
Information efficiency of proof systems

Jan Kraj́ıček

Charles University

Simons Institute seminar, 25.March 2021

1 / 20



basics 1

Cook-Reckhow’s definition

A propositional proof system (abbreviated pps) is a p-time function whose
range is exactly TAUT, the set of propositional tautologies:

P : {0, 1}∗ →onto TAUT .

Fundamental problem

Is NP closed under complementation? Equivalently, is there a pps P such
that the length-of-proofs function

sP(τ) := min{|w | | P(w) = τ}

is bounded by |τ |O(1)?

2 / 20



basics 2

Two pps P and Q can be compared by their proof lengths:

P ≥ Q ⇔ sP(τ) ≤ sQ(τ)O(1)

or by the possibility to efficiently translate proofs:

P ≥p Q ⇔ ∃ p-time f s.t. ∀w ,P(f (w)) = Q(w) .

(f is a p-simulation of Q by P.)

The optimality problem

Is there a maximal pps w.r.t. ≥ or ≥p?
(The former would be called optimal, the latter p-optimal.)

3 / 20



basics 3

NO ⇒ NP 6= coNP or P 6= NP, resp.
(in fact, ⇒ NE 6= coNE or E 6= NE)

The Optimality problem relates to a number of questions in surprisingly
varied areas: structural complexity th. (disjoint NP sets, sparse complete
sets, ...), finite model th., quantitative Gödel’s thms, games on graphs,
etc., and quite a results characterizing the existence of optimal systems are
known.

In particular, relative to a theory there is an optimal pps (≥-max w.r.t. to
all pps that are provably sound in the theory) and uniformity of pps may
be important (there is an optimal pps among pps with advice).

4 / 20



proof search alg’s

What about the complexity of searching for propositional proofs?

Proof search problem (informal)

Is there an optimal way to search for propositional proofs?

Definition

A proof search algorithm is a pair (A,P) where P is a pps and A is a
deterministic algorithm that stops on all inputs and finds P-proofs for all
tautologies:

P(A(τ)) = τ

for all τ ∈ TAUT .

5 / 20



no new problem

A natural quasi-ordering:

(A,P) ≥t (B,Q) ⇔df timeA(τ) ≤ timeB(τ)O(1) .

Lemma

For any fixed pps P there is A such that (A,P) is time-optimal among all
(B,P), i.e. ≥t-maximal.

Let (Ap,P) denote a proof search algorithm time-optimal for all (B,P).

Theorem

For any sufficiently strong (essentially just containing resolution R) pps P:
P is p-optimal iff (AP ,P) is time-optimal among all proof search
algorithms (B,Q).

6 / 20



doubts about ≥t

Is there a way to define a quasi-ordering � of proof search alg’s
differently so that the problem of optimality does not reduce to the
p-optimality problem?

It should be that ≥t ⊆ �, i.e. the comparison by time is the finest.

But (A,P) >t (B,Q) may hold just because A remembers one p-time
sequence of tautologies (and their P-proofs) that are hard for Q but
easy for P.
Perhaps one ought to compare alg’s only on inputs on which they do
something non-trivial?

In general, could it be that in some natural quasi-ordering � there is
an optimal proof search algorithm?

These and other informal questions lead me to the following notion.
7 / 20



information efficiency

Definition

For a pps P, the information efficiency function is defined as:

iP(τ) := min{Kt(π|τ) | P(π) = τ} .

Here Kt is Levin’s time-bounded Kolmogorov complexity:

Kt(w |u) := min{|e|+ log t | machine e computes w from u in time ≤ t}

For τ , |τ | = m, and for P whose proofs are not shorter than the formula
being proved and which allows to simulate efficiently the truth-table proof:

log m ≤ log sP(τ) ≤ iP(τ) ≤ m .

8 / 20



information and time

Lemma 1

Let (A,P) be any proof search algorithm. Then for all τ ∈ TAUT :

iP(τ) ≤ Kt(A(τ)|τ) ≤ |A|+ log(timeA(τ)) .

In particular, timeA(τ) ≥ Ω(2iP(τ)).

Lemma 2 (i-automatizability)

For every proof system P there is an algorithm B such that for all
τ ∈ TAUT :

Kt(B(τ)|τ) = iP(τ)

and
timeB(τ) ≤ 2O(iP(τ)) .

9 / 20



information vs. size

Can iP(τ) give a better time lower bound than sP(τ)?

That is, can we have that

iP(τ) ≥ ω(log sP(τ)) (1)

holds for infinite set of tautologies of unbounded size?

Observation

(1) can happen for a given pps P iff P is not automatizable.

10 / 20



calculation 1

Denote m := |τ | and call a quantity

small or large iff it is O(log m) or ω(log m), resp.,

and a string simple or complex iff its Kt-complexity is small or large,
resp.

Formulas τ that witness (1) must necessarily have only complex P-proofs
as

iP(τ) ≤ Kt(π|τ) ≤ Kt(π)

and must have some short proofs, w.l.o.g.

sP(τ) ≤ mO(1) .

11 / 20



calculation 2

A convenient way then how to express that τ witnesses (1) is to say that

A criterion

For all P-proofs π of τ :

It(τ : π) := Kt(π)− Kt(π|τ) is small .

[This quantity, defined by Kolmogorov, was by him interpreted as
information that τ conveys about π.]

If we find formulas τ that have short proofs but only complex proofs that
are themselves simple then we are done:

It(τ : π) ≤ Kt(τ) + log−terms

and hence it is small.

12 / 20



example

If formulas τ are complex then this inequality does not help. Examples of
these formulas can be constructed as follows.

Take h : {0, 1}∗ → {0, 1}∗ a OWP and B(x) its hard bit predicate.
For b ∈ {0, 1}m and x = (x1, . . . , xm) define formula ηb by:

hm(x) = b → B(x) = B(h(−1)(b)) .

Theorem (ess. K.-Pudlák’95)

Assume P admits p-size proofs of the injectivity of each hm. Then
formulas ηb have p-size P-proofs and, if h is one-way, iP(ηb) cannot be
bounded by O(log |ηb|) = O(log m).

13 / 20



uses of size lower bounds

A separation of information from size implies that P 6= NP and hence
analysis of such flas must necessarily by asymptotic and use some strong
hypothesis.

Can we treat lower bound for information iP(τ) individually for some
τ , similarly as size lower bounds are (often) individual?

Size lower bounds for P are used in proof complexity primarily for three
things:

1 No Q ≤ P is p-bounded: an instance of NP 6= coNP.

2 It implies time lower bounds for all SAT alg’s that are simulated by P;
in particular, for all whose soundness has p-size P-proofs: an instance
of P 6= NP.

3 It implies independence results for the FO theory TP attached to P.
In particular, P 6= NP is then consistent with TP .

14 / 20



information is just as useful

But having only information lower bounds:

iP(τ) ≥ ω(log |τ |)) (2)

is just as good:

1 It implies for all Q ≤p P that either Q is not p-bounded or P 6= NP.
(Uses that P ≥p Q ⇒ iP(τ) ≤ O(iQ(τ).)

2 It also implies time lower bounds for SAT alg’s (Lemma 1).

3 It also implies independence from TP (propositional translations are
performed by p-time alg’s.)

15 / 20



a problem

Hence it makes a good sense to try the following

Problem

Prove an unconditional lower bound

iP(τ) ≥ ω(log |τ |))

for some proof system P for which no super-polynomial size lower bounds
are known.

Maybe try first to prove the lower bound for P which we know
(unconditionally) is not p-bounded but for formulas τ for which no
super-polynomial lower bound for sP(τ) is known.

Expect that the i-hard formulas will have long P-proofs.
16 / 20



uniform candidates

reflection formulas:
〈RefQ〉m

expressing that

all formulas with a Q-proof of size ≤ m are tautologies.

- Probably too general to be useful for unconditional lower bound.

- A version expressing the soundness of Q-proofs π with

Kt(π|Q(π)) ≤ log m

may be useful.

17 / 20



non-uniform candidates

Generators of proof complexity: given

g : {0, 1}n → {0, 1}m , n < m

computable in time mO(1), take for any b ∈ {0, 1}m \ Rng(g)
the formula

τ(g)b(x , y) := g(x) 6= b .

Observation

If g is a PRNG then for no P can iP(τ(g)b) be bounded by O(log m).

Specific functions g for which sP(τ(g)b) is conjectured to be
super-polynomial for strong (or all) pps were proposed.
Whenever we know that P is not p-bounded it can be demonstrated using
some such g .

18 / 20



related topics in proof complexity

proof complexity generators

implicit proof systems

proof systems with advice

diagonalization

random formulas

complexity of finding hard tautologies

...

19 / 20



references

Information in propositional proofs and algorithmic proof search

[a preliminary version available at my web page]

Proof Complexity, (2019), CUP

[for a proof complexity background]

20 / 20


