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topic

proof complexity briefly:

study of lengths of propositional proofs

with closely related research into

bounded arithmetic theories (both proof theory and model theory)

computational complexity (communication compl., NP search
problems, circuits complexity, ...)
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motivations

Holy grail:

Show super-polynomial lower bounds for the size of proofs in all (or
as strong as possible) propositional proof systems.

A large part of the research into proof complexity lower bounds is
motivated by

1 the P vs. NP problem

2 independence results for bounded arithmetic

3 SAT algorithms
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this talk

Nowadays the emphasis is often in the opposite order, stressing

combinatorial analysis of SAT algorithms of the day.

In general, combinatorial approach prevails today over logic approach.

But I think that a genuine progress, i.e.

progress in ideas and not just in technical innovations,

will more likely from logic than from combinatorics.
This has often been the case in past.
(Of course, developing logic ideas involves a lot of combinatorics too.)

In this talk I will present some
logical facets of proof complexity

that lead me to this view.
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computational classes

P: the class of problems decidable in p-time

NP: the class of problems defined by a condition

∃y(|y | ≤ |x |c )R(x , y)

where R is p-time decidable.

p-time alg’s ⇋ feasible alg’s:

[Smullyan’61, Bennett’62, Cobham’64, Edmonds’65, ...]
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the problem

The P vs. NP problem (Cook’71)

P =? NP

SAT: the set of satisfiable CNF formulas

Cook’s theorem

SAT ∈ P ⇔ P = NP .

Karp’72, Levin’73
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Hilbert’s program

D.Hilbert’s work on foundations of mathematics (early 1900s)

Entscheidungsproblem (Hilbert-Ackermann 1928):
Device an algorithm deciding whether a first-order formula is logically
valid.
(Leibniz’s calculus ratiocinator, 250 years earlier)

Formalize and prove the consistence of mathematics,
including the infinitary methods of set theory.

The P vs. NP problem is obtained by scaling down to feasible world:

any algorithm := p-time algorithm

FO formula := propositional formula
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spectrum problem

Spectrum

For a FO sentence ϕ, Spec(ϕ) is the set of all n ≥ 1 such that ϕ has a
model of size n.

Scholz’52: Characterize spectra.

Asser’53: Is the complement of a spectrum also a spectrum?

Facts

1 Spectra are exactly NE sets, i.e. sets accepted by a non-deterministic
machine in time 2O(n).

2 NE 6= coNE ⇒ NP 6= coNP ⇒ P 6= NP .
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Gödel’s letter to von Neumann

In 20.3.1956 K.Gödel wrote letter to J. von Neumann where he raised
the following question:

given: a FO formula ψ and n ≥ 1,

the task: decide if there is a proof of ψ using ≤ n symbols.

Gödel remarks that

this is algorithmically solvable by exhaustive search,

there is c ≥ 1 such that no algorithm using c · n steps works

and he writes that he sees no argument ruling out
an algorithm working in time O(n) or O(n2),

and points of that
the existence of such an algorithm would have the greatest importance ... .
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combinatorics

Savage’s theorem

If L can be decided by a Turing machine in polynomial time then there are
Boolean circuits Cn, n ≥ 1, of polynomial size computing the characteristic
function of L.

combinatorial approach to P vs. NP:

Try to establish super-polynomial circuits lower bounds for SAT.

This approach is attractive and had some earlier successes but, in fact, it
is unreasonably unsuccessful: even a non-linear lower bound is not known.

This may be contrasted with unreasonably successful combinatorial
approach to SAT solving.
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logic

logic approach:

Recalling the logic pedigree of the problem, and the fact that
logic solved the Entscheidungsproblem (Turing’36, Church’36):

Turing machines,

Halting problem and its undecidability,

it seems sensible to consider the problem via logic eyes.
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propositional logic

Note:
ϕ /∈ SAT ⇔ ¬ϕ ∈ TAUT

TAUT: (DNF) tautologies

We can certify that a formula is a tautology by giving its proof in
propositional calculus.

A reduction:

If no propositional calculus admits p-size proofs of all tautologies
then TAUT is not in NP and hence P 6= NP 6= coNP.
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pps

The Cook-Reckhow definition, 1979

A propositional proof system (pps) is a binary relation (provability
relation) P(x , y) such that:

τ ∈ TAUT ⇔ ∃πP(τ, π),

P(x , y) is p-time decidable.

In item 1:

⇒ is the completeness and ⇐ is the soundness.

terminology: π is a P-proof of τ
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logic examples

Frege systems:

complete language

based on a finite number of axiom schemes and inference rules

p p → q

q

R = resolution:
proves that a set of clauses is unsatisfiable, operates only with clauses
using one rule:

C ∪ {p} D ∪ {¬p}

C ∪ D

derives ∅.
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algebraic example

algebraic proof systems: represents clauses by polynomial equations over a
field K and proves that the starting system has no 0/1 solution.

Clause C : p, q,¬r is represented by polynomial fC : (1 − p)(1 − q)r in
the sense that:

Cis satisfied by a ∈ {0, 1}3 ⇔ fC (a) = 0 .

This replaces an initial set C of clauses by a set of polynomial equations F .

Hilbert’s Nullstellensatz

C is unsatisfiable iff F ′ := F ∪ {p2 − p, q2 − q, r2 − r , . . . } generates the
trivial ideal in the ring K[p, q, r , . . . ]

algebraic pps: use closure properties of ideals as rules to show that F ′

generates 1
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geometric example

geometric systems: represents clauses by integer linear inequalities and
refutes the initial system by deriving 0 ≥ 1.

Clause C : p, q,¬r is represented by integer linear function
LC : p + q + (1 − r) in the sense that:

C is satisfied by a ∈ {0, 1}3 ⇔ LC (a) ≥ 1 .

Fact

C is unsatisfiable iff L′ := L ∪ {1 ≥ p ≥ 0, . . . } has no integer solution.

cutting planes pps: few obvious rules plus the Chvátal-Gomory cut
∑

i aipi ≥ b
∑

i (ai/c)pi ≥ ⌈b/c⌉

where c > 0 divides all ai .
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abstract pps

abstract pps based on a theory:

declare an ZFC proof of the formal statement

τ is a tautology

to be a PZFC -proof of τ .

Any consistent theory interpreting some minimal arithmetic and having a
p-time set of axioms can be used.
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formal links

Definition

Given a pps P , it lengths-of-proofs function is a function sP : TAUT → N

defined by:
sP(τ) := min{|π| | P(τ, π)} .

P is p-bounded iff sP(τ) ≤ |τ |O(1)

Theorem (Cook-Reckhow’79)

NP is closed under complementation iff there exists a p-bounded pps.
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task

Hence our ideal task is

to prove super-poly lower bounds on sP for all proof systems.

But we cannot prove it one-by-one. (Maybe yes - next slide.)

What can we derive if we prove such lower bound only for some specific
P? We get:

Lower bounds for a class of all pps which P simulates.

Time lower bounds for a class of SAT algorithms that P simulates.

Consistency of P 6= NP 6= coNP with a first-order theory associated
with P .
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simulation

Definition

P ≥ Q, P simulates Q iff sP(τ) ≤ sQ(τ)O(1).

It is a quasi-ordering.

The optimality problem

Is there an optimal pps (i.e. maximal) w.r.t. to ≥?

It is consistent with present knowledge that a Frege system is optimal.

A super-poly lower bound for an optimal pps implies that no pps is
p-bounded.
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SAT alg’s

By a SAT algorithm we shall mean any algorithm satisfying the following
universal sentence SoundA:

∀ϕ (ϕ ∈ SAT → ϕ(A(ϕ)) = 1) .

A as a proof system

Define a pps QA(π, τ) by

π is the transcript of the computation of A on ¬τ and τ(A(¬τ)) = 1.

P ≥ A abbreviates P ≥ QA
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from size to time

Observation

If P ≥ A then timeA(¬τ) ≥ sP(τ)ǫ, some ǫ > 0.

In particular: super-poly lower bound on the lengths of P-proofs imply
that A is not p-time.

Ex’s:

R∗ (tree-like R) ≥ DPLL,

P(∼ R) ≥ CDCL, ...,

AC 0 − F + counting principles, PC, CP simulate many
algebro-geometric alg’s.

Haken’85, Ajtai’88, ...
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towards simulation

How can we show that P ≥ A? Two options:

1 A direct translation of computations into proofs.

This allows to interpret various proof theoretic results about P-proofs
as statements about A-computations (space bounds, trade-offs, ...).

2 Prove ”in P” the soundness of A.

More general but less elementary.
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PV

language LPV : names for all p-time clocked algorithms

theory PV: universal statements how one algorithm is build from others

Cook’76 (uses Cobham’s 1964 characterization of p-time)

Translation

For an open LPV -formula ψ(x) and n ≥ 1 denote

||ψ||n(p1, . . . , pn)

a canonical circuit evaluating the truth value of ψ on strings of length n.

∀a ∈ {0, 1}n ψ(a) ⇔ (||ψ||n(a) = 1) .
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general correspondence

T : any r.e. consistent extension of PV in a language extending LPV

A classic fact

For any such T there is a pps PT such that:

If T ⊢ ∀ψ(x), ψ open LPV -formula,
then formulas ||ψ||n have p-size PT -proofs.

T proves the soundness of PT .

If T proves the soundness of Q then PT ≥ Q.
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consistency of P 6= NP

Corollary

Any super-polynomial lower bound for PT -proofs of any sequence of
tautologies implies that P 6= NP is consistent with T in the sense that

T + {¬SoundA | all p-time clocked algorithms A }

is consistent.

Ex.:
Super-poly lower bounds for AC 0-Frege systems (plus some counting
principles as is PHP) imply super-poly time lower bounds for a large class
of currently considered SAT algorithms.

Ajtai’88, ...
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from T

any given theory T determines:

universal consequences: pps PT

existential consequences: a class of witnessing functions
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ex’s

P-IND: PV + the scheme of IND for open LPV -formulas
determines:

pps ER: Extended R

FP: p-time functions

NP-IND: PV + IND for NP-formulas (= bounded existential)
determines:

pps G1: a fragment of quantified propositional calculus

PLS: a class of NP search problems
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strength of P-IND

A large part of contemporary complexity theory around P, NP, ... can be
formalized in bounded arithmetic theories as are extensions of PV by

P-IND and NP-IND.

Ex’s:
- NP-completeness
- the Goldreich-Levin theorem
- a construction of PRNGs from OWF
- circuit and proof complexity lower bounds
- Nisan-Wigderson generator and its uses
- natural proofs
- sorting networks
- expander constructions
- . . .
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hypothetical situation

Consider the following situation:

You have a p-time clocked SAT algorithm A

but you cannot prove SoundA in P-IND,
only in NP-IND (or worse).

Can you still claim that SAT is feasible?
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a general reference

Proof complexity is a rich subject drawing on methods from logic, 

combinatorics, algebra and computer science. This self-contained book 

presents the basic concepts, classical results, current state of the art and 

possible future directions in the f eld. It stresses a view of proof complexity as 

a whole entity rather than a collection of various topics held together loosely 

by a few notions, and it favors more generalizable statements.

Lower bounds for lengths of proofs, often regarded as the key issue in 

proof complexity, are of course covered in detail. However, upper bounds 

are not neglected: this book also explores the relations between bounded 

arithmetic theories and proof systems and how they can be used to prove 

upper bounds on lengths of proofs and simulations among proof systems. It 

goes on to discuss topics that transcend specif c proof systems, allowing for 

deeper understanding of the fundamental problems of the subject.

Jan Krajíc�ek is Professor of Mathematical Logic in the Faculty of 

Mathematics and Physics at Charles University, Prague. He is a member of the 

Academia Europaea and of the Learned Society of the Czech Republic. He has 

been an invited speaker at the European Congress of Mathematicians and at 

the International Congresses of Logic, Methodology and Philosophy 

of Science. 
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optimality

NO optimal pps ⇒ NE 6= coNE ⇒ NP 6= coNP

The Optimality problem relates to a number of questions in surprisingly
varied areas: structural complexity th. (disjoint NP sets, sparse complete
sets, ...), finite model th., quantitative Gödel’s thms, games on graphs,
etc., and quite a results characterizing the existence of optimal systems are
known.

In particular, relative to a theory there is an optimal pps (≥-max w.r.t. to
all pps that are provably sound in the theory) and uniformity of pps may
be important (there is an optimal pps among pps with advice).
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back to Hilbert

Hilbert asked to prove by finitary means the consistency of Math.
(Gödel’31: impossible.)

quantitative version ConT (ñ):

formalizes that T is consistent w.r.t. proofs of size ≤ n,

ñ is the dyadic numeral of size log n.

Theorem (K.-Pudlák’89)

An optimal pps exists iff there is a theory S such that for all T , S proves
ConT (ñ) in size poly(n).

(Leaving out technical assumptions.)
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