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Abstrat

We onsider tautologies formed from a pseudo-random number gen-

erator, de�ned in Kraj���ek [16℄ and in Alekhnovih et al. [2℄. We ex-

plain a strategy of proving their hardness for Extended Frege systems

via a onjeture about bounded arithmeti formulated in Kraj���ek [16℄.

Further we give a purely �nitary statement, in the form of a hardness

ondition imposed on a funtion, equivalent to the onjeture.

This is aompanied by a brief explanation, aimed at non-speialists,

of the relation between propositional proof omplexity and bounded

arithmeti.

It is a fundamental problem of mathematial logi to deide if tautologies

an be inferred in propositional alulus in substantially fewer steps than

it takes to hek all possible truth assignments. This is losely related to

the famous P/NP problem of Cook [5℄. By propositional alulus I mean

any text-book system based on a �nite number of inferene rules and axiom

shemes that is sound and omplete. The quali�ation substantially fewer

means that the number an be bounded above by a polynomial in the size

of the tautology (unless the size is exponential in the number of variables

this is indeed smaller than the number of truth assignments).

The topi of this paper is a searh for tautologies that make viable an-

didates for being hard for an Extended Frege proof system EF. Rather than

�
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explaining what EF is now (see next setion) let me only say that the min-

imum size (i.e. the number of symbols) of EF proofs is proportional to the

minimum number of inferene steps in the usual alulus, f. [7℄.

The tautologies onsidered are de�ned in a simple way from a pseudo-

random number generator. I arrived at them in [16℄ as a onsequene of

work on forms of the weak pigeonhole priniple in bounded arithmeti and

their relations to various ryptographi primitives, searhing also for a gen-

eralization of prime tautologies from [20℄ (f. Setion 3) that would be more

generi and hopefully suseptible to foring.

The same tautologies were reently redisovered in [2℄ in a purely om-

binatorial language as a framework in whih one an think of ertain known

lower bound methods and try to generalize them to stronger systems. In

a sense both lines of thought have a ommon origin in Razborov's [29℄

whih was the �rst paper to bring ryptography into bounded arithmeti

and propositional logi (via Razborov-Rudih's notion of natural proofs [30℄;

paper [20℄ grew from trying to use [15, Thm.9.2℄ in a onrete situation and

that theorem originated from a remark in [29℄).

The �rst aim of this note is to explain these tautologies to non-speialists,

as well as the relation of the problem of proving their hardness for EF

with the problem of onstruting suitable models of the bounded arithmeti

theory PV. In order to do this I reapitulate briey the development of

propositional proof omplexity with an emphasis on the interplay between

omplexity proper and bounded arithmeti. This is in Setion 2 after few

basi de�nitions and fats are realled in Setion 1.

The rest of the paper is organized as follows. In Setion 3 I reall two

known andidates for tautologies that might be hard for EF. The de�nition

of tautologies from a pseudo-random number generator is given in Setion 4,

together with the onjeture from [16℄, and the impliation of the onjeture

for the EF-hardness of the tautologies. A hardness ondition on funtions,

alled free for EF, is de�ned in Setion 5. It is based on a notion of ounter-

example omputation via a two player (Student/Teaher) ommuniation.

In Setion 6 I give a statement that is purely �nitary and equivalent to the

main onjeture using the new hardness ondition on funtions. This is a

neessary step towards showing that some usual hardness assumption (e.g.

some ryptographi hardness) imposed on a funtion implies the onjeture

and hene a lower bound to the size of EF proofs of onrete tautologies. The

paper onludes with some examples and remarks on other proof systems.

Whenever paper [16℄ uses Buss's theory S

1

2

(f. [3℄) I use here Cook's

PV (albeit in the formulation as PV

1

of [21, 14℄). I also speak here about
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polynomial sizes rather than sub-exponential sizes. This is all in order not

to exeed the self-imposed quota for new de�nitions and speial notation.

From the point of view of properties (1) - (3) in Setion 2 of the relation

of arithmeti to propositional proof omplexity, theories PV and S

1

2

are

essentially indistinguishable and they both relate in the same way to the

system EF. (This does not imply that all results transfer between PV and

S

1

2

; for example, Theorem 6.2 would have a di�erent form for S

1

2

.) A few

words about PV here for readers not familiar with the theory: the language

has symbols for all polynomial time algorithms and the axioms are equations

that odify how the algorithms use one another, together with a form of

(binary searh style) indution for polynomial time prediates. The reader

only needs to know that it is a theory suitable for formalizing polynomial

time onstrutions in the most natural way; a de�nition an be found in the

next setion, more details an be found in [14℄.

1 EF and PV

The DeMorgan language for propositional logi onsists of 0, 1, :, _ and ^.

A Frege proof system for propositional logi is given by �nitely many axiom

shemes and inferene rules that are sound and impliationally omplete

(i.e., if  is true for all truth assignments making �

1

; : : : ; �

k

true then  an

be proved from the �

i

's). For example, systems based on a few axioms and

modus ponens as the only rule are frequent text-book examples of so alled

Hilbert-style systems. (The name Frege system omes from [7℄ and was

hosen mistakenly; however, [7℄ is an established taxonomy of propositional

aluli and it is a ustom to follow its terminology.)

There are two natural measures of omplexity of proofs; the size, whih is

the total number of symbols in the proof, and the number of steps. The latter

measure is perhaps more natural from a logial (or proof-theoretial) point

of view but the former, the size, is the more important one in onnetion

with omputational omplexity theory. The reason is that the length of a

string enoding a proof (or a formula et.) for a mahine is proportional

to the size of the proof but may be muh bigger than the number of steps

(even proofs with few steps may ontain huge formulas). In partiular, it is

easy to see that there is an algorithm verifying that a string is a proof in a

partiular Frege system with polynomial (quadrati) running time relative

to the size. Suh a simple algorithm onstitutes, in fat, the main link of

lengths-of-proofs to the P/NP and NP/oNP problems. Namely, if there
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were always a proof � for any tautology � of size polynomial in the size of

� then the oNP-omplete set TAUT of tautologies would be in the lass

NP: simply guess a short proof and then verify its validity, and the lass NP

would be losed under omplement (i.e., NP = oNP). If, moreover, one

ould �nd a suitable � in polynomial time, then similarly TAUT would be

in lass P and P would equal NP.

This relation of Frege systems to omputational omplexity was, in fat,

taken by [7℄ as a de�nition of a general propositional proof system. A propo-

sitional proof system is a polynomial time relation R(x; y) (on binary strings)

suh that the property of y: 9x 2 f0; 1g

�

;R(x; y), de�nes exatly the set

TAUT. Any string � suh that R(�; �) holds is alled an R-proof of � . Then,

similarly to the ase of Frege systems, NP = oNP i� there exists a proof

system admitting polynomial size proofs for all tautologies.

The main method of omparison between di�erent proof systems is poly-

nomial simulation: P polynomially simulatesQ i� there is a polynomial time

algorithm A that, given a Q-proof � of � , produes a P -proof A(�; �) of � .

Proof systems that polynomially simulate eah other are indistinguishable

from the lengths-of-proofs point of view and in their relation to the P/NP

and NP/oNP problems.

In this respet the de�nition of Frege systems is very robust. If we use

any omplete language instead of the DeMorgan language, any partiular

set of axioms and rules, and any usual format of proofs suh as tree-like or

sequene-like (or even writing proofs in sequent alulus or natural dedu-

tion formalisms) we always get a system that is equivalent by polynomial

simulations to any other Frege system, f. [7℄.

The idea of an Extended Frege system, EF, is to retify one obvious defet

of Frege systems: a Frege system annot use abbreviations for formulas that

are used several times in the proof (as sub-formulas of other formulas).

Formally, the extension rule (whih is not really a Hilbert-style shemati

rule) allows one to extend a sequene of formulas �

1

; : : : ; �

k

by a formula

�

k+1

of the form q �  , provided atom q ours in none of �

1

; : : : ; �

k

, nor

in  , nor in the last formula we aim at proving. The new atom an be,

however, used in later steps �

k+2

; : : : of the proof.

The de�nition of EF is equally robust as that of Frege systems and,

moreover, the minimal size and the minimal number of steps of EF-proofs

of a formula are proportional to eah other. There is another extension of

F that allows the substitution rule: from �(p

1

; : : : ; p

n

) infer in one step any

�( 

1

; : : : ;  

n

). This Substitution Frege SF is, in fat, equivalent to EF by

polynomial simulations, f. [8, 17℄. It is not known if F is also equivalent to
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them.

The main problem of propositional proof omplexity, the NP/oNP prob-

lem, thus asks to demonstrate superpolynomial lower bounds to the lengths-

of-proofs in all oneivable proof systems. At this point we do not have any

lower bound for EF and only a simple quadrati one for F (f. [11℄). How-

ever, there are several interesting systems, all weaker than F, for whih

strong lower bounds are known. These systems naturally divide into three

types. Proof systems of the �rst type are various subsystems of F in the

DeMorgan language obtained by restriting the depth of formulas the sys-

tem may use; examples inlude the depth d Frege system F

d

or its extension

by instanes of ounting priniples like PHP

N

or Count

N

q

. Those of the

seond type are various linear geometri proof systems: the utting planes

system working with linear inequalities and its extensions. Those of the

third type are algebrai proof systems: these are various proof systems for

ideal-membership in polynomial rings over �elds. They are subsystems of

the equational logi in the language of polynomial rings, whih is again just

a partiular Frege system. Referenes an be found in the expository artiles

[27, 32℄.

The reader may wonder why one should try to prove lower bounds for

EF rather than aim �rst at the apparently weaker F. Well, some researhers

do the latter. For me the reasons to aim at EF are perhaps more informal

than stritly tehnial. First, all known lower bounds for subsystems of F

(and for most of other systems too) atually apply diretly to the number of

steps, and the number of steps in F is, by the remark above, just the size in

EF. A seond reason is that I believe that the relation of proof systems to

bounded arithmeti will ontinue to be instrumental in devising new lower

bound methods, and EF orresponds to a muh nier and more transparent

theory than F does.

As we shall see in the next setion, a key property of proof systems is

their relation to weak fragments of Peano Arithmeti, so alled bounded

arithmeti theories. A prototype of this relation is given by EF and Cook's

theory PV. I shall explain the main idea of PV but I leave the somewhat

tedious details of the de�nition for reader to read in [6℄ or [14℄, if desired.

Cobham [4℄ haraterized the lass of polynomial time funtions operat-

ing on binary strings in a mahine independent way. A funtion f is de�ned

from funtions g

0

; g

1

; g

2

; g

3

by limited reursion on notation if:

(1) f(x; 0) = g

2

(x),
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(2) f(x; s

i

(y)) = g

i

(x; y; f(x; y)), for i = 0; 1,

(3) f(x; y) � g

3

(x; y),

where s

0

(y) and s

1

(y) are the two funtions adding 0 resp. 1 to the right of

the binary representation of y. Cobham proved that the lass of polynomial

time funtions is the smallest lass of funtions ontaining the onstant

0, funtions s

0

(y); s

1

(y) and x#y (jyj opies of x onatenated one after

another), and losed under:

1. permutation and renaming of variables

2. omposition of funtions

3. limited reursion on notation

Building on this haraterization Cook [6℄ de�ned an equational theory

PV (for Polynomially Veri�able). I shall give a slightly modi�ed de�nition of

an equivalent universal theory. The theory has symbols for the initial fun-

tions and for a few other basi funtions useful for manipulating strings (like

trunation of the last bit Tr, onatenation_, and ordering Less(x; y)), and

for all funtions introdued onseutively by applying Cobham's operations

arbitrarily many times. Axioms are universal formulas that for eah fun-

tion f produed by limited reursion on notation from funtions g

0

; : : : ; g

3

and all possible hoies of funtions f

0

and f

�

for f and g

0

i

and g

�

i

for g

i

's say,

that if all g

0

i

= g

�

i

and if onditions of the operation are satis�ed for g

0

i

and

g

�

i

's respetively and if both f

0

and f

�

were introdued by the operation,

then f

0

= f

�

. For example, let E

0

1

; : : : ; E

0

3

and E

�

1

; : : : ; E

�

3

be the equations

(1 � 3) from the de�nition of the limited reursion for on notation g

0

i

's and

g

�

i

's: three for f

0

and three for f

�

in plae of f . Then:

g

0

0

= g

�

0

^g

0

1

= g

�

1

^g

0

2

= g

�

2

^g

0

3

= g

�

3

^E

0

1

^E

0

2

^E

0

3

^E

�

1

^E

�

2

^E

�

3

! f

0

= f

�

The theory also ontains a form of indution. For any polynomial time pred-

iate P (x) (given by its harateristi funtion) there is a funtion symbol h

(onstruted by simulating binary searh via limited reursion on notation)

suh that we have:

(P (0) ^ :P (a))! (h(a) �

e

a ^ :P (h(a)) ^ P (Tr(h(a))))

with x �

e

y denoting that x is an initial subword of y.
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2 Proof omplexity and bounded arithmeti

Propositional proof omplexity starts with Cook's 1971 and 1975 papers

[5, 6℄. The former is the famous paper stating the P/NP problem and its

relation to propositional logi, and the latter is another pioneering work un-

overing a tight relation of proof omplexity to formal arithmeti theories.

That paper introdued Cook's theory PV, gave the translation of arithmeti

formulas and proofs into propositional ones, and proved a relation of PV to

Extended Frege system EF (the same relation was redisovered by Paris

and Wilkie [24℄ in the ontext of di�erent but losely related systems). This

was in my opinion the birth of proof omplexity proper, although even ear-

lier there were results and ideas about lengths of propositional proofs that

are still very interesting and important. Most notable is work of Tseitin

[31℄ about resolution that was inspired by problems about formal linguis-

tis. Then ame Cook and Rekhow's [7℄ systemati lassi�ation of various

usual aluli for propositional logi and the de�nition of the right notion of

reduibility (polynomial simulation).

The beginning of ontemporary researh in lower bounds for proposi-

tional proof systems starts with Ajtai's lower bound for onstant depth

Frege proofs of pigeonhole priniple PHP [1℄. This is in my view the most

important propositional lower bound paper ever written as it opened the

relation to boolean omplexity and freed the researh from a narrowly om-

binatorial approah. This is not to diminish other important ahievements,

notably Haken's exponential resolution lower bound [9℄.

The relation between proof systems and theories, present in the �eld

from its beginning, an be summarized as follows. Let A(x) be a oNP

de�nition of a set of numbers. Assume A(x) has the form 8y; jyj � jxj

k

!

B(x; y) with B(x; y) a polynomial time prediate. Fix length n to bound

jxj's and onstrut a propositional formula jjA(x)jj

n

as in the proof of the

NP-ompleteness of satis�ability: the formula has n atoms p

1

; : : : ; p

n

for

bits of an x, m = n

k

atoms q

1

; : : : ; q

m

for bits of a potential y, and also

atoms r

1

; : : : ; r

s

for s = n

O(1)

bits of values on nodes of a �xed iruit C

n

omputing from p, q the truth value of prediate B(x; y). Formula jjA(x)jj

n

says, in a DNF form, that if r are orretly omputed by iruit C

n

from

inputs p, q then the output of the omputation is 1. Having any b of length

at most n with bits b(1); : : : ; b(n) denote by jjA(x)jj

n

(b) the propositional

formula with b(i) substituted for p

i

, and with the remaining atoms q and r

left unsubstituted. Clearly then b satis�es A(x) i� jjA(x)jj

n

(b) is a tautology.

The relation between proof systems and theories is as follows: The sys-
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tems/theories ome in pairs P=T suh that:

(1) If T proves 8x;A(x) then tautologies jjA(x)jj

n

(b) have polynomial size

proofs in P .

(2) T proves the soundness of P and for any another proof system Q, if T

proves also the soundness of Q then P polynomially simulates Q.

One prominent suh pair is formed by Extended Frege system EF and by

Cook's PV.

The �rst property has also a onverse (used �rst expliitly by Paris and

Wilkie [24℄ and also in Ajtai's famous paper [1℄) that is slightly more omplex

to state (and annot be done in a logi-free ombinatorial set-up only). It

is a simple instane of ompatness of �rst order logi though. Assume that

b

1

; b

2

; : : : is a sequene of numbers of lengths n

1

< n

2

< : : : suh that the

formulas jjA(x)jj

n

i

(b

i

) are tautologies and have P -proofs of size � n

i

k

. Let

M be any ountable non-standard model of true arithmeti. Then there will

be a non-standard n

�

2M and an element b

�

2M of length n

�

suh that the

formula (in M) jjA(x)jj

n

�

(b

�

) is a tautology and has (in M) a P -proof �

�

of

size � n

�

k

. Moreover, if all original elements b

i

satisfy some property U(x)

from the polynomial hierarhy (and thus expressible by a bounded formula

in the language of PV) then also b

�

will satisfy in M the same property.

Now omes the idea from item (1) above. Take an initial substruture

M

b

�

of M onsisting of all elements that have lengths bounded by some n

�

`

,

` a standard natural number. In partiular, b

�

as well as �

�

are in M

b

�

,

and both A(b

�

) and U(b

�

) hold in M

b

�

. Let N � M

b

�

be any extension of

M

b

�

that is a model of theory T and preserves polynomial time prediates

(in partiular, the prediate \to be a P -proof"). Then the element b

�

must

have property A(x) also in N : Otherwise take any  2 N witnessing the

existential quanti�er in :A(b

�

) = 9y; jyj � n

�

k

^ :B(b

�

; y). The bits of 

de�ne a truth evaluation (in N) of the atoms q of jjA(x)jj

n

�

(b

�

) that together

with evaluation of atoms r by the atual bits that our in the omputation

of C

n

�

on b;  yield a truth assignment falsifying the formula jjA(x)jj

n

�

(b

�

).

However, the formula has a P proof �

�

in N (as �

�

was already in M

b

�

)

and the system P is sound in N (as the soundness is provable in T and N

is a model of T ); hene the existene of suh a truth assignment and of  is

impossible and onsequently b

�

must satisfy A(x) also in N .

Thus we have the suitable inverse to the �rst property:

(3) Consider M , an arbitrary ountable model of true arithmeti and

b

�

2M an arbitrary non-standard element satisfying a property U(x).
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Assume that for any suh M and b

�

we an �nd an extension of the

substruture M

b

�

to a model N of T that preserves polynomial time

prediates and in whih :A(b

�

) holds.

Then there are no k < ! and in�nite sequene b

1

; b

2

; : : : of numbers of

lengths n

1

< n

2

< : : : having all property U(x) suh that all formulas

jjA(x)jj

n

i

(b

i

), i = 1; 2; : : : are tautologies with P - proofs of size � n

i

k

.

(In fat, the opposite impliation also holds.)

All these three properties are very well established and fruitfully used,

and they earned for bounded arithmeti the name of \uniform proof om-

plexity", having a relation to boolean proof omplexity analogous to the

relation of Turing mahines to iruit omplexity. Here are some examples.

Property (1): Quasi-polynomial proofs of the weak pigeonhole priniple

(WPHP) in onstant-depth Frege were obtained via (1) from Paris-Wilkie-

Woods [25℄, or the onstrution of polynomial size EF-proofs of disjointness

of two NP-sets related to the RSA ryptosystem from [20℄, an important

link of proof omplexity and ryptography. There are many suh examples

and I regret that the beautiful new proof of WPHP by Maiel-Pitassi-Woods

[23℄ is not presented in this way as the ombinatoris used is the same as

the one used in establishing the appropriate orrespondene P/T (f. [12℄)

and the presentation may be done on one page

1

.

Property (2): The polynomial simulation of system SF (Frege system

with the substitution rule) by EF was �rst proved in this way, while the

expliit onstrution is quite involved, f. [8, 17℄. Property (2) is urrently

totally ignored, although various reent polynomial (non)simulation results

between tree-like/non-tree-like systems, or between onstant-depth subsys-

tems of Frege system and algebrai systems are immediate orollaries of

(2), often even stated in print as the orresponding soundness properties or

expliitly as lower bound riteria.

Property (3): The most famous instane is Ajtai's proof of a super-

polynomial lower bound for onstant-depth Frege proofs of PHP. Another

instane is Wilkie's proof of Cook's simulation results from [6℄ as generalized

in [13℄.

1

Cf. seminar notes http://www.math.as.z/~krajiek/mpw.ps
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3 Earlier tautologies possibly hard for EF

Let me reall two types of tautologies possibly hard for EF. The �rst type

is simply the property (2) of the relation of soundness to polynomial simu-

lation. Let P and T be a pair as earlier and take a proof system Q that you

believe to be impossible to polynomially simulate by P . The soundness of Q

an be expressed as Con

Q

:= 8x;Con

Q

(x) where Con

Q

(x) says that there

is no Q-proof w of size jwj � jxj of a formula v, and a truth assignment

u satisfying the negation of v (learly juj and jvj are also bounded by jxj).

Then one expets that tautologies jjCon

Q

(x)jj

n

do not have polynomial size

P -proofs. This is beause by (1) the existene of polynomial P -proofs is

lose to provability in T and provability of the soundness of Q in T would

imply the polynomial simulation. These andidates go bak to [6℄.

In fat, a bit stronger assumption about P and Q is equivalent to the

non-existene of polynomial size P -proofs of jjCon

Q

(x)jj

n

. The assumption

is that the minimal size of P -proofs annot be bounded by a polynomial in

minimal sizes of Q-proofs. See [17℄ or [14℄ for details.

The seond example is from [20℄, a part of a work showing that the

method of feasible interpolation (f. [15℄ for explanation) annot be applied

to EF. The tautologies express that a number is a prime. Namely, take

formula A(x) of the form 8y; z < x; y � z 6= x. Then for a prime p of length n

the formula jjA(x)jj

n

(p) is a tautology. The question what is the minimum

size of EF-proofs of these tautologies was posed in [20℄ and it was proved

there that the tautologies do have polynomial EF-proofs i� there is an NP-

de�nition E(x) of primes suh that PV proves that the de�nition is sound:

8x;E(x)! A(x). All suh de�nitions seem to use at some point or another

the Little Fermat Theorem that is a notorious example of a number-theoreti

statement whih is unknown to be provable in PV. In fat, it is not provable

assuming the RSA is seure, see [20℄.

Note that tautologies of this seond sort are of the form jjx =2 Rng(f)jj

n

for a onjetured one-way funtion.

Let us also mention one non-example. It has been suggested repeatedly

that various �nitary ombinatorial priniples independent from PA or ZFC

ould yield tautologies hard for many ordinary proof systems. However,

this suggestion is somewhat awed, at least when it is interpreted in the

straightforward way.

All suh priniples, be they the Paris-Harrington version of Ramsey the-

orem, Kruskal's theorem or some other, are (at least) �

0

2

- statements of the

10



form 8n9N;�(n;N), with � bounded. Their unprovability stems solely from

the enormously rapid growth of the funtion giving the minimal witness N

for parameter n, but otherwise - one given N - the proofs of �(n;N) are

based on ounting of or indution on substrutures inside N . To turn suh

a priniple into a propositional tautology one needs to take N itself as a

parameter. The formula speaks about the �nite struture with the universe

[0; N ℄ (see e.g. formalization of Ramsey theorem by formulas RAM

n

in [16℄)

whih makes the formula huge and its proof, based on ounting or indution

that are both easily simulated in EF, short ompared to its size.

4 Tautologies from pseudo-random generators

Denote by WPHP

a

2a

the statement that f : a ! 2a annot be onto. I

shall all it dual WPHP, similarly as [2℄. This has been �rst onsidered by

Wilkie and his witnessing theorem (see [14, 16℄) is the best result about the

priniple. A question about provability of the priniple for a onrete poly-

nomial time funtion was posed also in [28, Append.C℄. It is explained in

[16℄ that proof-theoreti properties of (dual) WPHP are related to the exis-

tene of strong pseudo-random number generators and other ryptographi

primitives in several ways. The problem whether PV proves WPHP

a

2a

for

all polynomial time funtions [16, Se.7℄ seems to me to be the right av-

enue towards other main problems; it has bigger quanti�er omplexity (�

b

2

)

than ordinary (W)PHP while still having impliations for propositional proof

omplexity, and it also relates to the famous problem on �nite axiomatiz-

ability of bounded arithmeti, f. [14℄. One may note here that the ordinary

weak pigeonhole priniple WPHP

2a

a

, saying that f annot injetively map 2a

into a, is not provable in PV or S

1

2

for a partiular polynomial time funtion

(exponentiation modulo a prime) unless the ryptosystem RSA is inseure,

f. [20℄.

A strong pseudo-random generator (a onept introdued by Yao [33℄)

is a polynomial time funtion G that strethes the inputs by (at least) one

bit and has exponential hardness. That is: there is � > 0 suh that for any

n and any iruit C(y

1

; : : : ; y

n+1

) of size less than 2

n

�

it holds that

Prob

x

[C(G(x)) = 1℄ � Prob

y

[C(y) = 1℄ < 2

�n

�

where x is hosen uniformly at random from f0; 1g

n

and y from f0; 1g

n+1

.

The intuition behind the de�nition is that although G annot be onto

f0; 1g

n+1

, it's range is hard to distinguish from f0; 1g

n+1

in the sense that

11



any sub-exponential size iruit does not distinguish a random element y of

f0; 1g

n+1

from a pseudo-random element G(x) of Rng(G) with more than a

negligible probability.

For explaining Conjeture 7.9 of [16℄ I shall use the same set-up as for

property (3) in Setion 2. Denote by f

n

the restrition of a funtion f to

inputs of length n.

Conjeture 4.1 ([16, 7.9℄) Assume that a strong pseudo-random genera-

tor G exists. Then there is a polynomial time omputable funtion f suh

that any ountable model M

a

�

of the form as earlier, a

�

= 2

n

�

in M , has an

extension to a model N of PV that violates WPHP

a

�

2a

�

(f).

In partiular, if strong pseudo-random number generators exist then PV

does not prove WPHP

a

2a

for all polynomial time funtions.

The referene to G seems redundant. However, I onjetured in [16℄ that

there is a onstrution of f from G uniform in G and that there are even G

for whih one an take f := G. (This annot be true for all G; e.g. G an

have the form 1 +H. For other examples see Setion 7.) The quali�ation

uniform is used informally; it ould mean, for example, pre-omposing G

with a simple polynomial time funtion depending on G.

As noted in [16℄ the onjeture has also impliations for Extended Frege

system EF. This is via property (3) from Setion 2. To simplify notation

denote by �

b

the propositional formula ky =2 Rng(f

n

)k

n+1

(b), b 2 f0; 1g

n+1

,

and n 2 N. The following statement is an obvious instane of property (3).

Corollary 4.2 Assume that G is a strong pseudo-random generator and f

is a funtion with properties guaranteed by the onjeture.

Then tautologies �

b

for b =2 Rng(f

n

), n = 1; 2; : : :, require superpolyno-

mial EF-proofs.

Alekhnovih et al. [2℄ onsider various propositional enodings of the

statement b =2 Rng(G

n

) and prove several lower bounds for systems like res-

olution, polynomial alulus and their ombination, and for onrete pseudo-

random generators inspired by the Nisan-Wigderson generator. They also

o�er a view of Tseitin's tautologies [31℄ that sees them as tautologies of the

same form.

12



5 Counter-example omputations

In the next setion we link the onjeture with a new notion of hardness of

a funtion, so that the onjeture holds with a funtion f i� f is hard in this

new sense. To illustrate the de�nition of the hardness notion we shall disuss

�rst in this setion the notion of ounter-example omputation, stemming

from [21, 26℄ and studied in [22℄.

Let �(x) := 9y(jyj � jxj

k

)8z(jzj � jxj

`

);�(x; y; z) be a property of x

with � polynomial time deidable, and with x the only free parameter. A

general omputational task is to, given x, �nd y witnessing the property.

The partiular omputation of y is performed by Student, a polynomial

time algorithm, and by all-powerful Teaher.

Student �rst omputes some y

1

(taitly of the appropriate length) know-

ing only x. If it is not a valid witness Teaher provides him with a ounter-

example: some z

1

(again taitly of the appropriate length) suh that �(x; y

1

; z

1

)

fails. In the seond round Student omputes another andidate y

2

but now

using not only x but also z

1

. If it is not a witness then he gets a ounter-

example from Teaher, and so on.

An example of interesting properties � are various optimization prob-

lems. For example, a property may say that a graph x has a maximal lique

y. Important results in bounded arithmeti follow from proving that, un-

less the polynomial time hierarhy ollapses, Student annot �nd a maximal

lique in a onstant number of rounds, f.[21℄.

What we shall onsider is �(x) := WPHP

x

2x

, the dual weak pigeonhole

priniple (for a �xed f). Witnesses to it are exatly elements of f0; 1g

jxj+1

outside of the range of f

jxj

. In the previous example an important restrition

on Student's apabilities omes from the fat that it is a polynomial time

algorithm that should work for all x's. We shall abolish this restrition and

we allow Student to ompute with (non-uniform) polynomial size iruits.

This means, equivalently, that Student an use a di�erent polynomial time

algorithm for eah length n of x's. However, this itself would trivialise things:

a iruit an simply output diretly some �xed witness without omputing

anything. But we shall restrit Student in another way: we will require

that he an solve the problem in onstantly many rounds and that it an be

proved by polynomial size EF proofs that his strategy works. This is a non-

trivial restrition beause if you simply have a witness y you may still not

be able to prove that it is a witness as the proof may, in priniple, have to go

through exponentially many (in the length of x) possible ounter-examples

z. We de�ne this formally in the next setion.
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6 Funtions free for EF

We ontinue using the abbreviation �

b

de�ned before Corollary 4.2 but as

we shall substitute into the formulas we shall use a notation showing ex-

pliitly ourrenes of atoms. The formula ky =2 Rng(f

n

)k

n+1

has atoms

p

1

; : : : ; p

n+1

for bits of y, atoms q

1

; : : : ; q

n

for bits of possible x, and atoms

r

1

; r

2

; : : : for bits of omputation of f(x). We shall neglet atoms r

i

as they

are unique for any partiular q. (One may also think of EF as operating

with iruits in whih ase atoms r

i

an be replaed by the orresponding

iruits.)

For b 2 f0; 1g

n+1

the formula �

b

(q) is ky =2 Rng(f

n

)k

n+1

(p=b). However,

assume that b is not a string of bits but a string of single output iruits with

inputs (atoms) u = (u

1

; : : : ; u

`

). The formula �

b

(q; u) makes a perfet sense

and it is a tautology i� the range of the funtion b : f0; 1g

`

! f0; 1g

n+1

is

disjoint with Rng(f

n

).

Our hardness ondition on f will have a similar form. We shall denote

by Ciruit

n+1

(u) the set of iruits omputing n+1 output bits from atoms

u. In partiular, Ciruit

n+1

(;) is a iruit without inputs omputing n+ 1

onstants.

De�nition 6.1 Let k � 1. Funtion f is k-restrited for EF i� there is a

polynomial p(n) suh that there are arbitrarily large n and iruits b

1

; : : : ; b

k

,

b

1

2 Ciruit

n+1

(;), b

2

2 Ciruit

n+1

(q

1

), b

3

2 Ciruit

n+1

(q

1

; q

2

); : : :, b

k

2

Ciruit

n+1

(q

1

; : : : ; q

k�1

), q

i

disjoint n-tuples of atoms, of size at most p(n)

suh that the formula

(*) �

b

1

(q

1

) _ : : : _ �

b

k

(q

1

; : : : ; q

k

)

has an EF-proof of size at most p(n). Funtion f is k-free for EF i� it is

not k-restrited, and it is free for EF i� it is k-free for all k � 1.

If the formula (*) is a tautology then either b

1

2 f0; 1g

n+1

is outside

Rng(f

n

), or if f(a

1

) = b

1

for some a

1

2 f0; 1g

n

then b

2

(q

1

=a

1

) 2 f0; 1g

n+1

is outside Rng(f

n

) et. So, Student's strategy given by iruits b

1

; : : : ; b

k

leads him in at most k steps to an element outside Rng(f

n

); in partiular,

suh an element exists in a model of PV if (*) has an EF-proof there, as

then it is a tautology by property (2) of Setion 2.

Note that the formula implies that the range of the map

b : f0; 1g

(k�1)n

! f0; 1g

k(n+1)

14



given by b

1

; : : : ; b

k

is not inluded in the range of

L

k

i=1

f

n

(k-fold diret sum).

In fat, provability of any similar non-inlusion in PV yields an analogous

interative omputation (this is proved analogously as the next theorem).

Theorem 6.2 Conjeture 4.1 is satis�ed with funtion f i� f is free for

EF.

Proof : The onjeture obviously implies that f must be free. Otherwise,

by ompatness, there would model M

a

�

of the form as earlier ontaining

iruits b

1

; : : : ; b

k

for some non-standard n

�

(with appropriate inputs as in

De�nition 6.1) and an EF-proof of the formula (*). Hene the formula (*)

is a tautology in any model N of PV extending M

a

�

, b

1

; : : : ; b

k

determine

an element of N outside Rng(f

n

�

) and N annot violate WPHP

a

2a

(f).

For the opposite diretion assume that in all extensions ofM

a

�

WPHP

a

2a

(f)

holds. This means that PV together with the open diagram Diag(M

a

�

)

proves the following formula: 9y 2 f0; 1g

n

�

+1

8x 2 f0; 1g

n

�

; f

n

�

(x) 6= y.

By the KPT witnessing theorem [21℄ there are k � 1 and polynomial

time funtions h

1

(z; u), h

2

(z; x

1

; u), : : : ; h

k

(z; x

1

; : : : ; x

k�1

; u) suh that the

following universal formula

f

n

�

(x

1

) 6= h

1

(a

�

; w) _ f

n

�

(x

2

) 6= h

2

(a

�

; x

1

; w)_

: : : _ f

n

�

(x

k

) 6= h

k

(a

�

; x

1

; : : : ; x

k�1

; w)

with w some parameters from M

a

�

, is provable in PV +Diag(M

a

�

). Hene

inM

a

�

the propositional translation of this formula has an EF proof (propo-

sitional translations of all sentenes in Diag(M

a

�

) have polynomial size EF

proofs inM

a

�

, f. [18, 14℄). The propositional translation is the formula (*)

with iruits b

i

omputing h

i

(a

�

; x

1

; : : : ; x

i�1

; w)

q.e.d.

7 Examples and remarks

Let g be a one way permutation suh that PV proves that it is injetive. Let

G be a pseudo-random generator onstruted from g by appending to the

value g(x) a hard bit of x. Then learly PV proves that for any y 2 f0; 1g

n

at least one of b

0

:= (y; 0), b

1

:= (y; 1) is outside Rng(G

n

). So for formulas

�

b

onstruted from f := G, by property (1) , EF admits polynomial size
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proofs of disjuntions �

b

0

_ �

b

1

. (This example was notied by P. Pudl�ak

and by A. Wigderson.) However, learly one of b

0

or b

1

is in the range of

G; say G(a

0

) = b

0

. Then substituting bits of a

0

together with bits of the

omputation of G(a

0

) into the proof of �

b

0

_ �

b

1

ollapses �

b

0

to 0 and yields

a proof of �

b

1

. Hene G is 1-restrited. Note that we an retify this by

pre-omposing G with a suitable polynomial time funtion (depending on

the partiular hard bit).

Let us modify the example a bit. Assume that we have two (provably

in PV) one-to-one funtions g

1

, g

2

for whih the orresponding � -formulas

are hard to prove. De�ne f(x) to be (g

1

(x); 0) if x ontains an even number

of ones, and (g

2

(x); 1) otherwise. The � -formulas for f are hard to prove

unless the restrition to inputs with even or odd number of ones respetively

helps to prove the � -formulas for g

1

or g

2

respetively. But f is 2-restrited;

namely, let b

1

have the form (b; 0) for b =2 Rng(g

1

) and b

2

(x

1

), a iruit, have

the form (g

2

(x

1

); 1). Then �

b

1

(q

1

) _ �

b

2

(q

1

; q

2

) is easily provable.

The notion of a funtion free for a general proof system Q makes perfet

sense and Theorem 6.2 holds for any Q that polynomially simulates EF,

with PV replaed by PV + Con

Q

(Con

Q

is the 8�

b

1

sentene from Se-

tion 3). The hoie of the partiular theory for Q (it is unique only up to

8�

b

1

onsequenes) is important. For example, system G

2

, a subsystem of

quanti�ed propositional logi G, orresponds to theory T

2

2

(f. [3, 19, 14℄).

That theory proves WPHP

a

2a

for all polynomial time funtions. However,

that does not imply that every suh funtion is k-restrited for G

2

, some

k � 1. The proof of Theorem 6.2 needs that the theory has a Skolemization

by polynomial time funtions as apparently only then do sentenes from the

open diagram have Q-proofs in the model.

One may also look at proof systems for whih we already have good

lower bounds and some lower bound methods. For example, very interesting

is the ase of onstant depth Frege systems. A depth d Frege system F

d

operates with formulas of the depth at most d in the DeMorgan language

with unbounded arity _;^. In this ase we would look for an AC

0

funtion

(i.e., omputable by polynomial size, onstant depth formulas) that would

be free for all F

d

, meaning that no strategy of Student given itself by AC

0

iruits an be proved to be winning by polynomial size F

d

proofs.

A simpler problem, to prove that it is onsistent with PV or S

1

2

that a

onrete polynomial time funtion f violates WPHP

a

2a

, leads to the task to

show that EF has no short proof that a uniform polynomial time Student

(one algorithm for all input lengths) �nds an element outside the range of
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the funtion in onstantly many (for PV) or polynomially many (for S

1

2

)

rounds.

The EF provability is now important (for the S

1

2

ase) even if we have a

uniform Student instead of a iruit Student. Namely, it follows from results

of Impagliazzo and Wigderson [10℄ (proved under a plausible omplexity-

theoreti assumption) that there is a polynomial time Student winning in

polynomially many rounds. Let f be omputable in time n

k

. Impagli-

azzo and Wigderson [10℄ onstrut a polynomial time funtion g that takes

O(log(n)) input bits and omputes n + 1 bits, and suh that no NP algo-

rithm running in time O(n

k

) an distinguish a random element of f0; 1g

n+1

from a pseudo-random element g(x). This implies that Rng(g) 6� Rng(f) as

otherwise the property to belong into Rng(f) would distinguish the random

and pseudo-random strings with probability at least 1=2. Hene Student

an simply onseutively list as andidates all n

O(1)

elements of Rng(g), not

using Teaher's ounter-examples at all. The assumption their onstrution

uses is, in this ase, that there is an exponential time funtion that annot

be omputed by a sub-exponential size iruit querying an NP property.

This is true if, for example, the sub-exponential time hierarhy is properly

inluded in EXP.

However, EF provability of the fat that suh Student wins depends

on formalizability of the onstrution in S

1

2

. That is unlikely as its many

ounting arguments seem to presuppose some form of pigeonhole priniple.

Finally, note that if f is itself a pseudo-random generator then PV does

not disprove the statement that for an a and some b < 2a not in the range of

f , the tautology �

b

has no EF proof. Otherwise, by Herbrand's theorem as

PV is a universal theory, there would be a polynomial time algorithm deid-

ing the membership in the range of f , ontraditing the pseudo-randomness

of f .
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