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Abstract

In this paper we prove an exponential lower bound on
the size of bounded-depth Frege proofs for the pigeon-
hole principle (PHP). We also obtain an Q(loglogn)-
depth lower bound for any polynomial-sized Frege proof
of the pigeonhole principle. Our theorem nearly com-
pletes the search for the exact complexity of the PHP,
as Sam Buss has constructed polynomial-size, logn-
depth Frege proofs for the PHP. The main lemma in our
proof can be viewed as a general Hastad-style Switch-
ing Lemma for restrictions that are partial matchings.
Our lower bounds for the pigeonhole principle improve
on previous superpolynomial lower bounds.

1 Introduction

In the last ten years, there has been significant progress
in proving lower bounds for bounded-depth boolean cir-
cuits. One main technique for proving these results is
the bottom-up method of restrictions, first described in
[FSS], and later improved by Yao [Y], Hastad [H] and
others. The strongest of these techniques is Hastad’s
Switching Lemma, which states that with high proba-
bility, a random restriction allows us to re-write an OR

of small ANDs as an AND of small ORs.
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A major drawback of this lemma and related ones is
that they only apply when there is very little depen-
dency between variables. There are many graph-based
problems where the dependency between variables is too
great to apply Héstad’s Lemma, and there is no known
reduction from a known hard problem in AC? to one of
these problems. One graph-based problem for which a
Hastad-style switching lemma has been shown is that of
deciding whether or not a graph contains a clique on a
small number of nodes (Lynch [Ly], Beame [Be]). How-
ever, the restrictions needed in that case still have very
limited dependency.

In this paper, we prove a new switching lemma which
applies to restrictions for which there is a great deal of
dependency, namely those that represent partial match-
ings. A key feature that makes this more difficult is that
after our restrictions are applied, the converted formula
is only equivalent to the original one for certain classes
of assignments.

We use this switching lemma to obtain the main re-
sult of this paper—an exponential bound on the size of
bounded-depth Frege proofs for the pigeonhole princi-
ple. Frege systems are the typical propositional proof
systems found in introductory textbooks. Besides their
interest to logicians, they also arise in computer sci-
ence due to their relationship to Resolution and other
backtracking algorithms. Backtracking is a general tech-
nique to solve search problems in exponential-size do-
mains. The fastest known algorithms for many NP-
complete problems use backtracking techniques. Back-
tracking is also commonly used as a heuristic for many
problems in artificial intelligence, particularly in auto-
matic theorem-proving.

In a backtracking algorithm, one is searching a large
space to find an element with a certain property P. The
algorithm divides the space into those elements satisfy-
ing some property () and those not satisfying Q. (This
is called “branching on @.”) Of course, to be useful,
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Q@ should be chosen so that the assumption P A @ nar-
rows the search space significantly, as does P A Q. The
algorithm continues to recurse until the search space is
empty or a solution is found.

When run on a search space with no solutions, the
transcript of a backtracking algorithm is a simple proof
by contradiction that P is a tautology. This kind
of proof is equivalent to that allowed in a Frege sys-
tem. Thus, lower bounds on the complexity of Frege
proofs show inherent limits on the backtracking tech-
nique. Since backtracking is a natural approach to
solving problems like 3-Satisfiability, exponential lower
bounds on Frege systems can be viewed as saying that
a large class of natural approaches to solving N P-
complete problems cannot run in sub-exponential worst-
case time. Our bounds only apply to constant depth
Frege systems, so the corresponding bound on back-
tracking algorithms applies to algorithms branching on
properties that can be expressed in AC®. This cov-
ers many suggested backtracking algorithms, but the
moral for automatic theorem proving may be to develop
heuristics to see when the proposition to be proved is of
the type requiring a counting argument, in which case
the heuristic should branch on formulas involving count-
ing.

The complexity of Frege proofs of the pigeonhole prin-
ciple has been studied extensively by many people in the
last 20 years, beginning with an early paper by Tseitin
[T]. In 1985, Haken [Ha] proved that any Resolution
proof of the pigeonhole principle must have exponential
size. The next major breakthrough was made by Ajtai
[Ajt] who used nonstandard model theory to prove that
any constant-depth Frege proof of the pigeonhole prin-
ciple must have superpolynomial-size. Because Resolu-
tion is a particular depth-2 Frege system, Ajtai’s proof
yields a superpolynomial lower bound for Resolution as
a special case. More recently, [BPU] obtained a new
proof of Ajtai’s theorem which eliminates the use of
nonstandard models. While their techniques were more
direct and more accessible, their improved bound was
still barely superpolynomial. Then, using a different
family of tautologies, an exponential lower bound on
the size of constant-depth Frege proofs was established
by Krajitek [K]. However, the hard examples used in
Krajitek’s proof do not have a fixed depth, independent
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of the depth of the Frege system in question, as the pi-
geonhole tautologies do. In addition, the examples are
not as natural as the pigeonhole principle.

Our new exponential lower bound has several inter-
esting consequences. As a corollary, we show that any
polynomial-sized Frege proof of the pigeonhole princi-
ple must have depth Q(loglogn). Our theorem nearly
completes the search for the exact complexity of the
pigeonhole principle, as Sam Buss [Bu] has constructed
polynomial-sized, logarithmic depth Frege proofs for the
pigeonhole principle.

Constant-depth lower bounds are related to the power
of weak systems of arithmetic (see [PW], [Bu]). This re-
lationship together with our exponential lower bound for
the propositional pigeonhole principle shows that rela-
tivized Bounded Arithmetic, S3(f), cannot prove the
pigeonhole principle for f.

To see why this question is of interest in logic, con-
sider the following two proof sketches that every non-
zero residue modulo a prime has an inverse. Let p be
a prime, and let 0 < a < p— 1. Then if we consider
the map F, : {0,..p — 1} — {0,..p — 1} defined by
F,(b) = ab mod p, it is easy to see that Fg is 1 — 1.
Therefore, (using the pigeonhole principle), it must also
be onto, and so 1 must be in the image. Therefore,
there exists a number b, 0 < b < p — 1, such that
ab = 1 mod p. In the second proof, we would prove
by induction on the length of numbers a, b that Euclid’s
Algorithm for extended ged finds integers ¢,d so that
ca + db = ged(a,b). Then applying this algorithm to @
and p, we get ca+ dp =1, so ca = 1 mod p.

Both of the above proofs are simple, and only use
basic facts of arithmetic. Both are constructive in the
sense of intuitionistic logic. However, the first is com-
binatorially “non-constructive” in that it is based on a
counting argument which yields no better way of find-
ing the proven object than via exhaustive search. The
second has “algorithmic content”, and yields a good
method for finding the object proven to exist. In this
case, a counting argument was not necessary, and could
be replaced by a more constructive computational argu-
ment. Our result can be phrased as saying that there is
no generic procedure for converting a counting argument
involving exponentially large but finite sets into an ar-
gument which only involves concepts in the polynomial-



time hierarchy (relative to the object being counted).
Thus, in general, one cannot automatically convert such
an argument into a more algorithmic one, although in
any particular case, this might be possible using special
properties of the sets being counted.

In contrast with this negative result, Paris, Wilkie
and Woods [PWW] showed that the weak pigeonhole
principle, W PH P,, is provable in Sa(f),

(PH P, states that there is no 1-1 map from
[n + 1] to [n], while WPHP, states that there is
no 1-1 map from [2n] to [n].) As a corollary, they
show that W P H P, has quasi-polynomial size, constant-
depth Frege proofs.

It is not hard to extend our results to weakenings of
the pigeonhole principle that state the nonexistence of
1-1 mappings from sets of size n + ¢ to n (the lower
bound is only minimally affected by ¢.) However, it is
still an open problem whether WPH P, has constant-
depth proofs of polynomial size. We can also extend
our result quite easily to another weaker version of the
pigeonhole principle, which states that there is no 1-1
and onto map from [n + 1] to [n].

The main results of this paper were obtained indepen-
dently, and first appeared in [PB]], and [KPW]. In this
paper, we will first state and prove the common switch-
ing lemma, and then present two different proofs of the
exponential lower bound. In section 2, we give some pre-
liminary definitions. In Section 3, we state and prove
the main combinatorial lemma. We present the proof
appearing in [PBI]; an alternate proof can be found in
[KPW]. In sections 4 and 5 we present the lower bound
proof appearing in [PBI], and in section 6, we present
the lower bound proof appearing in [KPW].

2 Definitions

The variables over D = Do UD; are {P;j : i€ Dy, j €
Dy}. A map over D is defined to be a conjunction of
the form AT, where I is a set of variables over D such
that distinct variables in T have distinct left subscripts
and distinct right subscripts. Maps describe bijections
between subsets of Dy and subsets of D;. The size of
a map AT is |T|; if the size of a map is bounded by
t, it is said to be a t-map. An OR of maps is called
a map disjunction. The mapsize of a map disjunction

is the size of the largest map in the disjunction; if all
the maps are of size at most ¢, then it will be called
a t-disjunction. A truth assignment ¢ over D is any
total assignment of {0,1} to the variables over D. Let
D' = DyU D] C D. A truth assignment ¢ over D is 1-1
over D' if for all i € D), there is a unique j € D; such
that P;; = 1 and for all j € D{ there is a unique i € Dy
such that P;; = 1.

If Y is a map or a set of variables, then v(Y') denotes
the set of vertices in Dy U D; that are indexed by the
variablesin Y.

We will now define a probability space of partial 1-1
functions on D, where D = DoUD1, and |Do| = | D4 |+1.
The probability space Rf is the set of all quadruplets
p =<1,80,81,7 >, where i € Dy, So C Do \ {i}, S1 C
D; and |So| = |Si|. First, i € Dy is chosen uniformly
and at random. The set Sy is chosen as follows. For
each z € Dy \ {i}, choose z € Sy with probability p
and z ¢ Sp with probability 1 — p. After all elements,
Sy, in Dy have been selected, the set S7 is obtained
by selecting exactly |Sp| elements of D; uniformly and
at random. The third component in the triple, =, is a
uniformly chosen bijection from D, /S; to Doy/Sp. The
quadruplet < %, Sp, S1, 7 > will sometimes be referred to
as < S, % >, where S =S, US8:. If p=<14,8,5,7>
then we will sometimes refer to i as spare(p).

Every p =< S,m > in ’R,f determines a unique
restriction, r, of the variables over D as follows.

* ifieSAJES
1 figSAjE€SAn(G)=1
0 otherwise

r(Py) =

In this way, the distribution R}’,’ defines a probability
distribution of restrictions. If r is a random restriction
obtained by choosing a random p according to ’R,f,’ , we
will refer to both the restriction and the random partial
1-1 function by p.

In order to prove the Switching Lemma (Lemma 3.2),
we will first state a couple of useful properties of our
distributions.

Lemma 2.1. Let Sy C Dy, S1 C Di, |So| = |$1]-
Let D' = D\ (So U S1). Then the subdistribution of
RD restricted to those p such that p(So U S;) = * is

equivalent to the distribution R},’ " Similarly if A is any
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map defined on exactly those variables in So U Sy, then
the subdistribution of R{,’ restricted to those p such that
p(A) = 1 is equivalent to the distribution R .

For a Boolean formula F' and an element p € ’R,{,) , F
restricted by p will be denoted by F[,.

There is an alternative experiment which can be used
to obtain the same distribution on the variables. The
probability space ’Pf is the set of all pairs < =, S; >,
where 7 is a randomly chosen permutation from D; into
Dy, and S; is a subset of D;. The set S is chosen as fol-
lows. For each z € Dy, choose z € S with probability
p and z ¢ S; with probability 1 —p. Each p =< 7,51 >
in ’Pf determines a unique restriction of the variables
over D as follows.

* ifn(j)=iAj€ES
1 fn(j)=iAj¢g St
0 otherwise

r(Pij) =

The following lemma states that the experiments R and
P each define the same distribution of restrictions.

Lemma 2.2. The distributions ‘Rf and ’Pf define the
same probability distributions over restrictions.

Proof. For each element p =< 1,5p,5;, 7 >€ ’R},’ ,
there is an associated unique set of elements p/ =<
#', S} > from ’P}?, which yields the same assignment to
the variables P;;. Namely, an element p’ =< 7/, 8] >€
PP is associated with p =< i,80, 51,7 >€ RY if the
permutation, 7' on D/(Sp U Sy) is identical to = and

i = S1. Each element of R is associated with the
same number of elements from ’P}P ; Turther, the prob-
ability over R of choosing a particular element, p, is
equal to the probability over P of choosing an element
in the set associated with p. Thus, the induced prob-
ability distributions on the setting of the variables, P;;
are identical. g

2.1 1-1 Decision Trees

A 1-1 decision tree over domain D = DyU D, is defined
as follows. It is a rooted tree where each interior node
v is labelled by a query i € Dy or j € D; and each
edge is labelled by some pair [i,j] where i € Dy and
j € Dy. Leaves are labelled with either “0” or “1”. For
each interior node v labelled by i € Dy (j € D1), there
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is exactly one out-edge labelled [z, j] for each j € D,
(i € Do) that does not appear in any edge label on the
path from the root to v. The label of an interior node
v may not appear in any edge label on the path from
the root to v. Thus the set of edge labels on any path
defines a map.

A 1-1 decision tree T over D represents a function f
over domain D if for all leaf nodes v € T, if we let &
be the map defined by the path in T from the root to v
then for all truth assignments & over D that are 1-1 on
v(o) and consistent with o, f(a) is equal to the label of
v. For a boolean function f over domain D, we define
dp(f) to be the minimum height of all 1-1 decision trees
computing f.

If p is a partial 1-1 restriction over D and T is a 1-1
decision tree over D, then define T}, to be the decision
tree obtained from T' by removing all paths which have
a label that has been set to “0” by p, and contracting
all edges whose labels are set to “1” by p.

Lemma 2.3 Let f be a boolean function over D and
let T be a 1-1 decision tree representing f over D, If
p is a partial 1-1 restriction over D, then T, is a 1-1
decision tree for f[, over Df,.

Note that if T represents f over D then the tree TV ob-
tained by by switching the 1’s and 0’s labelling the leaves
of T represents —f. Also, given a 1-1 decision tree T over
D of height d, we can obtain a d-disjunction maps(T)
over D whose maps consist of the labels of all the paths
in T that end in leaves labelled 1. Notice that T repre-
sents maps(T). Furthermore note that for any partial
1-1 restriction p over D, maps(T',) = maps(T)},. The
lemmas in the next section actually is a switching lemma
in the sense of Hastad because it will allow us to obtain
a map disjunction that approximates the negation of
f by representing f by a 1-1 decision tree T and then
taking maps(T”).

Where it is convenient, we shall assume that an order-
ing is given for each of Dy and D;. Whenever we write
a real number where an integer is required, we mean the
integer part of the real number (floor). When we assert
an inequality involving n, we shall often assume tacitly
that n is sufficiently large.



3 The Switching Lemma

In this section we will assume that D® = DoUD;, where
|Dg| = |D?|+1 = n+1, and the underlying probability
distribution will be R (as defined in section 2). All other
D, D', D" will be bipartitions which are contained in
D*: D = Dy U Dy, |Dy| = |Dy| + 1, and Dy C Dj,
D, c D.

Let K C D = Do U D;. Then Projp[K] is the set of
all minimal partial 1-1 maps over D which involve all
of the elements of K. A map ¢ € Projp[K] induces
a restriction; we will refer to o interchangeably as a
restriction and as a map.

We define the complete 1-1 tree for K C D over D
inductively as follows. If K consists of a single node
k € Dy (k € Dy), then label the root “k € Dy” (“k €
D,”), and create n edges adjacent to the root, labelled
by [k, j], for all j € D; ([j, k] for all § € Dy). Otherwise,
K = K'U{k} C D. Assume that we have created the
complete tree for K'; we will now extend it to a complete
tree for K. This is done by extending each leafnode v; as
follows. Let p; be the path from the root to v;. The edge
labellings along p; define a partial 1-1 map involving all
elements of K’'. If this partial map does not include
k, then label v; by k, and add new edges leading out
of v;, one for every possible mapping for k that results
in a 1-1 map extending the partial 1-1 map along p;.
Otherwise, if k is involved in the partial 1-1 map, leave
v; unlabelled. Note that each path of the complete tree
over K will be labelled by some o € Projp[K].

Lemma 3.1 Let f be a boolean function over the
variables P;j, i € Dy, j € Dy, where |Dy| = |Dy| + 1.
For every K C Dy U Dy, there exists a restriction, o €
Projp[K] such that dp(f) < |e|+dpt,(fle)-

Proof. The proofis very similar to that of Beame and
Hastad [BH]. Fix K C D. We start with the complete
1-1 tree for K. As noted above the paths of this tree
correspond exactly to elements of Projp[K]. Let v, be
the leaf node corresponding to the path labelled by ¢ €
Projp[K]. For each o, we replace the leaf node, v,, by a
subtree that is a 1-1 decision tree for f}, over D},. The
resulting tree clearly represents f over D. The depth of
the resulting tree for K is at most maz,{|o]+dp;.(fl+

)

If f is a map disjunction defined over a set D and p is
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a restriction on D then we will use the notation §(f},)
for dp;,(f1,). We now state the main combinatorial
lemma.

Lemma 3.2. (Switching Lemma) Let f be an r-
disjunction over D = Do U Dy, |Do| = |D1| = m +1,
Dy C Dg, Dy C D}. Choose p at random from R{,’ .
For s > 0 and p(m — s) > r we have

Prl6(f1p) 2 8] < o,

where a > 0 satisfies (1 + 9p*n3/0?)" = 5/4.

Fact: o < 8p’n®/2r1/2,

The proof of the switching lemma, like that of Hastad,
proceeds by induction on the number of clauses in f. We
work along the clauses one by one: if p falsifies a par-
ticular clause, then we are left with essentially the same
problem as before; if p does not falsify the clause then,
it is much more likely that p satisfies the clause (and
thus ensures that the whole formula is set to true) than
p leaves any variable in the clause unset. There are
significant complications however in dealing with our
partial 1-1 restrictions as opposed to fully independent
ones. Once we know that a variable (edge) is unset we
have information that biases incident variables towards
being unset. Furthermore there is the subtler problem
that having some variables set to 0 may bias other vari-
ables towards being unset. Both of these complicate the
application of the inductive argument in the case that a
given clause is not falsified. We handle the first problem
by considering not only all possible assignments to the
unset variables in the clause (as in Hastad’s proof) but
also to all variables that are incident to those unset vari-
ables. We get around the second problem by showing
that, although setting variables to 0 may make a given
variable more likely to be unset, it cannot bias the total
number of unset variables to be larger and this turns
out to be sufficient for our purposes.

We obtain Lemma 3.2 from the somewhat stronger
Lemma 3.5 by setting F' = 0 but first we prove a couple
of technical lemmas.

Lemma 3.3. Let D = DyU Dy such that |Dg| = | D1} +
1=m+1and U C D such that [UNDy| = [UND,| = k.



If pm > k, for p chosen at random from RPD ,

(2p*m)*(m +1 — k)!

Prip(U)=4+<2. CEs]

Proof. Let Uy = UNDy and U, = UND;. We consider
the choice of p € ’Rf using the equivalent distribution
7)1? . Thus p is chosen by selecting a random permuta-
tion 7 : Dy — Dy and a set S; € Dy of starred endpoints
chosen by selecting elements of Dy independently with
probability p. We split up the probability that p(U) = *
into separate cases depending on the image #(U;) of Uy
in Do.

If |x(U1) \ Ug| = i then we divide the probability base
on whether or not spare(p) € Us. Now Pr[spare(p) €
Uo] = i/(m+1—k) in this case since 7(U;) has already
been ruled out. Given that spare(p) € Uy, the prob-
ability that p(U) = # is p*+i~1, otherwise it is pF+:.
Thus if |7(U1) \ Us| = ¢ we have a total probability that
p(U) = * of

pk+i—1m+i1 = 7 (1 - m+i1 = lc)
= phH g phHi-l "(l:_-lp_)ik
< phH g phHi-l "(ll-*.—lp_)_"?lc
< pt¥ +pk+s‘-1:lf.f;-;.1ikk
< 2pk+i

since pm > k and ¢ < k.

There are (™}') possible sets 7(Uy), all of which are
equally likely, and (™*]7*)(%) of these have |x(U1) \
Us| = i. Thus

~ (N0,

P =4 = 3kt
2 k k k t ;
< e ()4
2pk £ k k—i 4
< ey 5 (1))
_ 2(pk)* £k my
- k!(mgl)g(i) (Ek_)
2(pk)*
- ﬁl—)[@m/k)mk
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) oo
o (2P°m)*
o)

since pm > k. §

Lemma 3.4 Suppose that 0 < ap < a3 < ... < ay,, and
forall k < n, Y0 a; < 35 4 bj. Then for all k < m,
E?:k a;ja; < E?:k a]bf

Proof. The proof is by downward induction on k.

For k¥ = n, the lemma holds.
lemma holds for k. Consider 3°7_,_; a;b;.

Now assume that the
Either
br—1 2 a1 or by < ar—1. In the first case, by
the induction hypothesis, we know that }°7_, a;b; >
E;‘=k ajaj, thus because bx_1 > ax_1, we also have
Yiek-12bi 2 5 4 1 @ja;. In the second case, let
6 = ar_1 — by—1. Because E;-'=k_1 b; > E;-;k_l a;, we
have that 3°7_, b; > 3°7_, a; + 8. Applying the induc-
tive hypothesis, with ay = ag + 6, we have:

Za,b, > Z aja; + op(ar +96)

j=k41
= Zaj

bj > Z aja; + ap(ak + 6) + ax—1bk-1

j=k~1 i=k
n n
= Zajbj > aja; + og(ar-1— be-1) + ak-1bx—1
j=k—1 i=k
n n
=>Z‘ijj 2 Z%‘aj + ag-1(ak-1 — bk—1 + be_1)
j=k-1 j=
n n
=>Zajbj > Z aja;. i
j=k—1 j=kb—1

Lemma 3.5. Let f be an r-disjunction over D = Dy U
Dy, IDol = |D1|+ l=m+1 Dy C Da‘, D, C D?,
Let p be
a random restriction chosen according to ’R,f . Then for
s > 0 and p(m — s) > r we have

and let F' be an arbitrary function over D".

Pr[s(fl,) 2 s | Fl,=0] <o,

where o > 0 satisfies (1 + 9p*n®/a?)" = 5/4.

Proof. The proof proceeds by induction on the total
number of maps in f.

Base Case. There are no maps in f. In this case f is



identically 0 and therefore f is represented by the tree
consisting of the single node labelled 0. Hence 6(f,) =
0 and the lemma holds.

Induction Sitep. Assume that the lemma holds for all
map disjunctions with fewer maps than the map dis-
junction of f. We will write f as f1V f5 V..., where each
fi 1s a map of f. We will analyze the probability by
considering separately the cases in which p does or does
not force the map fi to be 0. The failure probability,
the probability that 6(f|,) > s, is an average of the
failure probabilities of these two cases. Thus

Pris(f1,) 2 s | Fl,=0] <
maz(Pri6(fl,) > s | Fl,=0 A fil,=0],
Pris(fl,) 2 s | FI,=0 A fil,#0).

The first term in the maximumis Pr[6(f],) > s | (FV
fi)1,= 0]. Let f' be f with map f, removed; then
Pris(fly) 2 s | (FV fi)l,=0 = Prl§(f'1,) >
s | (FV fi)l,= 0]. Because f’ has one less map than f,
this probability is no greater than a*, by the inductive
hypothesis.

Now we will estimate the second term in the maxi-
mum. Let T be the set of variables appearing in the
first map, f1. By hypothesis, size(T) < r. We will ana-
lyze the cases based on the subset Y of the variables in
T to which p assigns *; we use the notation *(pr) =Y
to denote the event that the variables in T" which are
assigned * by pr are exactly those in Y. Then

P"[5(ffp) >s | Frp= 0A flr/ﬁé O]
=Y Prs(f1,) A *(pr) =Y | Fl,=0 A fil,# 0].

YCT

Consider the case in which Y = (. In this case the
value of f; is forced to 1 by p. It follows that f is forced
to 1 and hence 8(f) = 0 so the term corresponding to
Y = @ has probability 0. The sum then becomes

ST Pr[s(fl,) 2 s Ax(pr) =Y | Fl,=0A fil,# 0],
YCT,
Y#0

which is equal to

> Pr{s(flp) > s |
= Flo)=0 A fil,#0 A *(pr) =Y] (1)
Y #¢

x Prix(pr) =Y | Fl,=0 A fil,#0]. (2)

We will first bound the latter term, (2), in each of
these products. Given that f; [,# 0, the probability
that *(pr) =Y is equal to the probability that p(Y) =
* A p(T'\Y) = 1. Thus term (2) is no greater than

Prlp(Y) =+ Ap(T\Y) = 1| Fl,=0 A fil,#0]
<Pr{p(Y) = | FI,=0 A p(T\Y)=1 Ap(Y) # 0]

Let F’ be F'V G where G|,= 0 if and only if p sets all
variables in T\ Y to 1; then the above probability is
equal to Pr[p(Y) =« | F'l,=0 A p(Y) #0].

Claim A. Prlp(Y)=« | F'l,=0 A p(Y) # (]
< Prip(Y) =+ p(Y) # 0].

Proof of Claim A. As in previous proofs, we will prove
claim A by showing that

Pr[F't,=0|p(Y)=*Ap(Y)# 0]
< Pr{F'l,=0]p(Y)#0]

This proves the claim because for arbitrary events A
and B, Pr[A | BAC) gkgr[A | Cl e PrB|AANC] <
Pr[B | C]. Fix a particular p* such that p*(Y) = *.
Then p* Tepresents an equivalence class of p’s such that
p(Y) # 0. An element p € R2 is in the equivalence class
of p* if and only if p is identical to p* except for the vari-
ables of Y, which may be assigned the value 1 instead of
#. Note that each such equivalence class is disjoint, has
the same size, and the union of all equivalence classes is
equal to the set of all p which satisfy p(Y) # 0. Now,
consider a particular p*. If F'[,« is forced to 0, then so
is F'},, for every p in the equivalence class of p*. Thus
the claim holds.

From Claim A it follows that the term (2) is at most
Prip(Y) = + | p(¥) # 0]. Since pm > r > [¥], by
Lemma 3.3,

2(2p?m)!¥I(m + 1 — [Y)!

Prip(Y) =+ < 1)

Also,

Prip() £0] > Prip(v)=1]
a-pM
(m+1Dm..(m—|Y|+2)

I




A =p)¥I(m+1-[v])!
(m+ 1)! ‘

Therefore,
2 2m Y|
Pripv) =+ o) #0] < 2. (22)
2. (3p*m)l*!

<
< 2-(3pPn)Yl.

Now we look at the first term, (1), in each product.
Suppose that 2|Y| < s. For each fixed Y, we will analyze
the probability above by applying Lemma 3.1 with K =
v(Y) and D = DI,. By this lemma, if 6(f},) > s then
there is some o € Projpy,[v(Y)], such that d¢py,y, ((fI,
)1o) > s —|o]. To use this requires that we consider
all maps in Projpy,[v(Y)]. One difficulty is that D}, is
itself a random variable dependent on p. We handle this
by considering all maps ¢ in Projp[v(Y)] and including
them only if p(c) = *. For notational convenience let
P(D,Y) = Projp[v(Y)]. When p(c) = *, (f1,) o=
(fte)1, and applying the definition of 6(f},), the above
probability is no greater than:

S PrASUT) 2 5= lol Ap(e) =]
s€P(D,Y) Fl,=0 A fil,#£0 A *(pr)=Y]

< D2 Prle((fto)ly) 2 s — ol | Fl,=0
o€P(D,Y) ARl#E0 A x(pr) =Y A p(o) = #]
x Prlp(c) =¥ |
Fl,=0 A fil,#0 A #(pr) =Y]

= Y Pris((f1o)ty) 2 s—2lY] |
FEEDY) ph,=0 Ap(T\Y)=1 A p(o) = 4]
x Prlp(c) = * |
Frp: 0 A p(T\Y) =1A p(Y) = *]

The last inequality above holds because |o| < 2|Y],
the events fi[,# 0 A #(pr) =Y are equivalent to the
events p(Y) = * A p(T'\Y) = 1, and the condition
p(Y) =  is implied by p(c) = *. Recall that if Y is a
map, v(Y) C D denotes the set of underlying vertices
which are contained in the map. We will split up the
map ¢ into two maps, o1 and o3, where a variable, P;; €
o is in oy if both ¢ € v(Y) and j € v(Y). Otherwise,
P;; € 05. Note that for every o € Projp[v(Y)], 0 <
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lo1| < |Y|. We further divide the above probability into
sums according to the size of o] to get:

Y|

2 X

i=0 ¢eP(D,Y),
foa|=IY |-

Pris((fo)lp) 2 s = 2[Y|| Fl,=0
AT\Y) =1 A plo)=+] (3)

x Prlp(c)=x*| Fl,=0
Ap(T\Y)=1 A p(Y)=+] (4)

For a fixed value of Y and o € P(D,Y), we estimate
the first term. Let f' be f with f; removed and consider
the different possibilities for o. Let f’ be f with the
variables in T\ 'Y set to 1. Let F’' be F V G where
G1,= 0if and only if p sets all variablesin T\ Y to 1.
Then the first term is equal to

Pris((f'1o)lp) 2 s =2[Y[| F'l,=0 A p(0) = #].

Since f'[, contains no variables which involve vertices
of v(o) we can let D' = D — v(s) and conclude using
Lemma 2.1 that the above probability is no greater than

Pri6((f'to)s) 2 5 —2|Y] | Flfp: 0},

where the probability is for a p chosen from ’RI? " ‘Now,
if o =Y then fi is satisfied by o and f[, is the constant
1 and this probability is 0 < a*~2I¥1, Otherwise, & £Y,
the map f] is falsified by o, so f'}, has one fewer map
than the original f that we started with. Furthermore,
since |o| < 2|Y| and p(m — s) > r, p(m — |o| — (s —
2|Y|)) > r and we can apply the inductive hypothesis
for D' and f’. It follows that the above quantity is no
greater than a~21Y1,

Since the above calculation gives the same upper
bound for term (3) for all values of &, we can pull this
quantity outside the sum to obtain:

Y]
oY Prip(e) = | Fl,=0
=00ePDY), A p(T\Y) =1 A p(Y) =+ (5)
[oa|=lY|-i
Now we will estimate the inner summation for a fixed
value of i. As above, we replace the condition F|,=
0 Ap(T\Y) =1 by the single condition F'},= 0. Also,
for a particular o, the event p(o) = * is equivalent to
the events p(o1) = * A p(oz) = *. Because p(o1) = * is
implied by p(Y') = *, the inner summation is equivalent



to

Y Prip(ea) =# | F't,=0 Ap(Y) = 4].

g€P(D,Y),

Jou|={Y|-i
We would like to remove the conditioning on F'[,= 0
but it is not as simple as it was in Claim A. We have to
consider the terms in this sum in the aggregate rather
than individually. Let N; be the number of o’s such
that |o1| = |Y| — i. Then the above probability can be
rewritten as:

N; - Pr(ﬂzpp)[p(az) =* I F,rP= 0 A p(Y) = *]’

where the above probability is over all pairs (o2, p), such
that |o1| = |Y| — 4. For each o3, let u be the set of ver-
tices in o2 which are not contained in v(Y'). Note that
the number of domain vertices of u equals the number
of range vertices of u and is equal to i. Also note that
for o5 chosen at random, u is a uniformly distributed
set over D” = D \ v(Y) having these properties. Ap-
plying Lemma 2.1 and letting V; be the collection of all
sets over D” having both domain and range size 7, this
probability is equal to N; - Pry, ), [p(u) = * | F'[,= 0],
where the probability is over all pairs (u, p), such that
u€Viand p € ’R,,’,) ". This probability can be further
divided according to #(p), the exact number of stars
that are assigned to Dy by p:

N Y Prouplp(®) =+ | F'L=0 A #(p) = ]
7= % Prup[#(p) = i | F't,=0].

Given that #(p) = j, for a randomly chosen u the event
p(u) = # is independent of F'[,= 0. Thus the above
probability is equal to

N; - ZPr(u,p)[P(u) =% | #(P) =J]
I=0 x Prl#(p) =5 | F't,=0],

where we have dropped the subscript on the probability
in the second factor in each term since this probability
only depends on p. For all k < n, EjZk Pri#(p) =
J | F'l,= 0] equals Pr[#(p) > k | F'},= 0], because
the events are disjoint. Similarly, Yisk Pri#(p) = J]
equals Pr#(p) > k].

Claim B. For all &,
Pri#(p) 2 k | F'l,= 0] < Prl#(p) 2 bl

Proof of Claim B. As in the proof of Claim A, we will
prove this inequality by showing that for all k, Pr[F'| ,=
01#(p) > K] < Pr{F'l,=0]. Let F(C) = Pr[F'},= 0].
Then F(C) is a weighted average of F(A) and F(B),
where F(A) = Pr[F'|,= 0| #(p) > k] and F(B) =
Pr[F't,= 0| #(p) < k]. We want to show that F(A) <
F(B), and then it follows that F(A) < F(C), as desired.
Let F(i) = Pr[F'l,= 0 | #(p) = i]. Then F(A) is a
weighted average of terms {F(s), k < i < n}, and F(B)
is a weighted average of terms {F (i), 1 < i < k}. Thus,
it suffices to show that for all k, F(k) < F(k—1). Here
we will consider p as being chosen from the alternative
experiment, 7’;? ; recall that p is a pair < 7, S; >, where
« is a permutation from all of D; into Dy, and S; is
the subset of D; which is set to *. We will divide the
probability according to the particular permutation, ,
chosen by p. Because each permutation is equally likely,
it suffices to prove the above inequality conditional on
the fact that the permutation is #. For all k, let the
subdistribution A¥ consist of those p = (, S1) such that
|S1] = k, i.e. those p that were chosen by first choosing
« and then choosing exactly k elements of Dy to be *.
We want to show that the probability that F' is forced
to 0 over distribution A¥~1 is greater than or equal to
the probability that F’ is forced to 0 over distribution
AE. Consider the collection Cy, of sets Sy with |S;| = &,
such that p = (7,5;), and F'|,= 0; similarly let Cy_;
be those sets, S7, |S]| = k — 1 such that p’ = (#,5})
forces F’ to 0. For any set S| C Sy, if p = (7, S1) forces
F’ to zero, then p' = (,S]) also forces F’ to zero; in
particular, this holds for those subsets S} of size k — 1.
Thus, for each set in C there are k corresponding sets
in Cg_1 which are also forced to zero. Conversely, for
each set in Cy_, there are (n—k+1) corresponding sets
in Ck. The probability that a random p over A% forces
F’ to 0 equals E’ij; thus the probability that a random

/ k-1 ' ; S (/Y U
p' over A7™" forces F' to 0 is at least kDA

Since |A¥—1] is equal to -;F_I%:':‘I, the probability that F’
is forced to 0 over A%~ is greater than or equal to the
probability that F” is forced to 0 over AE.

Using Claim B and noting that Pry, p[p(u) =
* ‘ #(P) = .7] < Pr(u,p)[/’(u) = * I #(P) =Jj+ 1]
for all j > 0, we can apply Lemma 3.3 with o; =
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Preu,ple(u) =+ | #(p) = 3, a; = Pr{#(p) =j | F'l,=
0], and b; = Pr{#(p) = j] to show that the above prob-
ability is no greater than

Ni- 3 Prouplp() =+ | #(p) = i1 Pri#(s) = i

j=0

which is equal to N; - Pry, ,)[p(u) = *].

Since for each fixed value of u € V;, the probability
that p(u) = * is the same, the above probability is equal
to N; - Pr[p(u) = #], where the probability is now over
the distribution ’R,f ". Letting m' = m ~ |Y| and using
the fact that pm’ > p(m—s/2) > r > |Y|, we can apply
Lemma 3.4 to conclude that for u€eV;, Prip(u) =+ <

2,1\

!22m25m+1 i)! ' 41—1)!
2 (ml+l)l < 2 (ml+1)|

Recall that N; is equal to the numbgr of ¢’s such that
lo1] = Y — 4. There are at most (I¥1)"(|Y| - i)! choices
of o1 with |o1| = |Y| — ¢ and for each such oy there are

) 2
at most ( (m'?+‘;_1_ : !) choices of 3. Thus there are a
2 1 2
total of at most (1)*(|Y] - 4)! ((711:7_'_—"1'1):7) choices of

o € P(D,Y) such that |oy| = Y] - 1.
Thus for all Y such that 2|Y| < s, using the expres-
sion in (5), we have

Pr(s(flo) 2 s | Fl,=0 A fil,#0 A x(pr) =Y]

ot (1) -0 (25 )

=0 oy 2P?n)(m — Y] +1 - i)!
(m— Y|+ 1)!

vy (Y1 Ml — ;
522(,)014 i ~ Y] +1)

i=0 as—2|Y| (2p2,n)£
Y|

< 2= (Y1) v - gy
=0
1|

< 2wy () gty

— 92|y (¥l Y] ;
] 2_:( )&

= 24" 2IYI|y|IYI(2II’7|' + 1)

=211y (¥l 32207y
< M)

< 2as—2|Y|(3p2n2)|Y|_

For Y such that 2]Y| > s we cannot use the expan-
sion in terms of (3) and (4) to estimate this probabil-
ity. However in this case, since @ < 1 and 3p?n? > 1,
202~ A¥1(3p2n?)I¥] > 1 so it still is an upper bound on
this probability.

Plugging in the bounds we have for the terms (1) and
(2) we get

Pris(f1,) 2 s | Ft,= 0 A fil,#0]
< 4 Z as—2]Y|(3p2n2)|Y|(3p2n)]Y|

YCT,
Y#9

1,3\ 171
- w3 (%)

5 () (5F)
4a[( =) -

< o
The last inequality holds since o« satisfies (1 +
in3/a?) <5/4. 3

IA

4 Critical Truth Assignments

and Approximate Negation

For the pigeonhole variables, P;;, ¢ € Dy, j € Dy,
where size(Dg) = size(D1) + 1, we will consider the
class of truth assignments which are mazimally one-
to-one. The set of critical truth assignments over D,
CTAp, is defined to be the class of all truth assign-
ments over D which are one-to-one on all but one ele-
ment of Dg: CTAp = {a | 3z € Dy such that « is 1-1
on Dy \ {«}U D, and Vj € D, P;; = 0}. Given a map
disjunction, f, over the pigeonhole variables, we want
to apply the above switching lemma in order to obtain
a new map disjunction which approximates ~f.
Lemma 4.1. Let D = Dy U Dy where |Dg| = n+ 1,
|D1] = n, and let T be a 1-1 decision tree of height k
defined over the set D. At least a 1— |73’°°—| fraction of all
critical truth assignments o over D are consistent with
some path in 7T'.
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Proof. We prove this claim by induction on the height
of T, k. Consider a randomly chosen critical truth as-
signment o over D.

If £ = 0 then T is just a single node and the Lemma
is vacuously true.

Now suppose that the lemma is true for all trees of
height at most k£ and suppose that T has height k£ + 1.

If the root of T is labelled by some j € D; then «
matches j with a unique i € Dy. Let o be the map
consisting of P;;. Then T[, is a 1-1 decision tree of
height at most k defined over D},. Furthermore, the
probability that o is consistent with some path in T is
equal to the probability that it is consistent with some
path in T'[,. By the induction hypothesis this is at least
1—k/n>1—(k+1)/(n+1) as required.

If the root of T is labelled by some ¢ € Dg then either
¢ = spare(a) or spare(a) # ¢ and a matches ¢ with
a unique j € Dy. Let E be the event that « is not
consistent with any path in T'. Thus we have

Pr[E] < Prlspare(a) =i+
Pr[spare(e) # i] x Pr[E | spare(a) # i].

Since the induced distribution on spare(a) is uniform
over Dy, Prspare(a) = i] = 1/(n + 1). Given that
spare(a) # i we can argue, as in the case that the label
was j € Dy, that the probability of E is at most k/n.
Thus we get a total probability of £ of

+(-759)

as required. g

Corollary 4.2. Let D = Do U D; where |Dgl=n+1,
|D1| = n, and let T be a 1-1 decision tree of height k&
representing f over the set D. Then maps(T’) and —f

1
n+1

1
n+41

k 1

ko ko k41
n n+l

n+l n+1

agree on at least a (1~ n—’h—) fraction of all critical truth
assignments over D.

5 Exponential Lower Bounds —
Proof 1.

5.1 Overview

A Frege proof is a sequence of propositional formulas,
each of which is either an axiom instance or follows from
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previous formulas by one of a fixed set of inference rules.
The pigeonhole principle can be expressed by a class of
propositional formulas, {PHP,, : n € N}, where PHP,,
asserts that there is no 1-1 mapping from a set Dy of
size n+ 1 to a set Dy of size n. We encode PHP,, using
t€ DoAj € Dl},
where Dy and D; are disjoint sets such that |Dg| = n+1

(n+1)n propositional variables, {P;; :

and |D1| = n. Intuitively, P;; = 1 iff ¢ is mapped to j.
Since our proof system will be a refutation system, we
are concerned with the statement ~PHP,,, which can be
written as the conjunction of the following pigeonhole
clauses:

VA{P;j : j € D1}, i€ Dy;
V{—‘-Pik;_'})jk}: i:)éjr 2,] € DO) ke Dl'

In a refutation, one starts with the negated clauses
- PHP, as axioms and then derives \/{}, i.e. False.

As in the paper by Bellantoni, Pitassi and Urquhart
([BPU]), we proceed by induction on the depth of the
Frege proof. Assume that we have a small, depth d
Frege proof of the pigeonhole principle. Without loss
of generality, we also assume that each formula in the
proof consists of ORs and NOTs, except for the bottom
two levels which are ORs of small ANDs. . Applying a
random restriction to each formula in the refutation, we
can simplify the bottom levels so that each occurrenk\
of negation at depth 3 of each formula is replaced by
the “pseudo complement”. This allows us to reduce the
depth of each formula to d — 1, but now each depth
d — 1 formula only approximates the original depth d
formula on the reduced domain. Due to this approxi-
mation, instead of obtaining a depth d — 1 refutation of
the pigeonhole principle (on the reduced domain) which
is completely sound, we obtain a depth d — 1 approzi-
mate refutation which is only approximately sound.

An approximate refutation is a Frege refutation where
each inference is sound with respect to a large subset
of all truth assignments. In contrast, an inference in
a regular Frege refutation is sound with respect to all
truth assignments. The approximation is obtained by
a new method which will be described in the next sec-
tion. The key property of the approximation is that the
pseudo-complement has the property that it is identical
to the actual complement on a large fraction of the as-
signments that are maximally 1-1, namely the critical



truth assignments.

We repeat the restriction argument d — 2 times to
obtain an approximate depth-2 Frege refutation of the
pigeonhole principle, i.e. a refutation in which each
formula is an OR of small ANDs. We then apply a
separate base case argument which shows that there can
be no good approximation to a Frege proof of small size

and with this special form.

5.2 Definitions

Our lower bound is proved using a particular Frege sys-
tem over the basis {V,—}, but it holds for any Frege
system: by a theorem of Cook and Reckhow [CR], all
Frege systems are polynomially equivalent; and exam-
ining their theorem one finds that the small depth of
proofs is preserved in the simulation.

The Frege refutation system that we will use is the
system H described in [BPU]. H is slightly nonstan-
dard in that it is formulated as a propositional proof
system for unbounded fan-in formulas. More precisely,
the formulas of H are unordered rooted trees defined in-
ductively by the rules: (1) if v is a set of variables then
V{A~} is a formula; (2) if A is a formula then ~Aisa
formula; and (3) if T is a finite set of formulas, then \/T
is a formula. Thus the system allows A only at the bot-
tom level, and in fact requires A’s there. This syntactic
requirement simplifies the exposition. The system H
has one axiom: Excluded Middle Axiom A\ —A, and
two rules: (1) Weakening Rule A = A\ B; (2) Cut
Rule (-AV B),(AVC) = (BVC), where A, B and C
represent formulas. In addition, associativity and merg-
ing and unmerging of V are implicit. The crucial prop-
erty of H that we will exploit is that each rule and axiom
involves at most one negation.

The size of a formula is one plus the number of oc-
currences of V and - in the formula; the size of a Frege
proof is the sum of the sizes of the formulas occurring as
lines in the proof. Since each formula consists of ORs of
ANDs in the bottom 2 levels, and the rest of the gates
are ORs and NOTs, the depth of a formula is 2 plus the
number of alternations of ORs and NOTs. The depth
of a Frege proof is the mavimum depth of the formulas
in the proof. A Frege refutation of A; AAsA...AAg can
be viewed as a directed acyclic graph, where each node
in the graph is a formula of the proof. The leaves of the
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graph are the formulas A;, the root of the graph is the
empty (false) formula, and two formulas, A and B are
parents of another formula C if C follows by some infer-
ence rule from A and B. A Frege refutation has height
h if the directed acyclic graph which describes the proof
has height no greater than h.

We will relax our proof rules to yield a new approx-
imate proof system, H', as follows. The Weakening
Rule does not change; the approximate Cut Rule is:
(AV B)(A'VC) — (BV (), and the approximate Ex-
cluded Middle Axiom is: AV A’. An application of the
approximate cut rule is y-sound if A’ is equal to ~A on
a fraction v of all critical truth assignments. Similarly,
an application of the approximate excluded middle ax-
jom is y-sound if A’ is equal to —A on a fraction v of
all critical truth assignments. All applications of the
weakening rule are 1-sound. A proof in H' is v-sound if
all inferences in the proof are 4’-sound, for some ¥’ > ¥.
Note that a y-sound proof has the property that for each
inference there exists a a subset S of all critical truth
assignments, CT'Ap of size at least y|CT Ap|, such that
for each assignment s € S, if s makes all precedents of
the inference true, then s also makes the antecedent of
the inference true. (Note that an axiom can be viewed
as a rule with one precedent, the “true” formula.) All
rules and axioms in H are 1-sound rules; a completely
unsound rule such as [(1,1) — 0] is 0-sound.

5.3 Reducing the Depth

In this section we show how a proof of depth d is con-
verted into one of depth d — 1 while preserving approx-
imate soundness. Let P be a sequence of formulas over
D, |Do| = n+ 1, |Dy| = n, each of depth at most d
(d>2)andlet p € ’R{,’ . Suppose that p leaves exactly
those variables in D’ C D unset, where |Dg| = n' + 1,
|Dj| = n'. P is converted into a sequence of depth d—1
formulas over D’ in the following three steps. When
P’ is obtained by applying the conversion process to P
with p, we say that P’ is P converted by p.

(1) Apply p to each formula of P, obtaining Pf,.

(2) Let Go...Gm be the distinct map disjunctions ap-
pearing in formulas of P [,. Represent each G
by some 1-1 decision tree T; over I''. Define the
pseudo-complement of G;, cp/(Gi) = maps(T}).



Replace each occurrence of —G; by ¢p/(G;), uni-
formly throughout PJ,.

(3) For each formula of P|,, merge together OR gates
appearing at heights 2 and 3.

Definition. A refutation of PHP, over D in H' is
(n,d,t,v,S)-approximate if: each formula has depth at
most d, each map disjunction has mapsize ¢, the total
size of all formulas in the proof is at most S, each in-
ference is y-sound, and the proof was obtained from a
(1-sound) proof in H of the pigeonhole principle over a
larger universe, by applying the above conversion pro-
cess (to the sequence of formulas in the proof) a finite
number of times.

The following lemma shows that if we choose the right
restrictions, then successive applications of the above
conversion process results in an approximately sound
The main idea behind the proof of this
lemma is that while each formula may not be approxi-

refutation.

mated well at all (since every negation is approximated,
and there may be many negations in each formula), each
inference will still remain approximately sound because
each rule and axiom of H involves at most one negation.

Lemma 5.1. (Conversion Lemma) Let P° be a refu-
tation in H of PH P, over D, of depth d and size S. Let
E+1<d-2. Let p=p°p',p?, ..., p* be a sequence of
restrictions such that o’ leaves all variables over Dit!
unset, and D¥*! € DF C ... C D! C D. Also, let
[Di| = n;, and |Di| = n; + 1. Let P1, P2, ... P¥*1 be a
sequence of proofs in H' where P**! is equal to P con-
verted by p*. Suppose also that for every i, every map
disjunction in P? has mapsize at most ¢;, and ¢; < ;41
forall: < k. Let y; = 1—;'1_;*3-. Ifforalli,1<i<k, P
is a proof in H' which is (n;, d—1i,¢;,v;, S)-approximate,
then P*+! is a refutation of PHP,,,, in H' which is
(7k41,d — (k + 1), te41, Y241, S)-approximate.

Proof. The conversion process, applied to any proof
in H' of depth d yields a new proof in H’ of depth
d — 1 and size at most S. Applying the conversion
process k + 1 times thus yields a new proof in H'
of depth d — (k + 1) and size at most S. Because
p leaves exactly those variables in D¥*! unset, where
|DE¥Y| = ng4a + 1 and |D¥FY| = ngy,y, it follows that
P¥+1 js a proof of PHP,,,, in H' over D*¥+1. Also,

since size[cpr+1(G,,)] < tr41 for every map disjunc-
tion G in P*, step (3) of the conversion process insures
that P* converted by p; will have mapsize tg4. It is
left to show that every inference in P*+1 is 4;41-sound.
Fix a particular formula f° in P°. Let f* be the for-
mula which results from f° after i conversion steps — f*
is the corresponding formula in P*. We want to show
that f*+1 follows from a 7i4i-sound inference. There
are three cases to consider: either f0 is an application of
the approximate excluded middle axiom, or f° follows
from the cut rule, or f© follows from the weakening rule.
Here we assume that f° follows from the cut rule; the
other two possibilities are handled similarly. Assume
that f° = B v C, where f° follows from ¢° = AV B
and h® = =A V C. Then for all proofs P}, 1<i<k, ¢
and h’ are the two formulas in P* which imply f*. The
inference (g*, h*) — f* has one of two forms, depending
on the depth of g* h¥.

(1) If the inference has the form (A’'VB’),(~A'VC’') —
(B’ V C') then there are two cases to consider. If
A’ has depth greater than 2, then the new inference
will have the same form since the negation in front
of A’ will not yet be converted; hence the new in-
ference will be 1-sound. On the other hand, if A’ is
a map disjunction, then —A’[ » will be replaced by
cpr41(A’ [ ). Because size[cpr+1(G )] < trqa
for all map disjunctions G in P*, by Corollary 4.2,
we know that cpx+1(A’[,x) will equal A’ [« for
at least 1— ;&:ﬁf of the critical truth assignments
over D¥+1, Hence this inference will be v;4.1-sound.

(2) Otherwise, some previous f;, ¢ < k, which follows
from g* and k', has the form (A’ V B'), (cp:(4’) V
C') — (B'V C'). Let p' = p'pi+i. p*. The infer-
ence (g*, h*) — f* thus has the form (A’ »» VB'}
) (epi(A)tpr VC'1 1) = (B' I VC'| ). Because
every map disjunction in P has mapsize #;, the
map disjunction c¢pi(A’) has mapsize ¢;, which by
assumption is less than or equal to tz4+;. By Corol-
lary 4.2, this implies that cp:(A’)[,+ equals = A’}
for at least a fraction 1 — ”:_':_——‘f‘:f of the critical
truth assignments over D**1, and hence the new
inference will be yx41-sound. g
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5.4 The Lower Bound

Theorem 5.2 (Lower Bound on Size) For suffi-
ciently large n, any Frege refutation of PH P, of depth
d must have size at least exp (n%‘r(d”) /24).

Corollary 5.3 (Lower Bound on Depth) For suf-
ficiently large n, any Frege refutation of PHP, of
polynomial-size must have depth at least Q(loglogn).

Theorem 5.2 will be proven by induction on d, the
depth of the Frege refutation. To facilitate the proof
of the base case, we would like to restrict attention to
Frege proofs which are balanced. Recall that the height
of a Frege refutation is the height of the proof, viewed
as a directed acyclic graph. A Frege refutation is bal-
anced if the height of the refutation is logarithmic in the
size of the refutation. The following lemma states that
any Frege refutation can be efficiently converted into an
equivalent, balanced one.

Lemma 5.4.(The Simulation Lemma) Any Frege
refutation of size S and depth d can be transformed
into another Frege refutation of size S2, depth d+2 and
height O(log S).

To prove the simulation lemma, we first show that
any Frege proof can be converted into a proof in free
form, while preserving the size and depth of the proof
to within small factors. A proof in tree form is a proof
where each intermediate formula is only used once in
the derivation. The main idea behind this proof is
keep around all intermediate formulas that have been
generated at each step in the derivation. Ie., If P =
fo, f1, ..., fq is the original proof, then we construct the
new proof, P’ = f§, fi,..., fi, where f! is the conjunc-
tion of fg, fi,..., fi. Secondly, we show that any size S,
depth d Frege proof in tree form can be efficiently con-
verted into a balanced Frege proof — one which has size
S? and height O(log S). The full proof of the Simulation
Lemma can be found in [PBI].

By the above Simulation lemma, theorem 5.2 is a
corollary to the following theorem.

Theorem 5.5.(Lower Bound on Size for balanced
Frege refutations) For sufficiently large n, any bal-
anced Frege refutation of PH P, of depth d must have
size at least S = exp (n%4_(d+l)/l2).

Proof. The proof is by induction on d. Suppose

that there were such a refutation, P, of PHP, in our
system H, of size S, depth d, and height at most
logS. Let t = 2/4logS. Define A(n) = (n/256t)/4.
If A* is the i-fold composition of A with itself then
it is easy to show that A(n) > n*  /(256t)}/3. If
S< exp(n'}“_““) /12) then straightforward calculation
shows that ¢ < 1A%+!(n). Because the system H is
sound, and each map disjunction has mapsize 1, P is

a refutation in H’ which is (n, d, ¢, 4o, S)-approximate,

57)- Applying the

Induction and Base lemmas below, we show that that
for sufficiently large no, that there is no proof in H’' of
PHP,, which is (ng, d,t, 70, S)-approximate.

Suppose that n; > A(ni—1) > ... > Ai(ng) for all g,
0<i<d—~2 Letp; =Ani)/n; and v = 8 1
for all such i.

where ng = n and 7 = {1—

Lemma 5.6. (Induction Lemma) Let P? be a
refutation of PHP,, in H' which is (n;,d — i,t,7;, S)-
approximate, where ¢, 7;, and n; are as above. Then
there is a restriction p such that P* converted by p is
a refutation of PHP,,,, in H' which is (ni41,d — (i +
1),%,¥i+1, S)-approximate, where ¢, 7,41 and n;4; are
as above.

Proof. Let D be the domain of the formulas in Pt
Since t < +\(n;) for any i < d, pi(n; — t) >t so we can
apply the Switching Lemma, for p drawn at random
from RL, to get our desired result. The probability that
P' converted by p does not result in new proof, Pi*+1,
where each map disjunction has size at most ¢ is at most
Sat where 0 < a < 8p?n?/2t1/2. Since p; = A(n;)/n; we
see that « is no greater than 1/2. It follows that since
t = 21/41og S, Sat is no greater than 1/6.

The expected number of stars after applying the re-
striction p is n;p; = A(n;). Since the number of stars
is binomially distributed, for sufficiently large n¢, a ran-
dom p leaves at least the expected number of stars with
probability greater than 1/3. (See, for example, Lemma
4.1 of [BH]). Thus, there exists a restriction, p, leaving
ni41 stars, nj41 > A(n;), such that P? converted by p
results in a new proof Pi*! of PHP,,,,, where each
map disjunction has size at most ¢ and the depth is
d—(i+1). Now by the Conversion Lemma, P+! is also
Yi+1-sound. |

Lemma 5.7. (Base Case Lemma) For ¢t < nf, ¢ <
1/2, there is no balanced, approximate proof of PH P,
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which is 1 — ;:—t'_-l--sound, where each formula is a t-
disjunction and the total size of the proof is 2. In
particular, there is no proof of PHP,,_, in H' which

is (n4-2,2,t4-2,Ya—2, S)-approximate.

Proof of Lemma 5.7. Recall that a y-sound proof of
~PH P, has the property that each inference is sound
with respect to at least the fraction ¥ of the total num-
ber of critical truth assignments. The idea is to hit the
proof with another restriction of size no greater than
2tlog S = 2t2, to obtain an approximate proof of the
pigeonhole principle on a subset, [m], of [n], with an
inference of the form [(1,1) — 0]. Such an inference
is 0-sound. But this will be shown to contradict the
lemma which states that a (1 — ~t7)-sound proof of
PHP,, when hit by a small restriction leaving m holes
unset, should yield a (1 — ;I’il-)-sound proof of PHP,,.

We will obtain the restriction constructively, by walk-
ing up the proof, from the root (the “false” formula)
to the leaves (the pigeonhole clauses), setting variables
as we go along until we eventually force an inference
[(1,1) — 0]. The bottom formula is 0. Consider the
precedents (there are at most two of them.) If both are
1, then we are done. Otherwise, either both are unset or
(at least) one is a zero. If either is zero, then continue
up that side. If both are unset, then force one of the two
antecedents to 1 by setting ¢ variables; this is possible
because all formulas in the proof are t-disjunctions. If
this forces the other antecedent to 0, then continue up
this side; otherwise, we can force this antecedent to 1 by
setting ¢ additional variables. Continue in this fashion
until we force an inference [(1,1) — 0]. It is left to argue
that this will eventually happen since any two clauses
at the leaves can always be simultaneously forced to 1.
Note that each leaf formula is either an approximate
excluded middle axiom, or a pigeonhole clause, or a for-
mula which has already been set to ”1”. There are 3
nontrivial cases to consider: (1) both leaf formulas are
instances of the approximate excluded middle axiom;
(2) one leaf formula is a pigeonhole clause and the other
is an instance of the approximate excluded middle ax-
iom; and (3) both leaf formulas are pigeonhole clauses.
Assume case (1): both formulas, f; and f; are instances
of the approximate excluded middle axiom. We first
force fi to 1 by setting at most ¢ variables. Because the
proof has height log S = t, at this point we have set at

most 2t variables. Now, consider the resulting proof,
over the new universe of size at least n — 2t > n/2.
By Corollary 4.2, each remaining approximate excluded
middle axiom is 1 + %—sound. In particular, because fo
is 1+ -ff-—sound, it has not been forced to 0. By setting
t additional variables, we can also force f; to 1. We
can apply the same argument for case (2). Now assume
case (3): both f; and f, are pigeonhole clauses. By
examining the pseudo-complement applied to a pigeon-
hole clause, it is clear that any two such clauses can
simultaneously be set to 1.

Since the proof has height log S = ¢, and at each step
in our ascent up to the leaves we have set at most 2¢
variables, we eventually force an inference [(1,1) — 0]
by setting at most 2t* variables. By lemma 5.1, we
should now have an approximate refutation of ~PH P,
where m = n— 2t > %, and which is (1 — ;&1)-sound.
Because ,-n% < 1/2, we know that each inference in the
approximate refutation of ~PH P, is greater than 1/2-
sound. However, we have forced a 0-sound inference,

and hence we have reached a contradiction. g

6 Exponential Lower Bounds —
Proof 2.

We shall use PH P, in the form

\/ ~(=pix V —pjk) V \/ (- \/ Pik)-

i#j€Dg,keD; i€De keD,

Thus, the size of PHP, is O(n®) and the depth is 4.

6.1 Complete systems of partial maps.

Let n be a natural number and Dy and D; two sets of
cardinalities n+1 and n respectively. The following def-
inition introduces basic technical notions we shall work
with.

Definition A.

(a) M is the set of partial 1—to—1 maps from Dy to
Dl)

M = {h :C Dy — D |h injective}.
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For H C M, the norm ||H|| of H is
H | := max |A].

(As h is injective, |h| = |domh| = [rngh|.)

(b) A subset S C M is k-complete iff it satisfies four
conditions:

(i) 5#0,
(i) V6,8’ € S, 6 £ 6 -6V ¢ M,
(i) Vh e M, |h|+k<n—36€ S,hube M,
(v) 1ISII < &
(c) For H,S C M, S is a refinement of H, written

HaS,iff
V6 € 8,(3h € H,hUG € M) — (3h' € H, I C 6).

Lemma A. Suppose H<9S<«T for some H,S, T C M,S
is k-complete and ||T||+ k < n. Then H<«T.

Proof. We have
VreT3Ibe S,6UureM

by the k-completeness of S and by ||T||+ % < n, and so
by-S < T it must be:

VreTI €8,6Cr.

To prove the lemma let h € H,7 € T be such that
hUT € M. Take 8 € S st. & C 7. Hence also
hUo' € M and thus b’ C ¢ for some h' € H, by H«S.
We have b’/ C 7 as we wanted to establish.

Definition B. For S,T C M, the set S x T', a common
refinement of S and T, is defined by:

SxT={6Ur € Mlsomed € S,7 € Ts.t
V' e 8,7 eT,~(8'Ur’' céur)}.

In other words, it is the set of C-minimal elements of
M of the form §UT,6 €S, 7€T.

Lemma B, Let ST C M and assume that S is k-
complete, T' is l-complete, ||S]|+ ! < n,||T||+k < n
and k +! < n. Then:

(a) S x T is k+ l-complete.

(b) SaSxT, TaSxT.

Proof.

(a) Let 6 € S. As |6]+1 < ||S||+1 < n and T is
l-complete, § UT € M for some 7 € T. Assume
8 ur C U T for some & € S,7 € T. Then
8U 8 € M and, by the k-completeness of S, = §'.
Analogously 7 = 7/. Hence 6§ U 7 is C-minimal and
thusin S x T, so S x T # 0.

Assume §UTt, §'Ur’ € M for §UT, §'Ur' two distinct
elements of S x T'.

Then either § # 8 or 7 # 7’ and hence either
dUé ¢ M or U ¢ M by the completeness of S
and T resp.. In both cases (UT)U (8’ UT') ¢ M
which verifies condition (b)(ii) of Definition A.

To verify (b)(iii) let |h|+ &+ 1 < n. Then, as
||Si| € k and ||T'|| £ I, by the completeness of S, T
there are 6§ € S, 7 € T'st. hUdUT € M. Then
clearly hU (8’ U7') € M for some § U7/ C6UT,
an element of S x T.

Finally, as obviously ||S x T|| < IS+ ]|T|| < k+1,
condition (b)(iv) holds too.

(b) Let h € Sand hU(§U7T) € M for some §UT €
S xT. Then, since S is k-complete, h = 6§ and thus
h C dU7r. Hence S<aS x T. Identically follows
TaSxT.

Definition C. Let H,S C M. The projection of H on
S, S(H) in symbols, is:

S(H) = {6 € S|3h € H,h C §}.

Lemma C1. Let H,S,T C M, let S be k-complete,
IT||+ %k <nand HaS<T. Then
T(S(H))=T(H)and T(S) =T.
Proof. To see T(S(H)) C T(H) let 7 € T(S(H)).
Then h C § C 7 for some § € S(H),h € H. So r €
T(H) too.

To establish T(H) C T(S(H)) let T € T(H) and h C
7 for some h € H. Then, as in the proof of Lemma
A, for some § € 5,6 C 7. Hence hUé € M and, as
H<aSh Céb6forsomeh’ € H. Soh' C § C r,ie.
T € T(S(H)).

To see T(S) = T take H = {0}.
Lemma C2. Let H,S,T C M,H<S<T,||S||+1 <
n, ||T)|+ &k < n, and let S be k-complete and let T be
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l-complete. Then S(H) =S iff T(H) =T.
Proof. Assume first S(H) = S. By Lemma C1 T'(S) =
T and also T(S(H)) =T(H). Thus T(H) =T.

Now assume T(H) = T, and let § € S be given. By
the I-completeness of T" and by |§|+1 < ||S]|+1 < n,6U
T € M for some 7 € T. By the assumption 2 C 7, some
he H. Hence §Uh € M too and thus, by HaS,h' C §
some other h' € H. Therefore § € S(H).

Lemma C3. For any S,H; e M,i€ I,

s (LIJH,-) = LIJS’(H,-).

Lemma C4. Let S C M be k-complete and Sp,5; € S
two disjoint sets, let T'C M. Then:

T(So)NT(S;) = 0.

Proof. For the sake of contradiction assume 7 €
T(So) N T(S1). By Definition C, § C 7 and §; C 7
for some 8y € Sp, 61 € S1. But then & U 6, € M which
contradicts k-completeness of S, as necessarily 8g # 61.

Lemma C5. Let S,T C M, S be k-complete, {|T||+k <
n,S<4T and Sy € S. Then:

T(S\So) = T\T(So).

Proof. By Lemma C1,T(S) = T. By Lemma C4,T(S)
is a disjoint union of T(Sy) and T(S\Sp).
T(S\So) = T\T(S0)-

Hence

Now we approach the technical heart of the paper,
a space of random maps and a lemma, comming from
boolean complexity.

Definition D.

(a) Let 0 < p < 1. Then R is the probability space
of maps p € M, as defined in section 2.

(b) For p,h € M, h? is undefined if hUp ¢ M and,
if hUp € M, domh” = domh\domp and h*? =
hldomh?. Also, Df = Dog\domp, D{ = D;\rngp
and (n)? = |Df|. For H C M,H? = {h* | h €
H and h* is defined}.

Note: “h? undefined” and “A? = @ are different

things.

In the proof of the theorem we shall be forced to
move from a situation with n, Dy, D;, M and some
H,85T,... C M to a situation with (n)?, D§, D}, M*?

and H?, 5%, T, ..., by choosing random p € R?, while
preserving some properties. That is guaranteed by the
next lemma.

Lemma D1. Let H, S, K C M and p € M be arbitrary.
Then:

(a) H < S implies H? 457,

(b) S k-complete and |p| + k¥ < n implies that S” is
k-complete,

(¢) K =S(H) and H « S implies K* = S?(H?).

Proof.

(a) Let h € H,é € S be such that k” U§? € M?. Then
hUS6 € M and so h' C é for some h' € H. Then
(hy C 8.

(b) S? # 0 by k-completeness of S and by |p| + k < n.
Let 8{Ué85 € M? for some 8;,63 € S. Then 6;Ud; C
M so 6, = 6, ie. 8 = 84. To verify the third
condition of Definition A(b) let [h| + k < (n)”? for
some h € M? C M. As |p| = n — (n)? we have also
|hUp|+k < n. Hence for some § € S,(hUp)US €
M. But then hUé6” € M? as h = h”. Finally,
1571l < ISl < k.

(c) Let k” € K?, some k € K. Then £ € S and h C &
for some h € H, which gives k? € S and h? C «k”,
ie. k? € SP(H?).

Now let 6 € S°,h* € H? st. h? C 6°. Then
hUbS € M and, as H 4 S,h’ C 6 for some other
h' € H. So § € S(H), i.e. § € K, and therefore
5” € K*,

Lemma D2. Let H C M,||H||<t<sand0<p< 1.
Assume that p(n —5s?) > 2 and ¢ < p(n +1). Then for
random p € ’Rf,’ the statement: “there is 2s-complete
S C M? such that H? 4.5” holds with probability at
least 1 ~ (64p*n3t)*.

For the choice of p = n*~! and t = s = n’ such that
O<é<ex< -é- and n sufficiently large this probability
is at least 1 — 2-"" even if we add the condition el <
n — Lpn (using Chernoff inequality).

Proof. H can be viewed as a t-disjunction. Also,
note that for any 1-1 decision tree T representing H1,
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over D|,, the maps defined by the paths of T is a k-
complete set S such that H” < S where k = §(H [,).
Thus, by Lemma 3.2, with probability at least 1 — a2,
there exists a 2s-complete S C M? where « satisfies
0 < a < 8p?n3/2t1/2, Plugging in this term, we obtain
the desired probability 1 — (64p*n3t)°. g

6.2 The Lower Bound.
In this section, we will prove the following theorem.

Theorem. Let F be any Frege proof system and d any
natural number (greater than the depth of PHP, as
formalized in F'). Then for all sufficiently large n every
depth d F-proof of PH P, must have the size at least
exp (ns—d) .

Recall that we consider only formulas in the language
V,—,0,1,pij,i € Do,j € D1,|Dg = n+ 1,|Dy| = n.
Let ¢ be a disjunction. The reduced form of ¢ will be
the expression V @i where each ¢; is either a negated

formula or a variea{ble and ¢ is obtained from ¢;,7 € I by
applying the binary V in a suitable order. Equivalently
i can be determined as the maximal subformulas of ¢
whose depth is less than the depth of ¢.

Definition F. Let I" be a set of formulas, T closed under
subformulas. A k-evaluation of T is a pair of mappings

(H,5).

H:T - P(M),S:T — P(M)

such that:

(1) for every ¢ € ''H, C S, € M and S, is k-
complete;

(2) Hy = @7H1 = {0},50 = S5 = {0}, Hp.-j =
{60
Spis = G, NN # 4,5 # 5 {{(i, )}

(3) if ~p € T, then Hoy = Sy\Hy, S-~p = Sp;

(4) if ¢ €T and V/ ¢; is the reduced form of ¢, then
i€l
\JHy:<S, and H, = S, )
iel

(Y.

i€l
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Let p € M. We define

(pij)° Lif p(i) = j

0if ¢ € dom(p), but p(¢) # j,
0if j € rng(p), but p(i') = j for i’ #31,

pij otherwise.

If ¢ is a formula, then ¢* is obtained by applying p to
all variables of ¢; if T is a set of formulas, then I'’ =
{e*lp €T}

Lemma F1. Let T be a set of formulas, p € M, and
ol + & < n. I (H,S) is a k-evaluation of I', then
(H?,S?) is a k-evaluation of I'”.

Proof. - use Lemma D1(a) and (b).

Lemma F2. Let d > 1, be an integer, 0 < & < %,0 <
6 < €% 1 and let T be a set of formulas of depth d,T
closed under subformulas. Suppose that |T'| < 2*° and
n is sufficiently large. Then there exists p € M, |p| <
n—n""" such that there exists a < 2n%-evaluation of
re.

Proof. Proceed by induction.

(1) For d = 1 the only formulas are single variables for
which we have H,,; and Sp,; by (2) of the defini-
tion. Clearly Sp,; is 2-complete, hence we have a
2-evaluation, (p = 0).

(2) Suppose that the lemma is true for d and let T
be a set of formulas of depth d + 1, T closed under
subformulas. Let A be the formulas of I' of depth <
d. Let 0 < e¢(= €9+1~1) be given. By the induction
assumption we have a o' € M, |p'| < n—n*""" anda
< 2n.evaluation (H’, S") of A”'. Let m = n—|¢'|,
thus m > nt*"". We shall extend p' to a suitable
p. This can be thought of as applying some p” to
the restricted universe given by D{," and Df’. By
Lemma F1 the restrictions of M’ and S’ will be <
9n’-evaluations of A”'?" again, thus we only need
to choose p” so that we can extend this evaluation
to the whole T'. For negation it is straightforward
for any p"”. For disjunction we apply Lemma D2
with n, Dy, D; replaced by m, DGI,D'{’, and t =
s=mnl,p=1im1, Let p €T, of depth d + 1,
letdy @i be the reduced form of . Note that n® =

€

—i —t
n «@-T < mei-T and ;;i_T < ¢. By Lemma D2,



if n is sufficiently large, then with probability <

1-2-"" there is S C M?'?" such that U(H{p,-)”" aS
i

and |[p”| £ m — 2pm = m — m®. If this is the case,

we extend (H', S') to ¢ by defining

Sp=Sand H, =S (U(H;,,.)P") .

Since |T| < 2"°, there is at least one p" with the
above properties satisfied all for such ¢ € I'. Then
we have also

lol = 1pp"| Sn—m+m—m =n—m* <n-n.

Lemma F3. For every Frege system F' there exists a
constant f with the following property. If (v1,...,7:)
is an F-proof, (H,S) is a k-evaluation of the set of all
subformulas of the proof and k < n/f, then H,, = S,
fori=1,...,t.

Proof. Let F' be given. Let f be the maximal number
of subformulas in a rule of F plus 1. Clearly it suffices
to prove the following claim and apply induction:

Claim. Let

‘Pl(’/)l;---;¢m):~~~:¢r(¢1,--'a¢m)
‘P0(¢1)---;¢m)

be an instance of a rule of F. Let (H,S) be an
n/ f-evaluation of the subformulas of po(¥1,...,%m),
v ©r(¥1,...,%m). Suppose that Hy = S for § =
@i(¥1,...,%m), i = 1,...,r. Then Hy = S; for
& =po(¥1,...,¥m).

Proof of Claim. Let (H,S) be given. Let I' be the
set of all formulas of the form ¢(%1,...,%¥m), where
©(q1,---,9m) a subformula of some @;i(q1,...,qm),t =
0,...,r. Let T be an ﬂ‘%)--complete system such that
S¢ «T for every £ € T'. Such a system exists by Lemma
B. Note also that ||S¢|| + ||T'|| < n for every £ € T.
Suppose that = € T. Then H.; = S¢\Hg, hence, by
Lemma C5, T(H-¢) = T\T(H¢).

Suppose that o, 3, a VB €T. Let \/ % resp. V %

i€A i€B

be the reduced forms of o resp. 8. Hence, using Lemma
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C3,

U H’V.’

Havﬂ = Savﬁ (
i€A

)USavp (.LerH)

Now using Lemma C3 and using Lemma C1 twice we

get
)

UH ,.))UT(SM (U H,,
i€A i€EB
=T (U H,,.> uT (U H .-)
i€A i€B
=T(S« (U H a) YUT(Sp (U H‘y.))
i€A i€d
=T(H,)UT(Hpg).
Furthermore, by Lemma C1 we have T' (H f) = T(Sg) =
T, for £ = pi(¥1,...,¥m),i = 1,...,r, since He = S
and S¢ is complete.

T(Havp) =T(Savs (

Thus we have shown that the mapping { — T'(H)
of T into the Boolean algebra of subsets of T' has the
following properties:

(1) it maps - on the operation of the complement and
V on the operation of the union:

(2) it maps the premises of the rule on T'.

Since the rule is sound, we must have T(H;) = T
for £ = ¢o(¥1,...,&m), hence by definition and Lemma
C2, H¢ = S¢(Hg) = S¢, which concludes the proof of
the claim and, consequently, of the lemma.

Lemma F4.

(i) Let (H,S) be a k-evaluation of the subformulas of
PHP, and suppose k < % — 3. Then Hpgp, =0,
(hence # SpHp”).

(i) Ifpe M,k < "—_2-121 — 3, then the lemma holds for
PHP,?’,

Proof.

(i) PHP, is a disjunction of formulas —¢ where
¢ ranges over - V ikt # j € Do,k €

D1, V pik,i € Do. We shall show that H, = S,
k€D,



for each such formula, hence H-, = @, thus
Hpyup, = Spap, (| H-y) = Spurp.(0) = 0.

There are two cases. First, suppose that ¢ is -p;p V
—pjk. By definition

H Wik
H

{({G,F), (¢ B} # 4,k # k)
G ), (G k)Y # 4,k # K}

Let T be the 3-complete set

Pk

G k), G B, (LR # 1 # 5, K # B # k}
U{{(i, k), (5, k' Hk # &'}
U{{(i, k"), (4, k)}k # &'}

It can be easily verified that T(H.p,, UH-p,) = T.
By Lemma B, we have some n/2-complete W which
is a common refinement of S, and T. Hence, by
Lemma C2, W(H-y,, U H-y,, ) = W, and again by
Lemma C2,

H"Pikv--ij = S(H"Pik U H"'ij) = S“P-‘kV—.ij'

The second case is when p is \/ pix. By definition

keD,
H, = S,({(i, k)|k € D1}). But, clearly, {(i, k)|k €
D, } is 1-complete, hence

Sp({(, )|k € R}) = S,.

(i) The generalization is straightforward: if ¢ contains
a variable which is changed to 0 or 1 by p, then all
the variables in ¢ are fixed and one can easily check
that H., = 0.

Now we are ready to prove our main result. Let F be
a Frege system, d > 4 (4 is the depth of PHP,), 0 <
§ < 591 let n be sufficiently large and let (y1,...,7:)
be an F-proof of depth d and size < 2*°. Let f be
the constant associated to F' by Lemma F3. Choose
an ¢ such that ¢ < ¥ and § < €91,
there exists p € M, |p| < n—nt""" and a 2n’-evaluation
(H,S) of I'?, where T is the set of subformulas of the
proof (71,...,m). Clearly (7%,...,7f) is an F-proof
with variables p;j,i € Dj,j € D! and I'? is the set of
its subformulas. Let m = (n)? = n — |p| > n¢*"". Since

By Lemma F2,

n is large, we have

m? < -7}—1 and 2n’ < 1;——3.
Thus we can apply Lemma F3 (with n replaced by m
etc.) and Lemma F4. By the first one we get H,» = S,
for i = 1,...,t; by the second one, Hpgps = 0, which
is different from Spgpe. Thus, (11,...,7%) cannot be
a proof of PHP,, i.e. any proof of PHP, of depth d
must have size at least 2"’
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