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Abstra
t

We 
onsider tautologies formed from a pseudo-random number gen-

erator, de�ned in Kraj���
ek [16℄ and in Alekhnovi
h et al. [2℄. We ex-

plain a strategy of proving their hardness for Extended Frege systems

via a 
onje
ture about bounded arithmeti
 formulated in Kraj���
ek [16℄.

Further we give a purely �nitary statement, in the form of a hardness


ondition imposed on a fun
tion, equivalent to the 
onje
ture.

This is a

ompanied by a brief explanation, aimed at non-spe
ialists,

of the relation between propositional proof 
omplexity and bounded

arithmeti
.

It is a fundamental problem of mathemati
al logi
 to de
ide if tautologies


an be inferred in propositional 
al
ulus in substantially fewer steps than

it takes to 
he
k all possible truth assignments. This is 
losely related to

the famous P/NP problem of Cook [5℄. By propositional 
al
ulus I mean

any text-book system based on a �nite number of inferen
e rules and axiom

s
hemes that is sound and 
omplete. The quali�
ation substantially fewer

means that the number 
an be bounded above by a polynomial in the size

of the tautology (unless the size is exponential in the number of variables

this is indeed smaller than the number of truth assignments).

The topi
 of this paper is a sear
h for tautologies that make viable 
an-

didates for being hard for an Extended Frege proof system EF. Rather than

�
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explaining what EF is now (see next se
tion) let me only say that the min-

imum size (i.e. the number of symbols) of EF proofs is proportional to the

minimum number of inferen
e steps in the usual 
al
ulus, 
f. [7℄.

The tautologies 
onsidered are de�ned in a simple way from a pseudo-

random number generator. I arrived at them in [16℄ as a 
onsequen
e of

work on forms of the weak pigeonhole prin
iple in bounded arithmeti
 and

their relations to various 
ryptographi
 primitives, sear
hing also for a gen-

eralization of prime tautologies from [20℄ (
f. Se
tion 3) that would be more

generi
 and hopefully sus
eptible to for
ing.

The same tautologies were re
ently redis
overed in [2℄ in a purely 
om-

binatorial language as a framework in whi
h one 
an think of 
ertain known

lower bound methods and try to generalize them to stronger systems. In

a sense both lines of thought have a 
ommon origin in Razborov's [29℄

whi
h was the �rst paper to bring 
ryptography into bounded arithmeti


and propositional logi
 (via Razborov-Rudi
h's notion of natural proofs [30℄;

paper [20℄ grew from trying to use [15, Thm.9.2℄ in a 
on
rete situation and

that theorem originated from a remark in [29℄).

The �rst aim of this note is to explain these tautologies to non-spe
ialists,

as well as the relation of the problem of proving their hardness for EF

with the problem of 
onstru
ting suitable models of the bounded arithmeti


theory PV. In order to do this I re
apitulate brie
y the development of

propositional proof 
omplexity with an emphasis on the interplay between


omplexity proper and bounded arithmeti
. This is in Se
tion 2 after few

basi
 de�nitions and fa
ts are re
alled in Se
tion 1.

The rest of the paper is organized as follows. In Se
tion 3 I re
all two

known 
andidates for tautologies that might be hard for EF. The de�nition

of tautologies from a pseudo-random number generator is given in Se
tion 4,

together with the 
onje
ture from [16℄, and the impli
ation of the 
onje
ture

for the EF-hardness of the tautologies. A hardness 
ondition on fun
tions,


alled free for EF, is de�ned in Se
tion 5. It is based on a notion of 
ounter-

example 
omputation via a two player (Student/Tea
her) 
ommuni
ation.

In Se
tion 6 I give a statement that is purely �nitary and equivalent to the

main 
onje
ture using the new hardness 
ondition on fun
tions. This is a

ne
essary step towards showing that some usual hardness assumption (e.g.

some 
ryptographi
 hardness) imposed on a fun
tion implies the 
onje
ture

and hen
e a lower bound to the size of EF proofs of 
on
rete tautologies. The

paper 
on
ludes with some examples and remarks on other proof systems.

Whenever paper [16℄ uses Buss's theory S

1

2

(
f. [3℄) I use here Cook's

PV (albeit in the formulation as PV

1

of [21, 14℄). I also speak here about
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polynomial sizes rather than sub-exponential sizes. This is all in order not

to ex
eed the self-imposed quota for new de�nitions and spe
ial notation.

From the point of view of properties (1) - (3) in Se
tion 2 of the relation

of arithmeti
 to propositional proof 
omplexity, theories PV and S

1

2

are

essentially indistinguishable and they both relate in the same way to the

system EF. (This does not imply that all results transfer between PV and

S

1

2

; for example, Theorem 6.2 would have a di�erent form for S

1

2

.) A few

words about PV here for readers not familiar with the theory: the language

has symbols for all polynomial time algorithms and the axioms are equations

that 
odify how the algorithms use one another, together with a form of

(binary sear
h style) indu
tion for polynomial time predi
ates. The reader

only needs to know that it is a theory suitable for formalizing polynomial

time 
onstru
tions in the most natural way; a de�nition 
an be found in the

next se
tion, more details 
an be found in [14℄.

1 EF and PV

The DeMorgan language for propositional logi
 
onsists of 0, 1, :, _ and ^.

A Frege proof system for propositional logi
 is given by �nitely many axiom

s
hemes and inferen
e rules that are sound and impli
ationally 
omplete

(i.e., if  is true for all truth assignments making �

1

; : : : ; �

k

true then  
an

be proved from the �

i

's). For example, systems based on a few axioms and

modus ponens as the only rule are frequent text-book examples of so 
alled

Hilbert-style systems. (The name Frege system 
omes from [7℄ and was


hosen mistakenly; however, [7℄ is an established taxonomy of propositional


al
uli and it is a 
ustom to follow its terminology.)

There are two natural measures of 
omplexity of proofs; the size, whi
h is

the total number of symbols in the proof, and the number of steps. The latter

measure is perhaps more natural from a logi
al (or proof-theoreti
al) point

of view but the former, the size, is the more important one in 
onne
tion

with 
omputational 
omplexity theory. The reason is that the length of a

string en
oding a proof (or a formula et
.) for a ma
hine is proportional

to the size of the proof but may be mu
h bigger than the number of steps

(even proofs with few steps may 
ontain huge formulas). In parti
ular, it is

easy to see that there is an algorithm verifying that a string is a proof in a

parti
ular Frege system with polynomial (quadrati
) running time relative

to the size. Su
h a simple algorithm 
onstitutes, in fa
t, the main link of

lengths-of-proofs to the P/NP and NP/
oNP problems. Namely, if there
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were always a proof � for any tautology � of size polynomial in the size of

� then the 
oNP-
omplete set TAUT of tautologies would be in the 
lass

NP: simply guess a short proof and then verify its validity, and the 
lass NP

would be 
losed under 
omplement (i.e., NP = 
oNP). If, moreover, one


ould �nd a suitable � in polynomial time, then similarly TAUT would be

in 
lass P and P would equal NP.

This relation of Frege systems to 
omputational 
omplexity was, in fa
t,

taken by [7℄ as a de�nition of a general propositional proof system. A propo-

sitional proof system is a polynomial time relation R(x; y) (on binary strings)

su
h that the property of y: 9x 2 f0; 1g

�

;R(x; y), de�nes exa
tly the set

TAUT. Any string � su
h that R(�; �) holds is 
alled an R-proof of � . Then,

similarly to the 
ase of Frege systems, NP = 
oNP i� there exists a proof

system admitting polynomial size proofs for all tautologies.

The main method of 
omparison between di�erent proof systems is poly-

nomial simulation: P polynomially simulatesQ i� there is a polynomial time

algorithm A that, given a Q-proof � of � , produ
es a P -proof A(�; �) of � .

Proof systems that polynomially simulate ea
h other are indistinguishable

from the lengths-of-proofs point of view and in their relation to the P/NP

and NP/
oNP problems.

In this respe
t the de�nition of Frege systems is very robust. If we use

any 
omplete language instead of the DeMorgan language, any parti
ular

set of axioms and rules, and any usual format of proofs su
h as tree-like or

sequen
e-like (or even writing proofs in sequent 
al
ulus or natural dedu
-

tion formalisms) we always get a system that is equivalent by polynomial

simulations to any other Frege system, 
f. [7℄.

The idea of an Extended Frege system, EF, is to re
tify one obvious defe
t

of Frege systems: a Frege system 
annot use abbreviations for formulas that

are used several times in the proof (as sub-formulas of other formulas).

Formally, the extension rule (whi
h is not really a Hilbert-style s
hemati


rule) allows one to extend a sequen
e of formulas �

1

; : : : ; �

k

by a formula

�

k+1

of the form q �  , provided atom q o

urs in none of �

1

; : : : ; �

k

, nor

in  , nor in the last formula we aim at proving. The new atom 
an be,

however, used in later steps �

k+2

; : : : of the proof.

The de�nition of EF is equally robust as that of Frege systems and,

moreover, the minimal size and the minimal number of steps of EF-proofs

of a formula are proportional to ea
h other. There is another extension of

F that allows the substitution rule: from �(p

1

; : : : ; p

n

) infer in one step any

�( 

1

; : : : ;  

n

). This Substitution Frege SF is, in fa
t, equivalent to EF by

polynomial simulations, 
f. [8, 17℄. It is not known if F is also equivalent to
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them.

The main problem of propositional proof 
omplexity, the NP/
oNP prob-

lem, thus asks to demonstrate superpolynomial lower bounds to the lengths-

of-proofs in all 
on
eivable proof systems. At this point we do not have any

lower bound for EF and only a simple quadrati
 one for F (
f. [11℄). How-

ever, there are several interesting systems, all weaker than F, for whi
h

strong lower bounds are known. These systems naturally divide into three

types. Proof systems of the �rst type are various subsystems of F in the

DeMorgan language obtained by restri
ting the depth of formulas the sys-

tem may use; examples in
lude the depth d Frege system F

d

or its extension

by instan
es of 
ounting prin
iples like PHP

N

or Count

N

q

. Those of the

se
ond type are various linear geometri
 proof systems: the 
utting planes

system working with linear inequalities and its extensions. Those of the

third type are algebrai
 proof systems: these are various proof systems for

ideal-membership in polynomial rings over �elds. They are subsystems of

the equational logi
 in the language of polynomial rings, whi
h is again just

a parti
ular Frege system. Referen
es 
an be found in the expository arti
les

[27, 32℄.

The reader may wonder why one should try to prove lower bounds for

EF rather than aim �rst at the apparently weaker F. Well, some resear
hers

do the latter. For me the reasons to aim at EF are perhaps more informal

than stri
tly te
hni
al. First, all known lower bounds for subsystems of F

(and for most of other systems too) a
tually apply dire
tly to the number of

steps, and the number of steps in F is, by the remark above, just the size in

EF. A se
ond reason is that I believe that the relation of proof systems to

bounded arithmeti
 will 
ontinue to be instrumental in devising new lower

bound methods, and EF 
orresponds to a mu
h ni
er and more transparent

theory than F does.

As we shall see in the next se
tion, a key property of proof systems is

their relation to weak fragments of Peano Arithmeti
, so 
alled bounded

arithmeti
 theories. A prototype of this relation is given by EF and Cook's

theory PV. I shall explain the main idea of PV but I leave the somewhat

tedious details of the de�nition for reader to read in [6℄ or [14℄, if desired.

Cobham [4℄ 
hara
terized the 
lass of polynomial time fun
tions operat-

ing on binary strings in a ma
hine independent way. A fun
tion f is de�ned

from fun
tions g

0

; g

1

; g

2

; g

3

by limited re
ursion on notation if:

(1) f(x; 0) = g

2

(x),
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(2) f(x; s

i

(y)) = g

i

(x; y; f(x; y)), for i = 0; 1,

(3) f(x; y) � g

3

(x; y),

where s

0

(y) and s

1

(y) are the two fun
tions adding 0 resp. 1 to the right of

the binary representation of y. Cobham proved that the 
lass of polynomial

time fun
tions is the smallest 
lass of fun
tions 
ontaining the 
onstant

0, fun
tions s

0

(y); s

1

(y) and x#y (jyj 
opies of x 
on
atenated one after

another), and 
losed under:

1. permutation and renaming of variables

2. 
omposition of fun
tions

3. limited re
ursion on notation

Building on this 
hara
terization Cook [6℄ de�ned an equational theory

PV (for Polynomially Veri�able). I shall give a slightly modi�ed de�nition of

an equivalent universal theory. The theory has symbols for the initial fun
-

tions and for a few other basi
 fun
tions useful for manipulating strings (like

trun
ation of the last bit Tr, 
on
atenation_, and ordering Less(x; y)), and

for all fun
tions introdu
ed 
onse
utively by applying Cobham's operations

arbitrarily many times. Axioms are universal formulas that for ea
h fun
-

tion f produ
ed by limited re
ursion on notation from fun
tions g

0

; : : : ; g

3

and all possible 
hoi
es of fun
tions f

0

and f

�

for f and g

0

i

and g

�

i

for g

i

's say,

that if all g

0

i

= g

�

i

and if 
onditions of the operation are satis�ed for g

0

i

and

g

�

i

's respe
tively and if both f

0

and f

�

were introdu
ed by the operation,

then f

0

= f

�

. For example, let E

0

1

; : : : ; E

0

3

and E

�

1

; : : : ; E

�

3

be the equations

(1 � 3) from the de�nition of the limited re
ursion for on notation g

0

i

's and

g

�

i

's: three for f

0

and three for f

�

in pla
e of f . Then:

g

0

0

= g

�

0

^g

0

1

= g

�

1

^g

0

2

= g

�

2

^g

0

3

= g

�

3

^E

0

1

^E

0

2

^E

0

3

^E

�

1

^E

�

2

^E

�

3

! f

0

= f

�

The theory also 
ontains a form of indu
tion. For any polynomial time pred-

i
ate P (x) (given by its 
hara
teristi
 fun
tion) there is a fun
tion symbol h

(
onstru
ted by simulating binary sear
h via limited re
ursion on notation)

su
h that we have:

(P (0) ^ :P (a))! (h(a) �

e

a ^ :P (h(a)) ^ P (Tr(h(a))))

with x �

e

y denoting that x is an initial subword of y.
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2 Proof 
omplexity and bounded arithmeti


Propositional proof 
omplexity starts with Cook's 1971 and 1975 papers

[5, 6℄. The former is the famous paper stating the P/NP problem and its

relation to propositional logi
, and the latter is another pioneering work un-


overing a tight relation of proof 
omplexity to formal arithmeti
 theories.

That paper introdu
ed Cook's theory PV, gave the translation of arithmeti


formulas and proofs into propositional ones, and proved a relation of PV to

Extended Frege system EF (the same relation was redis
overed by Paris

and Wilkie [24℄ in the 
ontext of di�erent but 
losely related systems). This

was in my opinion the birth of proof 
omplexity proper, although even ear-

lier there were results and ideas about lengths of propositional proofs that

are still very interesting and important. Most notable is work of Tseitin

[31℄ about resolution that was inspired by problems about formal linguis-

ti
s. Then 
ame Cook and Re
khow's [7℄ systemati
 
lassi�
ation of various

usual 
al
uli for propositional logi
 and the de�nition of the right notion of

redu
ibility (polynomial simulation).

The beginning of 
ontemporary resear
h in lower bounds for proposi-

tional proof systems starts with Ajtai's lower bound for 
onstant depth

Frege proofs of pigeonhole prin
iple PHP [1℄. This is in my view the most

important propositional lower bound paper ever written as it opened the

relation to boolean 
omplexity and freed the resear
h from a narrowly 
om-

binatorial approa
h. This is not to diminish other important a
hievements,

notably Haken's exponential resolution lower bound [9℄.

The relation between proof systems and theories, present in the �eld

from its beginning, 
an be summarized as follows. Let A(x) be a 
oNP

de�nition of a set of numbers. Assume A(x) has the form 8y; jyj � jxj

k

!

B(x; y) with B(x; y) a polynomial time predi
ate. Fix length n to bound

jxj's and 
onstru
t a propositional formula jjA(x)jj

n

as in the proof of the

NP-
ompleteness of satis�ability: the formula has n atoms p

1

; : : : ; p

n

for

bits of an x, m = n

k

atoms q

1

; : : : ; q

m

for bits of a potential y, and also

atoms r

1

; : : : ; r

s

for s = n

O(1)

bits of values on nodes of a �xed 
ir
uit C

n


omputing from p, q the truth value of predi
ate B(x; y). Formula jjA(x)jj

n

says, in a DNF form, that if r are 
orre
tly 
omputed by 
ir
uit C

n

from

inputs p, q then the output of the 
omputation is 1. Having any b of length

at most n with bits b(1); : : : ; b(n) denote by jjA(x)jj

n

(b) the propositional

formula with b(i) substituted for p

i

, and with the remaining atoms q and r

left unsubstituted. Clearly then b satis�es A(x) i� jjA(x)jj

n

(b) is a tautology.

The relation between proof systems and theories is as follows: The sys-
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tems/theories 
ome in pairs P=T su
h that:

(1) If T proves 8x;A(x) then tautologies jjA(x)jj

n

(b) have polynomial size

proofs in P .

(2) T proves the soundness of P and for any another proof system Q, if T

proves also the soundness of Q then P polynomially simulates Q.

One prominent su
h pair is formed by Extended Frege system EF and by

Cook's PV.

The �rst property has also a 
onverse (used �rst expli
itly by Paris and

Wilkie [24℄ and also in Ajtai's famous paper [1℄) that is slightly more 
omplex

to state (and 
annot be done in a logi
-free 
ombinatorial set-up only). It

is a simple instan
e of 
ompa
tness of �rst order logi
 though. Assume that

b

1

; b

2

; : : : is a sequen
e of numbers of lengths n

1

< n

2

< : : : su
h that the

formulas jjA(x)jj

n

i

(b

i

) are tautologies and have P -proofs of size � n

i

k

. Let

M be any 
ountable non-standard model of true arithmeti
. Then there will

be a non-standard n

�

2M and an element b

�

2M of length n

�

su
h that the

formula (in M) jjA(x)jj

n

�

(b

�

) is a tautology and has (in M) a P -proof �

�

of

size � n

�

k

. Moreover, if all original elements b

i

satisfy some property U(x)

from the polynomial hierar
hy (and thus expressible by a bounded formula

in the language of PV) then also b

�

will satisfy in M the same property.

Now 
omes the idea from item (1) above. Take an initial substru
ture

M

b

�

of M 
onsisting of all elements that have lengths bounded by some n

�

`

,

` a standard natural number. In parti
ular, b

�

as well as �

�

are in M

b

�

,

and both A(b

�

) and U(b

�

) hold in M

b

�

. Let N � M

b

�

be any extension of

M

b

�

that is a model of theory T and preserves polynomial time predi
ates

(in parti
ular, the predi
ate \to be a P -proof"). Then the element b

�

must

have property A(x) also in N : Otherwise take any 
 2 N witnessing the

existential quanti�er in :A(b

�

) = 9y; jyj � n

�

k

^ :B(b

�

; y). The bits of 


de�ne a truth evaluation (in N) of the atoms q of jjA(x)jj

n

�

(b

�

) that together

with evaluation of atoms r by the a
tual bits that o

ur in the 
omputation

of C

n

�

on b; 
 yield a truth assignment falsifying the formula jjA(x)jj

n

�

(b

�

).

However, the formula has a P proof �

�

in N (as �

�

was already in M

b

�

)

and the system P is sound in N (as the soundness is provable in T and N

is a model of T ); hen
e the existen
e of su
h a truth assignment and of 
 is

impossible and 
onsequently b

�

must satisfy A(x) also in N .

Thus we have the suitable inverse to the �rst property:

(3) Consider M , an arbitrary 
ountable model of true arithmeti
 and

b

�

2M an arbitrary non-standard element satisfying a property U(x).
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Assume that for any su
h M and b

�

we 
an �nd an extension of the

substru
ture M

b

�

to a model N of T that preserves polynomial time

predi
ates and in whi
h :A(b

�

) holds.

Then there are no k < ! and in�nite sequen
e b

1

; b

2

; : : : of numbers of

lengths n

1

< n

2

< : : : having all property U(x) su
h that all formulas

jjA(x)jj

n

i

(b

i

), i = 1; 2; : : : are tautologies with P - proofs of size � n

i

k

.

(In fa
t, the opposite impli
ation also holds.)

All these three properties are very well established and fruitfully used,

and they earned for bounded arithmeti
 the name of \uniform proof 
om-

plexity", having a relation to boolean proof 
omplexity analogous to the

relation of Turing ma
hines to 
ir
uit 
omplexity. Here are some examples.

Property (1): Quasi-polynomial proofs of the weak pigeonhole prin
iple

(WPHP) in 
onstant-depth Frege were obtained via (1) from Paris-Wilkie-

Woods [25℄, or the 
onstru
tion of polynomial size EF-proofs of disjointness

of two NP-sets related to the RSA 
ryptosystem from [20℄, an important

link of proof 
omplexity and 
ryptography. There are many su
h examples

and I regret that the beautiful new proof of WPHP by Ma
iel-Pitassi-Woods

[23℄ is not presented in this way as the 
ombinatori
s used is the same as

the one used in establishing the appropriate 
orresponden
e P/T (
f. [12℄)

and the presentation may be done on one page

1

.

Property (2): The polynomial simulation of system SF (Frege system

with the substitution rule) by EF was �rst proved in this way, while the

expli
it 
onstru
tion is quite involved, 
f. [8, 17℄. Property (2) is 
urrently

totally ignored, although various re
ent polynomial (non)simulation results

between tree-like/non-tree-like systems, or between 
onstant-depth subsys-

tems of Frege system and algebrai
 systems are immediate 
orollaries of

(2), often even stated in print as the 
orresponding soundness properties or

expli
itly as lower bound 
riteria.

Property (3): The most famous instan
e is Ajtai's proof of a super-

polynomial lower bound for 
onstant-depth Frege proofs of PHP. Another

instan
e is Wilkie's proof of Cook's simulation results from [6℄ as generalized

in [13℄.

1

Cf. seminar notes http://www.math.
as.
z/~kraji
ek/mpw.ps
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3 Earlier tautologies possibly hard for EF

Let me re
all two types of tautologies possibly hard for EF. The �rst type

is simply the property (2) of the relation of soundness to polynomial simu-

lation. Let P and T be a pair as earlier and take a proof system Q that you

believe to be impossible to polynomially simulate by P . The soundness of Q


an be expressed as Con

Q

:= 8x;Con

Q

(x) where Con

Q

(x) says that there

is no Q-proof w of size jwj � jxj of a formula v, and a truth assignment

u satisfying the negation of v (
learly juj and jvj are also bounded by jxj).

Then one expe
ts that tautologies jjCon

Q

(x)jj

n

do not have polynomial size

P -proofs. This is be
ause by (1) the existen
e of polynomial P -proofs is


lose to provability in T and provability of the soundness of Q in T would

imply the polynomial simulation. These 
andidates go ba
k to [6℄.

In fa
t, a bit stronger assumption about P and Q is equivalent to the

non-existen
e of polynomial size P -proofs of jjCon

Q

(x)jj

n

. The assumption

is that the minimal size of P -proofs 
annot be bounded by a polynomial in

minimal sizes of Q-proofs. See [17℄ or [14℄ for details.

The se
ond example is from [20℄, a part of a work showing that the

method of feasible interpolation (
f. [15℄ for explanation) 
annot be applied

to EF. The tautologies express that a number is a prime. Namely, take

formula A(x) of the form 8y; z < x; y � z 6= x. Then for a prime p of length n

the formula jjA(x)jj

n

(p) is a tautology. The question what is the minimum

size of EF-proofs of these tautologies was posed in [20℄ and it was proved

there that the tautologies do have polynomial EF-proofs i� there is an NP-

de�nition E(x) of primes su
h that PV proves that the de�nition is sound:

8x;E(x)! A(x). All su
h de�nitions seem to use at some point or another

the Little Fermat Theorem that is a notorious example of a number-theoreti


statement whi
h is unknown to be provable in PV. In fa
t, it is not provable

assuming the RSA is se
ure, see [20℄.

Note that tautologies of this se
ond sort are of the form jjx =2 Rng(f)jj

n

for a 
onje
tured one-way fun
tion.

Let us also mention one non-example. It has been suggested repeatedly

that various �nitary 
ombinatorial prin
iples independent from PA or ZFC


ould yield tautologies hard for many ordinary proof systems. However,

this suggestion is somewhat 
awed, at least when it is interpreted in the

straightforward way.

All su
h prin
iples, be they the Paris-Harrington version of Ramsey the-

orem, Kruskal's theorem or some other, are (at least) �

0

2

- statements of the

10



form 8n9N;�(n;N), with � bounded. Their unprovability stems solely from

the enormously rapid growth of the fun
tion giving the minimal witness N

for parameter n, but otherwise - on
e given N - the proofs of �(n;N) are

based on 
ounting of or indu
tion on substru
tures inside N . To turn su
h

a prin
iple into a propositional tautology one needs to take N itself as a

parameter. The formula speaks about the �nite stru
ture with the universe

[0; N ℄ (see e.g. formalization of Ramsey theorem by formulas RAM

n

in [16℄)

whi
h makes the formula huge and its proof, based on 
ounting or indu
tion

that are both easily simulated in EF, short 
ompared to its size.

4 Tautologies from pseudo-random generators

Denote by WPHP

a

2a

the statement that f : a ! 2a 
annot be onto. I

shall 
all it dual WPHP, similarly as [2℄. This has been �rst 
onsidered by

Wilkie and his witnessing theorem (see [14, 16℄) is the best result about the

prin
iple. A question about provability of the prin
iple for a 
on
rete poly-

nomial time fun
tion was posed also in [28, Append.C℄. It is explained in

[16℄ that proof-theoreti
 properties of (dual) WPHP are related to the exis-

ten
e of strong pseudo-random number generators and other 
ryptographi


primitives in several ways. The problem whether PV proves WPHP

a

2a

for

all polynomial time fun
tions [16, Se
.7℄ seems to me to be the right av-

enue towards other main problems; it has bigger quanti�er 
omplexity (�

b

2

)

than ordinary (W)PHP while still having impli
ations for propositional proof


omplexity, and it also relates to the famous problem on �nite axiomatiz-

ability of bounded arithmeti
, 
f. [14℄. One may note here that the ordinary

weak pigeonhole prin
iple WPHP

2a

a

, saying that f 
annot inje
tively map 2a

into a, is not provable in PV or S

1

2

for a parti
ular polynomial time fun
tion

(exponentiation modulo a prime) unless the 
ryptosystem RSA is inse
ure,


f. [20℄.

A strong pseudo-random generator (a 
on
ept introdu
ed by Yao [33℄)

is a polynomial time fun
tion G that stret
hes the inputs by (at least) one

bit and has exponential hardness. That is: there is � > 0 su
h that for any

n and any 
ir
uit C(y

1

; : : : ; y

n+1

) of size less than 2

n

�

it holds that

Prob

x

[C(G(x)) = 1℄ � Prob

y

[C(y) = 1℄ < 2

�n

�

where x is 
hosen uniformly at random from f0; 1g

n

and y from f0; 1g

n+1

.

The intuition behind the de�nition is that although G 
annot be onto

f0; 1g

n+1

, it's range is hard to distinguish from f0; 1g

n+1

in the sense that

11



any sub-exponential size 
ir
uit does not distinguish a random element y of

f0; 1g

n+1

from a pseudo-random element G(x) of Rng(G) with more than a

negligible probability.

For explaining Conje
ture 7.9 of [16℄ I shall use the same set-up as for

property (3) in Se
tion 2. Denote by f

n

the restri
tion of a fun
tion f to

inputs of length n.

Conje
ture 4.1 ([16, 7.9℄) Assume that a strong pseudo-random genera-

tor G exists. Then there is a polynomial time 
omputable fun
tion f su
h

that any 
ountable model M

a

�

of the form as earlier, a

�

= 2

n

�

in M , has an

extension to a model N of PV that violates WPHP

a

�

2a

�

(f).

In parti
ular, if strong pseudo-random number generators exist then PV

does not prove WPHP

a

2a

for all polynomial time fun
tions.

The referen
e to G seems redundant. However, I 
onje
tured in [16℄ that

there is a 
onstru
tion of f from G uniform in G and that there are even G

for whi
h one 
an take f := G. (This 
annot be true for all G; e.g. G 
an

have the form 1 +H. For other examples see Se
tion 7.) The quali�
ation

uniform is used informally; it 
ould mean, for example, pre-
omposing G

with a simple polynomial time fun
tion depending on G.

As noted in [16℄ the 
onje
ture has also impli
ations for Extended Frege

system EF. This is via property (3) from Se
tion 2. To simplify notation

denote by �

b

the propositional formula ky =2 Rng(f

n

)k

n+1

(b), b 2 f0; 1g

n+1

,

and n 2 N. The following statement is an obvious instan
e of property (3).

Corollary 4.2 Assume that G is a strong pseudo-random generator and f

is a fun
tion with properties guaranteed by the 
onje
ture.

Then tautologies �

b

for b =2 Rng(f

n

), n = 1; 2; : : :, require superpolyno-

mial EF-proofs.

Alekhnovi
h et al. [2℄ 
onsider various propositional en
odings of the

statement b =2 Rng(G

n

) and prove several lower bounds for systems like res-

olution, polynomial 
al
ulus and their 
ombination, and for 
on
rete pseudo-

random generators inspired by the Nisan-Wigderson generator. They also

o�er a view of Tseitin's tautologies [31℄ that sees them as tautologies of the

same form.
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5 Counter-example 
omputations

In the next se
tion we link the 
onje
ture with a new notion of hardness of

a fun
tion, so that the 
onje
ture holds with a fun
tion f i� f is hard in this

new sense. To illustrate the de�nition of the hardness notion we shall dis
uss

�rst in this se
tion the notion of 
ounter-example 
omputation, stemming

from [21, 26℄ and studied in [22℄.

Let �(x) := 9y(jyj � jxj

k

)8z(jzj � jxj

`

);�(x; y; z) be a property of x

with � polynomial time de
idable, and with x the only free parameter. A

general 
omputational task is to, given x, �nd y witnessing the property.

The parti
ular 
omputation of y is performed by Student, a polynomial

time algorithm, and by all-powerful Tea
her.

Student �rst 
omputes some y

1

(ta
itly of the appropriate length) know-

ing only x. If it is not a valid witness Tea
her provides him with a 
ounter-

example: some z

1

(again ta
itly of the appropriate length) su
h that �(x; y

1

; z

1

)

fails. In the se
ond round Student 
omputes another 
andidate y

2

but now

using not only x but also z

1

. If it is not a witness then he gets a 
ounter-

example from Tea
her, and so on.

An example of interesting properties � are various optimization prob-

lems. For example, a property may say that a graph x has a maximal 
lique

y. Important results in bounded arithmeti
 follow from proving that, un-

less the polynomial time hierar
hy 
ollapses, Student 
annot �nd a maximal


lique in a 
onstant number of rounds, 
f.[21℄.

What we shall 
onsider is �(x) := WPHP

x

2x

, the dual weak pigeonhole

prin
iple (for a �xed f). Witnesses to it are exa
tly elements of f0; 1g

jxj+1

outside of the range of f

jxj

. In the previous example an important restri
tion

on Student's 
apabilities 
omes from the fa
t that it is a polynomial time

algorithm that should work for all x's. We shall abolish this restri
tion and

we allow Student to 
ompute with (non-uniform) polynomial size 
ir
uits.

This means, equivalently, that Student 
an use a di�erent polynomial time

algorithm for ea
h length n of x's. However, this itself would trivialise things:

a 
ir
uit 
an simply output dire
tly some �xed witness without 
omputing

anything. But we shall restri
t Student in another way: we will require

that he 
an solve the problem in 
onstantly many rounds and that it 
an be

proved by polynomial size EF proofs that his strategy works. This is a non-

trivial restri
tion be
ause if you simply have a witness y you may still not

be able to prove that it is a witness as the proof may, in prin
iple, have to go

through exponentially many (in the length of x) possible 
ounter-examples

z. We de�ne this formally in the next se
tion.
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6 Fun
tions free for EF

We 
ontinue using the abbreviation �

b

de�ned before Corollary 4.2 but as

we shall substitute into the formulas we shall use a notation showing ex-

pli
itly o

urren
es of atoms. The formula ky =2 Rng(f

n

)k

n+1

has atoms

p

1

; : : : ; p

n+1

for bits of y, atoms q

1

; : : : ; q

n

for bits of possible x, and atoms

r

1

; r

2

; : : : for bits of 
omputation of f(x). We shall negle
t atoms r

i

as they

are unique for any parti
ular q. (One may also think of EF as operating

with 
ir
uits in whi
h 
ase atoms r

i


an be repla
ed by the 
orresponding


ir
uits.)

For b 2 f0; 1g

n+1

the formula �

b

(q) is ky =2 Rng(f

n

)k

n+1

(p=b). However,

assume that b is not a string of bits but a string of single output 
ir
uits with

inputs (atoms) u = (u

1

; : : : ; u

`

). The formula �

b

(q; u) makes a perfe
t sense

and it is a tautology i� the range of the fun
tion b : f0; 1g

`

! f0; 1g

n+1

is

disjoint with Rng(f

n

).

Our hardness 
ondition on f will have a similar form. We shall denote

by Cir
uit

n+1

(u) the set of 
ir
uits 
omputing n+1 output bits from atoms

u. In parti
ular, Cir
uit

n+1

(;) is a 
ir
uit without inputs 
omputing n+ 1


onstants.

De�nition 6.1 Let k � 1. Fun
tion f is k-restri
ted for EF i� there is a

polynomial p(n) su
h that there are arbitrarily large n and 
ir
uits b

1

; : : : ; b

k

,

b

1

2 Cir
uit

n+1

(;), b

2

2 Cir
uit

n+1

(q

1

), b

3

2 Cir
uit

n+1

(q

1

; q

2

); : : :, b

k

2

Cir
uit

n+1

(q

1

; : : : ; q

k�1

), q

i

disjoint n-tuples of atoms, of size at most p(n)

su
h that the formula

(*) �

b

1

(q

1

) _ : : : _ �

b

k

(q

1

; : : : ; q

k

)

has an EF-proof of size at most p(n). Fun
tion f is k-free for EF i� it is

not k-restri
ted, and it is free for EF i� it is k-free for all k � 1.

If the formula (*) is a tautology then either b

1

2 f0; 1g

n+1

is outside

Rng(f

n

), or if f(a

1

) = b

1

for some a

1

2 f0; 1g

n

then b

2

(q

1

=a

1

) 2 f0; 1g

n+1

is outside Rng(f

n

) et
. So, Student's strategy given by 
ir
uits b

1

; : : : ; b

k

leads him in at most k steps to an element outside Rng(f

n

); in parti
ular,

su
h an element exists in a model of PV if (*) has an EF-proof there, as

then it is a tautology by property (2) of Se
tion 2.

Note that the formula implies that the range of the map

b : f0; 1g

(k�1)n

! f0; 1g

k(n+1)
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given by b

1

; : : : ; b

k

is not in
luded in the range of

L

k

i=1

f

n

(k-fold dire
t sum).

In fa
t, provability of any similar non-in
lusion in PV yields an analogous

intera
tive 
omputation (this is proved analogously as the next theorem).

Theorem 6.2 Conje
ture 4.1 is satis�ed with fun
tion f i� f is free for

EF.

Proof : The 
onje
ture obviously implies that f must be free. Otherwise,

by 
ompa
tness, there would model M

a

�

of the form as earlier 
ontaining


ir
uits b

1

; : : : ; b

k

for some non-standard n

�

(with appropriate inputs as in

De�nition 6.1) and an EF-proof of the formula (*). Hen
e the formula (*)

is a tautology in any model N of PV extending M

a

�

, b

1

; : : : ; b

k

determine

an element of N outside Rng(f

n

�

) and N 
annot violate WPHP

a

2a

(f).

For the opposite dire
tion assume that in all extensions ofM

a

�

WPHP

a

2a

(f)

holds. This means that PV together with the open diagram Diag(M

a

�

)

proves the following formula: 9y 2 f0; 1g

n

�

+1

8x 2 f0; 1g

n

�

; f

n

�

(x) 6= y.

By the KPT witnessing theorem [21℄ there are k � 1 and polynomial

time fun
tions h

1

(z; u), h

2

(z; x

1

; u), : : : ; h

k

(z; x

1

; : : : ; x

k�1

; u) su
h that the

following universal formula

f

n

�

(x

1

) 6= h

1

(a

�

; w) _ f

n

�

(x

2

) 6= h

2

(a

�

; x

1

; w)_

: : : _ f

n

�

(x

k

) 6= h

k

(a

�

; x

1

; : : : ; x

k�1

; w)

with w some parameters from M

a

�

, is provable in PV +Diag(M

a

�

). Hen
e

inM

a

�

the propositional translation of this formula has an EF proof (propo-

sitional translations of all senten
es in Diag(M

a

�

) have polynomial size EF

proofs inM

a

�

, 
f. [18, 14℄). The propositional translation is the formula (*)

with 
ir
uits b

i


omputing h

i

(a

�

; x

1

; : : : ; x

i�1

; w)

q.e.d.

7 Examples and remarks

Let g be a one way permutation su
h that PV proves that it is inje
tive. Let

G be a pseudo-random generator 
onstru
ted from g by appending to the

value g(x) a hard bit of x. Then 
learly PV proves that for any y 2 f0; 1g

n

at least one of b

0

:= (y; 0), b

1

:= (y; 1) is outside Rng(G

n

). So for formulas

�

b


onstru
ted from f := G, by property (1) , EF admits polynomial size
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proofs of disjun
tions �

b

0

_ �

b

1

. (This example was noti
ed by P. Pudl�ak

and by A. Wigderson.) However, 
learly one of b

0

or b

1

is in the range of

G; say G(a

0

) = b

0

. Then substituting bits of a

0

together with bits of the


omputation of G(a

0

) into the proof of �

b

0

_ �

b

1


ollapses �

b

0

to 0 and yields

a proof of �

b

1

. Hen
e G is 1-restri
ted. Note that we 
an re
tify this by

pre-
omposing G with a suitable polynomial time fun
tion (depending on

the parti
ular hard bit).

Let us modify the example a bit. Assume that we have two (provably

in PV) one-to-one fun
tions g

1

, g

2

for whi
h the 
orresponding � -formulas

are hard to prove. De�ne f(x) to be (g

1

(x); 0) if x 
ontains an even number

of ones, and (g

2

(x); 1) otherwise. The � -formulas for f are hard to prove

unless the restri
tion to inputs with even or odd number of ones respe
tively

helps to prove the � -formulas for g

1

or g

2

respe
tively. But f is 2-restri
ted;

namely, let b

1

have the form (b; 0) for b =2 Rng(g

1

) and b

2

(x

1

), a 
ir
uit, have

the form (g

2

(x

1

); 1). Then �

b

1

(q

1

) _ �

b

2

(q

1

; q

2

) is easily provable.

The notion of a fun
tion free for a general proof system Q makes perfe
t

sense and Theorem 6.2 holds for any Q that polynomially simulates EF,

with PV repla
ed by PV + Con

Q

(Con

Q

is the 8�

b

1

senten
e from Se
-

tion 3). The 
hoi
e of the parti
ular theory for Q (it is unique only up to

8�

b

1


onsequen
es) is important. For example, system G

2

, a subsystem of

quanti�ed propositional logi
 G, 
orresponds to theory T

2

2

(
f. [3, 19, 14℄).

That theory proves WPHP

a

2a

for all polynomial time fun
tions. However,

that does not imply that every su
h fun
tion is k-restri
ted for G

2

, some

k � 1. The proof of Theorem 6.2 needs that the theory has a Skolemization

by polynomial time fun
tions as apparently only then do senten
es from the

open diagram have Q-proofs in the model.

One may also look at proof systems for whi
h we already have good

lower bounds and some lower bound methods. For example, very interesting

is the 
ase of 
onstant depth Frege systems. A depth d Frege system F

d

operates with formulas of the depth at most d in the DeMorgan language

with unbounded arity _;^. In this 
ase we would look for an AC

0

fun
tion

(i.e., 
omputable by polynomial size, 
onstant depth formulas) that would

be free for all F

d

, meaning that no strategy of Student given itself by AC

0


ir
uits 
an be proved to be winning by polynomial size F

d

proofs.

A simpler problem, to prove that it is 
onsistent with PV or S

1

2

that a


on
rete polynomial time fun
tion f violates WPHP

a

2a

, leads to the task to

show that EF has no short proof that a uniform polynomial time Student

(one algorithm for all input lengths) �nds an element outside the range of
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the fun
tion in 
onstantly many (for PV) or polynomially many (for S

1

2

)

rounds.

The EF provability is now important (for the S

1

2


ase) even if we have a

uniform Student instead of a 
ir
uit Student. Namely, it follows from results

of Impagliazzo and Wigderson [10℄ (proved under a plausible 
omplexity-

theoreti
 assumption) that there is a polynomial time Student winning in

polynomially many rounds. Let f be 
omputable in time n

k

. Impagli-

azzo and Wigderson [10℄ 
onstru
t a polynomial time fun
tion g that takes

O(log(n)) input bits and 
omputes n + 1 bits, and su
h that no NP algo-

rithm running in time O(n

k

) 
an distinguish a random element of f0; 1g

n+1

from a pseudo-random element g(x). This implies that Rng(g) 6� Rng(f) as

otherwise the property to belong into Rng(f) would distinguish the random

and pseudo-random strings with probability at least 1=2. Hen
e Student


an simply 
onse
utively list as 
andidates all n

O(1)

elements of Rng(g), not

using Tea
her's 
ounter-examples at all. The assumption their 
onstru
tion

uses is, in this 
ase, that there is an exponential time fun
tion that 
annot

be 
omputed by a sub-exponential size 
ir
uit querying an NP property.

This is true if, for example, the sub-exponential time hierar
hy is properly

in
luded in EXP.

However, EF provability of the fa
t that su
h Student wins depends

on formalizability of the 
onstru
tion in S

1

2

. That is unlikely as its many


ounting arguments seem to presuppose some form of pigeonhole prin
iple.

Finally, note that if f is itself a pseudo-random generator then PV does

not disprove the statement that for an a and some b < 2a not in the range of

f , the tautology �

b

has no EF proof. Otherwise, by Herbrand's theorem as

PV is a universal theory, there would be a polynomial time algorithm de
id-

ing the membership in the range of f , 
ontradi
ting the pseudo-randomness

of f .

A
knowledgement: I am very mu
h indebted to the editor Andreas Blass

for making numerous and detailed suggestions how to improve the paper.

Referen
es

[1℄ M. Ajtai, The 
omplexity of the pigeonhole prin
iple, in: Pro
. IEEE

29

th

Annual Symp. on Foundation of Computer S
ien
e, (1988), pp.

346-355.

17



[2℄ M. Alekhnovi
h, E. Ben-Sasson, A. A. Razborov, and

A. Wigderson, Pseudorandom generators in propositional proof 
om-

plexity, preprint, (Mar
h 2000).

[3℄ Buss, S. R., Bounded Arithmeti
. Naples, (1986), Bibliopolis. (Revi-

sion of 1985 Prin
eton University Ph.D. thesis.)

[4℄ Cobham, A, The intrinsi
 
omputational diÆ
ulty of fun
tions, in :

Pro
. Logi
, Methodology and Philosophy of S
ien
e, ed. Y. Bar-Hillel,

North-Holland, (1965), pp. 24-30.

[5℄ Cook, S A., The 
omplexity of theorem proving pro
edures, in: Pro
.

3

rd

Annual ACM Symp. on Theory of Computing, (1971), pp. 151-158.

ACM Press.

[6℄ Cook, S A., Feasibly 
onstru
tive proofs and the propositional 
al
u-

lus, in: Pro
. 7

th

Annual ACM Symp. on Theory of Computing, (1975),

pp. 83-97. ACM Press.

[7℄ Cook, S. A. and Re
khow, A. R., The relative eÆ
ien
y of propo-

sitional proof systems, J. Symboli
 Logi
, 44(1), (1979), pp. 36-50.

[8℄ Dowd, M., Propositional representations of arithmeti
 proofs, PhD

Thesis, University of Toronto, (1979).

[9℄ Haken, A., The intra
tability of resolution, Theoreti
al Computer S
i-

en
e, 39, (1985), pp. 297-308.

[10℄ R. Impagliazzo and A. Wigderson, P = BPP unless E has sub-

exponential 
ir
uits: derandomizing the XOR lemma, in: Pro
. of the

29

th

Annual ACM Symposium on Theory of Computing, (1997), pp.

220-229.

[11℄ J. Kraj

�

�

�


ek, Speed-up for propositional Frege systems via generaliza-

tions of proofs, Commentationes Mathemati
ae Universitatis Carolinae,

30(1), (1989), pp. 137-140.

[12℄ J. Kraj

�

�

�


ek, Lower bounds to the size of 
onstant-depth propositional

proofs, J. Symboli
 Logi
, 59(1), (1994), pp. 73-86.

[13℄ J. Kraj

�

�

�


ek, On Frege and Extended Frege Proof Systems, in: \Feasi-

ble Mathemati
s II", eds. P. Clote and J. Remmel, Birkhauser, (1995),

pp. 284-319.

18



[14℄ J. Kraj

�

�

�


ek, Bounded arithmeti
, propositional logi
, and 
omplexity

theory, En
y
lopedia of Mathemati
s and Its Appli
ations, Vol. 60,

Cambridge University Press, (1995).

[15℄ J. Kraj

�

�

�


ek, Interpolation theorems, lower bounds for proof systems,

and independen
e results for bounded arithmeti
, J. Symboli
 Logi
,

62(2), (1997), pp. 457-486.

[16℄ J. Kraj

�

�

�


ek, On the weak pigeonhole prin
iple, Fundamenta Mathe-

mati
ae, to appear (preprint on web August 9 '99).

[17℄ J. Kraj

�

�

�


ek and P. Pudl

�

ak, Propositional proof systems, the 
on-

sisten
y of �rst order theories and the 
omplexity of 
omputations, J.

Symboli
 Logi
, 54(3), (1989), pp. 1063-1079.

[18℄ J. Kraj

�

�

�


ek and P. Pudl

�

ak, Propositional provability in models of

weak arithmeti
, in: Computer S
ien
e Logi
 (Kaiserlautern, O
t. '89),

eds. E. Boerger, H. Kleine-Bunning and M.M. Ri
hter, Le
ture Notes

in Computer S
ien
e 440, (1990), pp. 193-210. Springer-Verlag.

[19℄ J. Kraj

�

�

�


ek and P. Pudl

�

ak, Quanti�ed propositional 
al
uli and

fragments of bounded arithmeti
, Zeits
hrift f. Mathematis
he Logik u.

Grundlagen d. Mathematik, 36, (1990), pp. 29-46.

[20℄ J. Kraj

�

�

�


ek and P. Pudl

�

ak, Some 
onsequen
es of 
ryptographi
al


onje
tures for S

1

2

and EF , Information and Computation, Vol. 140

(1), (January 10, 1998), pp. 82-94.

[21℄ Kraj

�

�

�


ek, J., Pudl

�

ak, P., and Takeuti, G., Bounded arithmeti


and the polynomial hierar
hy, Annals of Pure and Applied Logi
, 52,

(1991), pp. 143{153.

[22℄ J. Kraj

�

�

�


ek, P. Pudl

�

ak and J. Sgall, Intera
tive Computations of

Optimal Solutions, in: B. Rovan (ed.): Mathemati
al Foundations of

Computer S
ien
e (B. Bystri
a, August '90), Le
ture Notes in Com-

puter S
ien
e 452, Springer-Verlag, (1990), pp. 48-60.

[23℄ A. Ma
iel, T. Pitassi, and A. Woods, A new proof of the weak

pigeonhole prin
iple, preprint (1999).

[24℄ Paris, J. and Wilkie, A. J., Counting problems in bounded arith-

meti
, in: Methods in Mathemati
al Logi
, LNM 1130, (1985), pp. 317-

340. Springer-Verlag.

19



[25℄ J. B. Paris, A. J. Wilkie, and A. R. Woods, Provability of the

pigeonhole prin
iple and the existen
e of in�nitely many primes, J.

Symboli
 Logi
, 53, (1988), pp. 1235{1244.

[26℄ P. Pudl

�

ak, Some relations between subsystems of arithmeti
 and the


omplexity of 
omputations, in: Logi
 From Computer S
ien
e, Pro-


eedings of a Workshop held November 13-17, 1989 in Berkeley, ed.

Y.N. Mos
hovakis, Mathemati
al S
ien
es Resear
h Institute Publi
a-

tion, 21, (1992), pp. 499-519. Springer-Verlag.

[27℄ P. Pudl

�

ak, The lengths of proofs, in: Handbook of Proof Theory, Ed.

S. Buss, (1997).

[28℄ A. A. Razborov, Bounded arithmeti
 and lower bounds in Boolean


omplexity, in: Feasible Mathemati
s, eds. P.Clote and J.Remmel,

Progress in Comp. S
i. and Applied Logi
, Vol. 13, (1995), pp. 344-

386. Birkhauser.

[29℄ A. A. Razborov, Unprovability of lower bounds on the 
ir
uit size in


ertain fragments of bounded arithmeti
, Izv. Ross. Akad. Nauk Ser.

Mat., 59(1), (1995), pp. 201-224.

[30℄ A. A. Razborov and S. Rudi
h, Natural proofs, J. of Computer and

Systems S
ien
es, 55(1), (1997), pp. 24-35.

[31℄ Tseitin, G. C., On the 
omplexity of derivations in propositional 
al-


ulus, in: Studies in mathemati
s and mathemati
al logi
, Part II, ed.

A.O. Slisenko, (1968), pp. 115-125.

[32℄ Urquhart, A., The 
omplexity of propositional proofs, Bulletin of

Symboli
 Logi
, 1(4), (1995), pp. 425-467.

[33℄ Yao, A., Theory and appli
ations of trapdoor fun
tions, in: Pro
. of

the 23

rd

Annual Symp. on Foundation of Computer S
ien
e, (1982),

pp. 92-99.

20


