



INTRODUCTION COMPLEXITY UPPER BOUNDS COMPOSITION LOCALITY LOCALISATION GRIDS GRID-LIKE MINORS LABELLED WEBS

Localisation of Graph Invariants

Definition:
Let f : GRAPHS → N be a graph invariant.

We define its localisation locf : GRAPHS × N → N as

locf (G, r) := max
{

f
(

G
[
Nr (v)

])

: v ∈ V (G)
}

.

A class C of graphs has bounded local f , if there is a computable function
h : N → N such that locf (G, r) ≤ h(r) for all G ∈ C and r ∈ N.

Example: f : G 7→ tw(G) tree-width of graphs

 locf (G, r) := max
{

tw
(

G
[
Nr (v)

])

: v ∈ V (G)
}

Bounded local tree-width
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Bounded Local Tree-Width

Bounded local tree-width:
f : G 7→ tw(G) tree-width of graphs

 locf (G, r) := max
{

tw
(

G
[
Nr (v)

])

: v ∈ V (G)
}

Example: Every class of graphs of bounded degree has bounded local
tree-width.

Example: The class of planar graphs has bounded local tree-width.

Theorem: (Baker)

Every planar graph of diameter r has tree-width at most 3r .
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Localisation of Graph Invariants
Let f : GRAPHS → N be a induced subgraph monotone graph invariant.

Theorem:Let C be a class of graphs such that the following is fpt:

MC(FO, f )
Input: ϕ ∈ FO, Graph G ∈ C

Parameter: |ϕ|+ f (G)
Problem: Decide G |= ϕ

Then first-order model checking is fixed-parameter tractable on C.

Follows immediately from the following theorem proved before.
Theorem:Let C be a class of graphs such that the following is fpt:

LOCAL-FO-MC
Input: ϕ ∈ FO, Graph G ∈ C,v1, . . . , vk ∈ V (G), and r ∈ N

Parameter: r + k + |ϕ|
Problem: Decide G

[
NG

r (v1, . . . , vk )] |= ϕ

Then first-order model checking is fixed-parameter tractable on C.
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Localisation of Graph Invariants

Theorem: First-order model checking is fixed-parameter tractable on

• planar graphs (Frick, Grohe 01)

• graphs of locally bounded tree-width (Frick, Grohe 01)
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An Overview of Graph Parameters
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Localisation of Graph Invariants

Theorem: First-order model checking is fixed-parameter tractable on

• planar graphs (Frick, Grohe 01)

• graphs of locally bounded tree-width (Frick, Grohe 01)

Theorem: (Flum, Grohe 01)
First-order model-checking is fixed-parameter tractable on graph classes
excluding a minor.

Theorem: (Dawar, Grohe, K. 07)
First-order model-checking is fixed-parameter tractable on graph classes
locally excluding a minor.

Theorem: (Dvořák, Kral, Thomas 11)
First-order model-checking is fixed-parameter tractable on graph classes
of locally bounded expansion.
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An Overview of Graph Parameters
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Part II: Lower Bounds
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Lower Bounds for Monadic Second-Order Logic

We would like to show.If a class C of graphs has unbounded tree-width then
MC(MSO2, C) is not fixed-parameter tractable.

Sadly, in this generality this is not true.

Theorem. (Makowsky, Mariño 04)

There are classes C of graphs of unbounded tree-width on which
MC(MSO2, C) is tractable.

But something similar is true.

Unbounded Tree-Width.
We first need to classify the unboundedness of tree-width.
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Classes of Unbounded Tree-Width

Definition. Let f : N → N be a non-decreasing function.
A class C of graphs has f -bounded tree-width if tw(G) ≤ f (|G|) for all
G ∈ C.

Examples.

• In Courcelle’s theorem, f (n) := c is constant.

• f (n) := n is the maximal function that makes sense here.

• We will look at f (n) := logc n for a small constant c > 0.

Theorem by Makowsky, Mariño.

There are classes C of graphs of logarithmic tree-width on which
MC(MSO2, C) is tractable.

What we would like to show.If the tree-width of C is not bounded by logc n, for
small constant c, then MC(MSO, C) is not FPT.
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Classes of Unbounded Tree-Width

What we would like to show.If the tree-width of C is not bounded by logc n, for
small constant c, then MC(MSO, C) is not FPT.

Problem. Any such result would separate PTIME from PSPACE.

For, MC(MSO2) is in PSPACE. Hence, if PSPACE collapses to PTIME then
MSO is fixed-parameter tractable on the class of all graphs.

We will therefore show hardness of MC(MSO2, C) by reducing a hard
problem to it.

For this to work we need to

1. understand what structural information we can draw from the fact
that the tree-width of graphs is high  obstructions

2. use this information to reduce a hard problem to MC(MSO2, C).

This requires some further technical conditions.
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Classes of Unbounded Tree-Width

Definition. Let f : N → N be a function and p(n) be a polynomial.
The tree-width of a class C is (f ,p)-unbounded if there is an ǫ < 1 such
that for all n ∈ N there is a graph Gn ∈ C with

1. n ≤ tw(Gn) ≤ p(n) and tw(Gn) ≥ f (|Gn|)

2. given n (in unary), Gn can be constructed in time 2nǫ

.

The tree-width of C is f -unbounded if it is (f ,p)-unbounded for some p(n).

Theorem. (K., Tazari 10)
Let C be a class of graph closed under sub-graphs and let p(n) be a
polynomial of degree < γ.

If the tree-width of C is (log28+γ n,p)-unbounded then MC(MSO, C) is not
fpt unless SAT can be solved in sub-exponential time.

(fpt: with parameter |ϕ|)
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General Proof Idea

We reduce the propositional satisfiability problem (SAT) to MC(MSO, C).

Given: (X1 ∨ X2 ∨ ¬X3) ∧ (X4 ∨ ¬X5 ∨ X6)... =̂ w ∈ {0,1}∗

Problem: Decide if w is satisfiable.

Reduction.

1. Construct Gw ∈ C of tree-width |w |c with tw(Gw ) > logd |Gw |

Condition 1: Gw exists in C
Condition 2: Gw can be computed efficiently

2. Somehow encode w in a sub-graph of Gw

Use obstructions to tree-width.

use closure under sub-graphs

3. Define an MSO-formula ϕ (independent of w) which is true in Gw iff
w is satisfiable.

ϕ decodes w in Gw and decides whether w is satisfiable.
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Outline of the Intractability Proof

1. Some simple intractability results

2. Grid-Like Minors
(or: why the excluded grid theorem is useless (in this context))

3. Tree Labelled Webs

4. Intractability of MSO
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Of Grids and Walls
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First Example: Coloured Grids

Coloured Grid. A grid whose vertices may be coloured red or blue.

Let G be the class of all finite coloured grids.

Theorem. Let G be the class of coloured grids. Then MC(MSO,G) is not
fixed-parameter tractable unless P=NP.

(4 × 5)-grid
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Intractability on Grids

Theorem. Let G be the class of coloured grids. Then MC(MSO,G) is not
fixed-parameter tractable unless P=NP.

Proof. Let SAT be the NP-complete propositional satisfiability problem.

SAT can be solved in quadratic time by an NTM M.

Given: SAT-instance w := (X1 ∨ ¬X3...) =̂ 010...

Look at the time-space diagram of an acc. run of M on w .
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Intractability on Grids
Theorem. Let G be the class of coloured grids. Then MC(MSO,G) is not

fixed-parameter tractable unless P=NP.

Proof. We reduce SAT to MC(MSO,G) as follows.
1. Given SAT instance w of length n, construct an n2 × n2-grid Gw and

colour its bottom row by w .
2. Construct a formula ϕM ∈ MSO which guesses a colouring of the

grid and checks that this encodes a successful run of M on input w .
Then w ∈ SAT if, and only if, Gw |= ϕM.

∃X0∃X1∃X�∃Xq0 . . .Xqkψ... ∈ MSO1
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Intractability on Grids

Theorem. Let G be the class of coloured grids. Then MC(MSO,G) is not
fixed-parameter tractable unless P=NP.

Proof. We reduce SAT to MC(MSO,G) as follows.

1. Given a propositional logic formula w of length n in CNF, construct
an n2 × n2-grid Gw and colour its bottom row by w .

2. Construct a formula ϕM ∈ MSO which guesses a colouring of the
grid and checks that this encodes a successful run of M on input w .

Then w ∈ SAT if, and only if, Gw |= ϕM.

Hence, if “Gw |= ϕM?” could be decided in time f (|ϕM|) · |Gw |
c then

“w ∈ SAT” could be decided in time

f (|ϕM|) · |Gw |
c = f (|ϕM|) · |w |2c = O(|w |2c),

as M and hence ϕM is fixed. �
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Example: Grids

Theorem. Let G be the class of coloured grids. Then MC(MSO,G) is not
fixed-parameter tractable unless P=NP.

Theorem. Let C be the class of sub-graphs of grids. Then MC(MSO, C) is not
fixed-parameter tractable unless P=NP.
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Minors

Definition. A graph H is a minor of G, denoted H � G, if it can be obtained
from a subgraph G′ of G by contracting edges.

Equivalently. H � G if for every v ∈ V (H) there is a connected Gv ⊆ G such
that

• if u 6= v ∈ V (H) then Gu ∩ Gv = ∅ and

• if {u, v} ∈ E(H) then there is an edge in G joining Gu and Gv .
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The Excluded Grid Theorem

Theorem. (Robertson, Seymour)

There is a computable function f : N → N such that for all graphs G and
all k ∈ N, if tw(G) > f (k) then G contains a k × k grid as a minor.

Theorem. (Makowsky, Mariño 04)

If C is a class of graphs of unbounded tree-width closed under taking
minors, then MC(MSO2, C) is not fixed-parameter tractable unless P=NP.

Proof. As C has unbounded tree-width but is closed under taking minors, it
contains all sub-graphs of grids. �

This result can be strengthened to closure under topological minors using
walls instead of grids.
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Minors that look like grids

STEPHAN KREUTZER COMPLEXITY OF MODEL-CHECKING PROBLEMS 67/81



INTRODUCTION COMPLEXITY UPPER BOUNDS COMPOSITION LOCALITY LOCALISATION GRIDS GRID-LIKE MINORS LABELLED WEBS

Recall: Main Result

Theorem. (K., Tazari 10)
Let C be a class of graph closed under sub-graphs and let p(n) be a
polynomial of degree < γ.

If the tree-width of C is (log28+γ n,p)-unbounded then MC(MSO, C) is not
fpt unless SAT can be solved in sub-exponential time.

(fpt: with parameter |ϕ|)

Definition. Let f : N → N be a function and p(n) be a polynomial.
The tree-width of a class C is (f ,p)-unbounded if there is an ǫ < 1 such
that for all n ∈ N there is a graph Gn ∈ C with

1. n ≤ tw(Gn) ≤ p(n) and tw(Gn) ≥ f (|Gn|)

2. given n, Gn can be constructed in time 2nǫ

.

The tree-width of C is f -unbounded if it is (f ,p)-unbounded for some p(n).
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Good Idea, Sadly Wrong
First and wrong proof idea. Use the excluded grid theorem.

Theorem. (Robertson, Seymour)
There is a computable function f : N → N such that all graphs of
tree-width ≥ f (k) contain a k × k-grid (as a minor).

Proof Idea: given a propositional logic formula w construct Gw so that Gw

contains |w |2 × |w |2-grid and proceed as before.

Problem. f (n) := 202·k5
(Robertson, Seymour, Thomas)
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Grid-Like Minors

We will therefore use grid-like minors instead of grids.

Theorem. (Reed, Wood)
Any graph G of tree-width ≥ k5 contains two sets P,Q of disjoint paths
such that their intersection graph I(P,Q) contains a Kk -minor.
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Grid-Like Minors

We will therefore use grid-like minors instead of grids.

Theorem. (Reed, Wood)
Any graph G of tree-width ≥ k5 contains two sets P,Q of disjoint paths
such that their intersection graph I(P,Q) contains a Kk -minor.

Theorem. (K., Tazari 10)
There is a constant c and a polynomial-time algorithm which, given a
graph G with tw(G) > c · k12, computes a (topological) grid-like minor of
order k in G.

If we allow randomised algorithms we can reduce the tree-width to
tw(G) > c′ · l5 to either

• find a model of Kl in G or

• a (top.) grid-like minor (P,Q) of order l .
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Another Good Idea, A Little Less Wrong
We reduce the propositional satisfiability problem (SAT) to MC(MSO, C).

Given: w := (X1 ∨ X2 ∨ ¬X3) ∧ (X4 ∨ ¬X5 ∨ X6)...
Problem: Decide if w is satisfiable.

Reduction.
Compute Gw

|w |28 < tw(Gw )

MSO-definable.
There is MSO2-formula ϕ(P,Q) saying (P,Q) are grid-like minor.
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Another Good Idea, A Little Less Wrong
We reduce the propositional satisfiability problem (SAT) to MC(MSO, C).

Given: w := (X1 ∨ X2 ∨ ¬X3) ∧ (X4 ∨ ¬X5 ∨ X6)...
Problem: Decide if w is satisfiable.

Reduction.
Compute Gw

|w |28 < tw(Gw )  I(P,Q)  Gm,m in I(P,Q)
Comp. GM (P,Q)

MSO-definable.
There is MSO2-formula ϕ(P,Q) saying (P,Q) are grid-like minor.

Catch. We cannot delete edges in I(P,Q)!
This means deleting vertices in G destroying the grid-like minors.
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Labelled Tree-Ordered Webs Encoding Words

Definition. Labelled Tree-Ordered Webs encoding w

Theorem. (K., Tazari 10)
Let w ∈ {0,1}∗ be a word of length l and let d be a constant.
There is a constant c and a polynomial time algorithm which, given a
graph G of tree-width ≥ cl14d computes a sub-graph Gw ⊆ G which is a
labelled tree-ordered web encoding w (with power d).
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Defining Labelled Tree-Ordered Webs

1. T is uniquely MSO definable in G′ ⊆ G by ϕT (V ,E)

2. The order defined by T is MSO-definable by ϕ≤

3. The encoding of w is MSO-definable by ϕ0, ϕ1

4. The grid-like minor (P,Q) is MSO-definable by ϕ(P,Q)

5. A grid (wall) as sub-graph of I(P,Q) respecting the order of T is
MSO-definable by ϕ(H,V ,P,Q)

Theorem. There is an MSO2-formula ϕ such that for every labelled
tree-ordered web H encoding a SAT-instance w

Hw |= ϕ ⇐⇒ w is satisfiable
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Main Result
Theorem. (K., Tazari 10)

Let C be a class of graph closed under sub-graphs and let p(n) be a
polynomial of degree < γ.

If the tree-width of C is (log28+γ n,p)-unbounded then MC(MSO, C) is not
fpt unless SAT can be solved in sub-exponential time.

Proof. For simplicity, assume γ = 0.

Given SAT-instance w ∈ {0,1}∗ of length l .

1. As the tree-width of C is (log28+γ n,p)-unbounded, there is ǫ < 1
such that C contains G ∈ C with tw(G) > log28 |G| and tw(G) = 2cl28.

2. Compute G in time 2|w|ǫ . This implies |G| ≤ 2|w|δ for some δ < 1.

3. Compute in pol. time a labelled tree-ordered web H ⊆ G encoding w .

H |= ϕ iff w is satisfiable.

4. Hence, if H |= ϕ was decidable in

|H|f (|ϕ|) ≤ |G|f (|ϕ|) ≤ (2|w|δ )f (|ϕ|) = 2f (|ϕ|)|w|δ = 2o(|w|)
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The Gap

Comparing our result with Courcelle’s theorem, there is a gap.
• If the tree-width of C is (log28+γ n,p)-unbounded then MC(MSO, C) is

not fpt unless SAT can be solved in sub-exponential time.

• The model-checking problem MC(MSO, C) is fixed-parameter
tractable on any class C of graphs of bounded tree-width.

(Courcelle ’90)

What can we say about the gap?

It seems impossible to close the gap.

• Makowsky and Mariño give classes of graphs closed under
sub-graphs of logarithmic tree-width with tractable
MSO-model-checking.

• There are examples of classes of graphs closed under sub-graphs of
logarithmic tree-width where it becomes intractable (presumably).
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An Overview of Graph Parameters
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Lower Bounds for First-Order Logic

Theorem. (Dvořák, Kral, Thomas 10)
First-Order Model-Checking is fpt on any class of graphs of (locally)
bounded expansion.

Theorem. (K. 09)
If C is not nowhere dense, closed under sub-graphs and satisfies some
technical condition, then MC(FO, C) is not fpt unless P=NP.
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First-Order Model-Checking is fpt on any class of graphs of (locally)
bounded expansion.

Theorem. (K. 09)
If C is not nowhere dense, closed under sub-graphs and satisfies some
technical condition, then MC(FO, C) is not fpt unless P=NP.
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An Overview of Graph Parameters
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Conclusion
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Structural Characterisation of Model-Checking Problems

Research programme.For each of the natural logics L such as FO or MSO,
identify a structural property P of classes C of graphs such that MC(L, C)
is tractable if, and only if, C has the property P under suitable complexity
theoretical assumptions.

We may not always get an exact characterisation, there may be gaps.

But such a characterisation would give an easy tool to assess whether
MSO-model-checking is tractable on some class.
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