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i. Introduction 

The motivation for this work comes 
from two general sources. The first 
source is the basic open question in com- 
plexity theory of whether P equals NP (see 
[I] and /2]). Our approach is to try to 
show they are not equal, by trying to show 
that the set of tautologies is not in NP 
(of course its complement is in NP). This 
is equivalent to showing t~-at no proof 
system (in the general sense defined in 
[3]) for the tautologies is "super" in the 
sense that there is a short proof for 
every tautology. Extended resolution is 
an example of a powerful proof system for 
tautologies that can simulate most stan- 
dard proof systems (see [3]). The Main 
Theorem (5.5) in this paper describes the 
power of extended resolution in a way that 
may provide a handle for showing it is not 
super. 

The second motivation comes from con- 
structive mathematics. A constructive 
proof of, say, a statement VxA must pro- 
vide an effective means of finding a proof 
of A for each value of x, but nothing is 
said about how long this proof is as a 
function of x. If the function is 
exponential or super exponential, then for 
short values of x the length of the proof 
of the instance of A may exceed the number 
of electrons in the universe. Thus one 
can question the sense in which our origi- 
nal "constructive" proof provides a method 
of verifying VxA for such values of x. 
Parikh E4] makes similar points, and goes 
on to suggest an "anthropomorphic" formal 
system for number theory in which induction 
can only be applied to formulas with 
bounded quantifiers. But e~en a quantifier 
bounded by n may require time exponential 
in the length of (the decimal notation 
for) n to check all possible values of the 
quantified variable (unless P = NP), so 
Parikh's system is apparently still not 
feasibly constructive. 

In section 2, I introduce the system 
PV for number theory, and it is this 
system which I suggest properly formalizes 
the notion of a feasibly constructive 
proof. The formulas in PV are equations 

t = u, (for example, x-(y+z) = x.y + x.z) 
where t and u are terms built from vari- 
ables, constants, and function symbols 
ranging over L, the class of functions com- 
putable in time bounded by a polynomial in 
the length of their arguments. The system 
PV is the analog for L of the quantifier- 
free theory of primitive rec~rsive arithme- 
tic developed by Skolem [5] and formalized 
by others (see [6]). A result necessary 
for the construction of the system is 
Cobham's theorem [7] which characterizes L 
as the least class of functions containing 
certain initial functions, and closed under 
substitution and limited recursion on nota- 
tion (see section 2). Thus all the func- 
tions in L (except the initial functions) 
can be introduced by a sequence of defining 
equations. The axioms of PV are these 
defining equations, and the rules of PV are 
the usual rules for equality, together with 
"induction on notation". 

All proofs in PV are feasibly cons- 
tructive in the following sense. Suppose 
an identity, say f(x) = g(x), has a proof 
in PV. Then there is a polynomial p~(n) 

such that ~ provides a uniform method of 
verifying within p~(Ix01 ) steps that a 

given natural number x 0 satisfies 

f(x0) = g(x0). If such a uniform method 

exists, I will say the equation is 
polynomially verifiable (or p-verifiable). 

The reader's first reaction might be 
that if both fang g are in L, then there 
is always a polynomial p(n) so that the 
time required to evaluate them at x 0 is 

bounded by p(Ix 01), and if f(x) = g(x) is a 

true identity, then it should be p- 
verifiable. The point is that the verifi- 
cation method must be uniform, in the sense 
that one can see (by the proof 9) that the 
verification will always succeed. Not all 
true identities are provable, so not all 
are p-verifiable. 

There is a similar situation in cons- 
tructive (or intuitionistic) number theory. 
The Kleene-Nelson theorem (E8], p. 504) 
states that if a formula VxA has a 
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Proof complexity is a rich subject drawing on methods from logic, 

combinatorics, algebra and computer science. This self-contained book 
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a whole entity rather than a collection of various topics held together loosely 

by a few notions, and it favors more generalizable statements.

Lower bounds for lengths of proofs, often regarded as the key issue in 

proof complexity, are of course covered in detail. However, upper bounds 

are not neglected: this book also explores the relations between bounded 

arithmetic theories and proof systems and how they can be used to prove 

upper bounds on lengths of proofs and simulations among proof systems. It 

goes on to discuss topics that transcend specifi c proof systems, allowing for 

deeper understanding of the fundamental problems of the subject.
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