
NOTES ON APPLIED STABILITY THEORY

L. VAN DEN DRIES

1. Introduction

The possibility of applying model theory outside logic was pioneered by
Tarski, Mal’cev, and A. Robinson in the forties and fifties. This involved
just the most basic ideas and notions of model theory, like compactness,
quantifier elimination, and preservation theorems, and led to results such as
the Lefschetz Principle for algebraically closed fields and its analogue for real
closed fields, and hence to more concrete applications like those by Robinson
to Hilbert’s 17th problem and algebraically closed valued fields. Of course,
it required great insight to realize that simple ideas of this nature could be
useful at all, and familiarity with this development is recommended.

To this very limited arsenal the sixties and seventies added the systematic
use of saturation and ultraproducts, and of the Robinsonian notions

model completion and existentially closed model.

The main new application in the sixties was the spectacular work by Ax-
Kochen and Ersov, with non-standard analysis also attracting attention.
In the seventies Macintyre and Denef extended the range of applications
by focusing on the structure of definable sets, in p-adic fields in their case,
rather than dealing only with sentences as in most earlier work. This change
of focus was a key inspiration for introducing o-minimal structures in the
next decade, when new interactions with pure model theory occurred.

In the mean time pure model theory had undergone a deep transformation,
starting with Morley’s seminal proof of his categoricity theorem in the six-
ties. To deal with the related issue of how many models of a given size
a countable theory can have, Shelah and others developed a rather mas-
sive machinery, called stability theory. In this way Shelah discovered some
highly robust dividing lines among theories, and these dichotomies have
turned out to be also of great significance for the study of definable sets.
With additional influence of work by Baldwin-Lachlan and programmatic
ideas of Zilber, people began a systematic investigation of the underlying
pregeometries of stable structures and the groups that can be defined in
such structures; this direction goes under the name of geometric stability
theory. This huge internal model-theoretic development was unrelated to
the concerns of applied model theory as discussed earlier. Over the last
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twenty years, however, Hrushovski has achieved a remarkable synthesis of
these two streams of model theory by connecting geometric stability theory
to diophantine questions. Key words on the diophantine side:

Mordell-Lang and Manin-Mumford.

One meeting ground is the subject of differentially closed fields. These
objects were invented by Robinson around 1960, but their deeper algebraic
and model-theoretic properties were established by means of stability theory.

In these notes we shall deal with algebraically closed fields and differen-
tially closed fields, with emphasis on model-theoretic aspects, develop some
elementary algebraic geometry (partly in the context of noetherian spaces
and zariski-structures), and some model theory of groups. Towards the end
we shall use this to give the Pillay-Ziegler proof of the Mordell-Lang property
for function fields in characteristic zero.

Notation and terminology. Model-theoretic notations and terminology
are as in my notes Introduction to model-theoretic stability. If M and N are
structures for the same one-sorted language, then M ⊆ N means that M
is a substructure of N .

By “ring” we mean “commutative ring with 1” unless we explicitly allow
otherwise. Rings are viewed as structures for the language {0, 1,−,+, ·}
of rings, and terms like “ring (homo)morphism” and “subring” are used
in that sense. Given a ring R and a1, . . . , an ∈ R we let (a1, . . . , an)R (or
(a1, . . . , an) if R is clear from the context) denote the ideal a1R+· · ·+anR of
R generated by a1, . . . , an. Given a ring R we let R[T1, . . . , Tn] be the ring of
polynomials in distinct indeterminates T1, . . . , Tn with coefficients from R,
and if f ∈ R[T1, . . . , Tn] is presented in the form

∑

i
aiT

i it is understood
that i = (i1, . . . , in) ranges over Nn, that the coefficients ai belong to R,

with ai 6= 0 for only finitely many i, and that T i := T i1
1 · · ·T in

n . If R is a
subring of a ring S and f ∈ R[T1, . . . , Tn], a zero of f in S is a point b ∈ Sn

such that f(b) = 0. I recommend Lang’s Algebra for algebraic notions and
results that are used but not explained in the present notes.

An algebra on a set X is a subalgebra of the boolean algebra of all subsets
of X. Given a collection C of subsets of a set X, a boolean combination of
sets of C inside X is an element of the algebra on X generated by C.

For sets X,Y we write X ⊂ Y or Y ⊃ X to indicate that X is a proper
subset of Y . Given subsets C,C1, . . . , Cn of a set X we say that C1, . . . , Cn

cover C if C ⊆ C1 ∪ · · · ∪ Cn. By space we shall mean topological space.
Given an ambient space X and P ⊆ X we let cl(P ) and int(P ) be the closure
and interior of P in X.

2. Algebraically closed fields

We establish here the basic model-theoretic facts about algebraically closed
fields: elimination of quantifiers, the Nullstellensatz, perfect subfields as
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definably closed sets, definable functions, strong minimality, Morley rank =
transcendence degree, and elimination of imaginaries.

Throughout this section we let K, E and F denote fields, and until further
notice “algebraic over”, “algebraically closed”, and “algebraic closure” are
taken in the sense of field theory; as we shall see, these notions agree in the
context of algebraically closed fields with the model-theoretic notions. By
ACF we mean here the theory of algebraically closed fields in the language
of rings, and for p a prime number or p = 0 we let ACF(p) be the theory of
algebraically closed fields of characteristic p. In this section p ranges over
the set {0, 2, 3, 5, . . . } of possible characteristics.

We assume the reader knows from Algebra that any field K has an algebraic
closure Ka, that is, Ka is an algebraically closed overfield of K and algebraic
over K; these properties determine Ka up to isomorphism over K (but Ka

has usually many automorphisms over K). Any embedding of K into an
algebraically closed field E can be extended to an embedding of Ka into E.
If E is an algebraically closed extension of K, then there is a unique field
K ′ such that K ⊆ K ′ ⊆ E and K ′ is an algebraic closure of K, namely

K ′ = {a ∈ E : a is algebraic over K}
and we shall call this K ′ the algebraic closure of K in E. We also assume
familiarity with algebraic independence and transcendence bases.

The “oldest” algebraically closed field is of course the field C of complex
numbers, but the importance of C derives also from its amazing analytic
structure. Other algebraically closed fields of independent interest are the
algebraic closures of the finite fields Fp and of Q. Model theory suggests,
however, that we can profit by working in an elementary class of structures,
even if our aim is to understand just a single model in this class.

Quantifier Elimination. We shall use the following QE-test:

Lemma 2.1. Let T be a one-sorted theory. Then (1) ⇔ (2):

(1) T admits QE;
(2) whenever M = (M ; . . . ) and N = (N ; . . . ) are models of T such

that N is |M |+-saturated, and A is a proper substructure of M and
φ : A → N is an embedding, then φ extends to an embedding of a
strictly larger substructure of M into N .

Of course, in (2) one can iterate the extension process and extend φ to an
embedding of M into N .

Theorem 2.2. ACF has QE, and ACF(p) is complete for each p.

Proof. Let E and F be algebraically closed fields such that F is |E|+-
saturated, and let R be a proper subring of E and φ : R→ F an embedding.
If R is not a field we can extend φ to its fraction field inside E. So assume R
is a field. If R is not algebraically closed, we can extend φ to the algebraic
closure of R in E. So we can assume R is an algebraically closed field. Take
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any a ∈ E \ R. Then f(a) 6= 0 for all nonzero polynomials f(T ) ∈ R[T ],
that is, a is transcendental over R. By saturation we can take b ∈ F tran-
scendental over the subfield φ(R) of F . Then φ extends to an embedding
R[a] → F sending a to b. This proves that ACF has QE. The second part
of the theorem now follows since for p > 0 the field Fp embeds into every
model of ACF(p), and the ring Z embeds into every model of ACF(0). �

The substructures of algebraically closed fields are exactly the domains, so
by the above, ACF is the model completion of the theory of domains.

The following consequences of QE make up the Constructibility Theorem
(Tarski-Chevalley) and the Nullstellensatz (Hilbert).

Corollary 2.3. Let E be an algebraically closed field with subfield K.

(1) The subsets of En definable over K in E are exactly the boolean
combinations inside En of the zerosets

{a ∈ En : f(a) = 0}, (f ∈ K[T1, . . . , Tn]).

(2) If f1, . . . , fk, g1, . . . , gl ∈ K[T1, . . . , Tn] and there is an overfield F of
K with a point a ∈ Fn such that

f1(a) = · · · = fk(a) = 0, g1(a) 6= 0, . . . , gl(a) 6= 0,

then there is such a point a ∈ En.
(3) Let g1, . . . , gm ∈ K[T1, . . . , Tn]. Then g1, . . . , gm have no common

zero in E if and only if there are f1, . . . , fm ∈ K[T1, . . . , Tn] such
that f1g1 + · · · + fmgm = 1 (in K[T1, . . . , Tn]).

(4) the maximal ideals of E[T1, . . . , Tn] are exactly the ideals

(T1 − a1, . . . , Tn − an)E[T1, . . . , Tn], (a1, . . . , an ∈ E).

Proof. Item (1) is immediate from QE. In (2), extend F to be algebraically
closed, and use that then by QE we have E ≡K F . In (3), suppose there
are no f1, . . . , fm ∈ K[T1, . . . , Tn] such that f1g1 + · · · + fmgm = 1. Then
the ideal of K[T1, . . . , Tn] generated by g1, . . . , gm is a proper ideal, and thus
contained in a maximal ideal m of K[T1, . . . , Tn]. Then m ∩K = {0}, so

K[T1, . . . , Tn]/m = K[t1, . . . , tn], (ti := Ti + m, i = 1, . . . , n)

is a field extension of K, and g(t1, . . . , tn) = g(T1, . . . , Tn) + m for each
g ∈ K[T1, . . . , Tn], in particular, g1, . . . , gm have (t1, . . . , tn) as a common
zero in an extension field of K, and thus g1, . . . , gm have a common zero in
E by (2).

As to (4), let R be a ring and a = (a1, . . . , an) ∈ Rn, and consider the
kernel of the ring morphism

f 7→ f(a) : R[T1, . . . , Tn] → R.

We claim this kernel is (T1 − a1, . . . , Tn − an)R[T1, . . . , Tn]. The latter ideal
is certainly part of the kernel. Let f ∈ R[T1, . . . , Tn] and rewrite f as a
polynomial in T1 − a1, . . . , Tn − an, so f = f∗(T1 − a1, . . . , Tn − an) with
f∗ ∈ R[T1, . . . , Tn]. If f is in the kernel, then f(a) = f∗(0) = 0, so f∗
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has constant term zero, that is, f∗ ∈ (T1, . . . , Tn)R[T1, . . . , Tn], and thus
f ∈ (T1 − a1, . . . , Tn − an)R[T1, . . . , Tn]. If R is a field, the surjectivity of
the substitution morphism above shows that its kernel is a maximal ideal
of R[T1, . . . , Tn]. It remains to show that for R = E this gives all maximal
ideals of E[T1, . . . , Tn]. Let m be a maximal ideal of E[T1, . . . , Tn] and let
g1, . . . , gm generate this ideal. (By Hilbert’s basis theorem there is a finite
set of generators.) By (3) we have a common zero a = (a1, . . . , an) ∈ En

of g1, . . . , gm and then a is a zero of all polynomials in m, so by our earlier
consideration we have m ⊆ (T1 − a1, . . . , Tn − an)E[T1, . . . , Tn]. By the
maximality of m this inclusion is an equality. �

Exercise. Typical Robinsonian uses of model-theoretic compactness + QE
yield the existence of uniform bounds in (2) and (3) above:

(i) Given an upper bound d ∈ N on the degrees of f1, . . . , fk, g1, . . . , gl in
(2), there is A = A(d, k, l, n) ∈ N such that if the system of equations
and inequations in (2) has a solution in E, then it has a solution in
an intermediate field K ′, K ⊆ K ′ ⊆ E, with [K ′ : K] ≤ A.

(ii) Given an upper bound d ∈ N on the degrees of g1, . . . , gm as in (3),
there is B = B(d,m, n) ∈ N such that if g1, . . . , gm have no common
zero in E, then there are f1, . . . , fm ∈ K[T1, . . . , Tn] of degree ≤ B
such that f1g1 + · · · + fmgm = 1.

(Here “A = A(d, k, l, n)” indicates that A depends only on d, k, l, n, not on K
or the particular polynomials involved, and likewise with “B = B(d,m, n)”.
One can even take A = A(d, l, n) and B = B(d, n).)

Definable closure. If E is algebraically closed with subset S, then the
definable closure dcl(S) of S in E contains at least the subfield of E gen-
erated by S, and equals (the underlying set of) this subfield when E has
characteristic zero:

Proposition 2.4. Let E be algebraically closed of characteristic zero, with
subfield K. Then K is definably closed in E.

Proof. Let a ∈ E\K; we claim that then fa 6= a for some f ∈ Aut(E|K). (It
is clear that the proposition follows from this claim.) If a is transcendental
over K, take a transcendence basis B of E over K with a ∈ B, take the
automorphism of K(B) over K that sends each b ∈ B to b + 1, and then
extend this automorphism to an automorphism of the algebraic closure E
of K(B). Suppose a is algebraic over K. Since a /∈ K, the minimum
polynomial of a over K is of degree > 1, so has a zero b ∈ E with b 6= a
(here we use that E has characteristic zero). Take an automorphism σ of the
algebraic closureKa ofK in E over K that sends a to b, take a transcendence
basis B of E over Ka, and extend σ to the automorphism of Ka(B) that is
the identity on B, and then extend further to an automorphism of E. �
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Characterizations of definable closures of this type lead to corresponding
descriptions of definable functions. In this case definable functions are piece-
wise rational functions:

Corollary 2.5. Let E be algebraically closed of characteristic zero, with
subfield K, and let X ⊆ En and f : X → E be K-definable in E. Then
there are g1, . . . , gk, h1, . . . , hk ∈ K[T1, . . . , Tn] such that for each x ∈ X
there is i ∈ {1, . . . , k} with hi(x) 6= 0 and f(x) = gi(x)/hi(x).

Proof. Extending E if necessary we can assume E is |K|+-saturated. Let
x ∈ X. Then f(x) ∈ dcl(K ∪ {x}) = K(x) by the proposition above, that
is, f(x) = g(x)/h(x) with polynomials g, h ∈ K[T1, . . . , Tn], h(x) 6= 0. Now
use saturation. �

Suppose E is algebraically closed of characteristic p > 0. Then we have a
0-definable automorphism x 7→ xp of E, the Frobenius map, and the inverse

y 7→ y1/p

of this map is not given piecewise by rational functions. The nth iterate
x 7→ xpn

of the Frobenius map has inverse y 7→ y1/pn

, and as we shall
see, these inverse maps are the only obstructions in getting an analogue in
positive characteristic of the above. Recall that a field K of characteristic
p > 0 is said to be perfect if every element of K is a pth power xp of some
x ∈ K. In particular, every finite field is perfect. For any subfield K of E
there is a smallest perfect subfield of E that contains K, namely

K1/p∞ :=
⋃

n

K1/pn

, where K1/pn

:= {x1/pn

: x ∈ K} ⊆ E,

and by the next result K1/p∞ is the definable closure of K in E.

Proposition 2.6. Let E be algebraically closed of characteristic p > 0, with
perfect subfield K. Then K is definably closed in E.

The proof is identical to that of Proposition 2.4, using the fact that an
irreducible polynomial in one variable over a perfect field is separable.

Corollary 2.7. Let E be algebraically closed of characteristic p > 0, with
perfect subfield K, and let X ⊆ En and f : X → E be K-definable in
E. Then there are g1, . . . , gk, h1, . . . , hk ∈ K[T1, . . . , Tn] and an n with the
following property: for each x ∈ X there is i ∈ {1, . . . , k} such that

hi(x
1/pn

) 6= 0 and f(x) = gi(x
1/pn

)/hi(x
1/pn

),

where x1/pn

:= (x
1/pn

1 , . . . , x
1/pn

n ) for x = (x1, . . . , xn) ∈ En.

Here is an application, usually stated only for injective endomorphisms of
algebraic varieties as a theorem of Ax:

Corollary 2.8. Let E be algebraically closed, and suppose X ⊆ En and
f : X → X are definable in E such that f is injective. Then f is surjective.
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Proof. Consider first the case that E is an algebraic closure of a finite field K
of characteristic p > 0. After increasing K we can assume that X and f are
definable over K. Now E is the union of the intermediate finite fields F with
K ⊆ F ⊆ E, and all such F being perfect, it follows from Corollary 2.7 that
f maps X(F ) := X ∩ Fn into X(F ), so f(X(F )) = X(F ) by injectivity.
Taking the union over all these F we get f(X) = X, so we are done for
this particular E. The corollary is equivalent to certain sentences in the
language of rings holding in all algebraically closed fields; we have shown
these sentences hold in all algebraic closures of finite fields. Therefore they
hold in all algebraically closed fields. �

Strong minimality.

Corollary 2.9. Suppose E is algebraically closed and X ⊆ E is definable
in E. Then X is finite or cofinite.

Proof. Use QE, the fact that a non-zero polynomial f(T ) ∈ E[T ] has only
finitely many zeros in E, and that the subsets of E that are finite or cofinite
are the elements of an algebra on E. �

The significance of this fact is that the completions ACF(p) of ACF are
strongly minimal theories in the following sense.

Let L be a one-sorted language and let M = (M ; . . . ) be an infinite L-
structure. Then M is said to be strongly minimal if for each 0-definable
relation R ⊆ Mn+1 in M there is m such that for all a ∈ Mn, either
|R(a)| ≤ m or |M \ R(a)| ≤ m; when M is ℵ0-saturated, this is equivalent
to the requirement that every X ⊆ M definable in M is finite or cofinite.
If M is strongly minimal, so is every L-structure elementarily equivalent to
M. Thus strong minimality is really a property of the theory Th(M) of
M, and we say that a complete L-theory T is strongly minimal if it has an
infinite strongly minimal model.

Suppose M is strongly minimal and ℵ0-saturated, and let T = Th(M).
Note that if X ⊆ M is definable in M, then MR(X) = 0 when X is finite,
and MR(X) = 1 otherwise. Thus T is totally transcendental, by the equiva-
lence (1) ⇔ (3) of Corollary 8.4 in Introduction to model-theoretic stability.
In particular, each completion ACF(p) of ACF is omega-stable.

Exercise. Let E be algebraically closed, K a subfield, and x a variable.
Then elements a, b ∈ E realize the same x-type over K in E iff they are
either both transcendental over K, or both algebraic over K with the same
minimum polynomial over K. The field E is saturated iff E has infinite
transcendence degree over its prime field.

Morley rank and transcendence degree. If E is algebraically closed
with subset S, then the (model-theoretic) algebraic closure acl(S) of S in E
contains obviously the field-theoretic algebraic closure in E of the subfield
of E generated by S, and is in fact equal to (the underlying set of) this
field-theoretic algebraic closure:
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Lemma 2.10. Let E be algebraically closed with algebraically closed subfield
K. Then K is algebraically closed in E in the model theory sense.

Proof. Obvious from K � E. �

In Section 11 of Introduction to model-theoretic stability we saw that strong
minimality has strong consequences. But there we worked in a big model
M with κ(M) > 2|L|. In order to use results from those notes we therefore
fix in the remainder of this subsection an algebraically closed field Ω of size
|Ω| > 2ℵ0 . Then Ω is saturated (by an earlier exercise), and thus big with
κ(Ω) = |Ω|. In this subsection K is a small subfield of Ω, so Ω has infinite
transcendence degree over K.

By the strong minimality of Ω the operation S 7→ acl(S) on the power
set of Ω makes Ω into a pregeometry, and one checks easily that a subset
of Ω is K-independent in the sense of this pregeometry iff it is algebraically
independent over K. Thus for a set S ⊆ Ω, the size rkK S of any maximal
K-independent subset of S equals the transcendence degree trdegK K(S) of
the field K(S) over K. (We only use this for finite S.) By results in Section
11 of the notes already mentioned it follows that for a1, . . . , an ∈ Ω we have

MR((a1, . . . , an)|K) = trdegK K(a1, . . . , an).

Proposition 2.11. Let X ⊆ Ωn be nonempty and definable in Ω over K.
Then MR(X) = max{trdegK K(a) : a ∈ X}, so 0 ≤ MR(X) ≤ n.

Proof. By Section 9 in Introduction to model-theoretic stability we have

MR(X) = max{MR(a|K) : a ∈ X}
Now combine this with the identity preceding the proposition. �

In particular, MR(Ωn) = n.

Elimination of imaginaries. Let T be a complete theory in a one-sorted
language and M = (M ; . . . ) a model of T . Recall that for T to have EI
(elimination of imaginaries) means that if E is a 0-definable equivalence
relation on Mm, then there is a 0-definable map f : Mm →Mn for some n
such that for all a, b ∈Mm,

aEb ⇐⇒ f(a) = f(b).

(The point is that then f induces a bijection E(a) 7→ f(a) of the quotient
set Mm/E onto the 0-definable set f(Mm) ⊆Mn in M, so this quotient set
can be treated via this bijection as a 0-definable set itself. Recall also that if
T has EI, then the above holds with “A-definable” in place of “0-definable”,
for any parameter set A in M.)

In this subsection Ω is a big algebraically closed field. We shall prove that
every setX ⊆ Ωn definable in Ω has a code in Ω; see Sections 4, 5 of Introduc-
tion to model-theoretic stability for facts about coding. Once established—for
Ω of any characteristic—it follows by Lemma 4.7 in those notes that ACF(p)
has EI, for each p.
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Consider first the special case where n = 1 and X ⊆ Ω is finite, say X =
{a1, . . . , ad} with distinct a1, . . . , ad. The trick is to consider the polynomial

(T + a1) · · · (T + ad) = T d + b1T
d−1 + · · · + bd, (b1, . . . , bd ∈ Ω).

Unique factorization of Ω[T ] yields that for all σ ∈ Aut(Ω),

σ(X) = X ⇐⇒ σ(b1) = b1, . . . , σ(bd) = bd,

so (b1, . . . , bd) codes X in Ω, by an exercise in Section 5 of Introduction to
model-theoretic stability. As a special case, a set {a1, a2} ⊆ Ω is coded in Ω
by the pair (a1 + a2, a1a2) ∈ Ω2.

Next, let n be arbitrary and let X ⊆ Ωn be finite, so X = {a1, . . . , ad}
with distinct a1, . . . , ad, where ai = (ai1, . . . , ain) ∈ Ωn for i = 1, . . . , d. We
adapt the previous argument by forming the polynomial

f(Y, T ) := (T + a11Y1 + · · ·+ a1nYn) · · · (T + ad1Y1 + · · ·+ adnYn) ∈ Ω[Y, T ],

in the distinct variables Y1, . . . , Yn, T over Ω, with Y = (Y1, . . . , Yn). Then

f(Y, T ) =
∑

i,j

bi,jY
iT j , (all bi,j ∈ Ω),

where the sum is over the tuples i, j with i ∈ Nn, j ∈ N, |i| + j = d. Again
by unique factorization in Ω[Y, T ] we have for any automorphism σ of Ω,

σ(X) = X ⇐⇒ σ(bi,j) = bi,j for all i, j as above.

Thus the finite tuple (bi,j) codes X in Ω. We have shown: each finite subset
of Ωn has a code in Ω. (This particular coding of finite sets works just
as well when Ω is any big field, not necessarily algebraically closed, and of
course we can also allow here extra structure on Ω.)

Next we show that coding arbitrary definable subsets of Ωn can be reduced
to coding finite sets. This reduction works in a more general setting, which is
as follows. Let T be a strongly minimal (one-sorted) complete theory. Take
a big model M of T , and assume that acl(∅) ⊆ M is infinite. (Note that
then in every model M of T the parameterset acl(∅) ⊆ M is infinite. Note
also that this assumption is satisfied for T = ACF(p), for any p.) For each
n, take a 0-definable finite set Φn ⊆ M such that |Φn| > n. (For example,
Φn = {σ(ci) : σ ∈ Aut(M), 0 ≤ i ≤ n} where c0, . . . , cn are distinct elements
of acl(∅) ⊆ M.) Let X ⊆ Mm be a nonempty definable set; we assign to
X a finite nonempty set Φ(X) ⊆ X. This is done by induction on m. If
m = 1 (so X ⊆ M), then Φ(X) := X when X is finite, and otherwise
Φ(X) := X ∩ Φn where |M \ X| = n. For m > 1, let π : Mm → Mm−1

be given by π(a1, . . . , am) = (a1, . . . , am−1), and assume inductively that
Φ

(

π(X)
)

is a finite nonempty subset of π(X). Then

Φ(X) := {(a, b) ∈ Mm−1 × M = Mm : a ∈ Φ
(

π(X)
)

, b ∈ Φ
(

X(a)
)

}
is clearly a finite nonempty subset of X.
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It is easy to see that for all nonempty definableX ⊆ Mm and σ ∈ Aut(M),

Φ
(

σ(X)
)

= σ
(

Φ(X)
)

.

(This is intuitively plausible because Φ(X) does not depend on a choice of
formula defining X, but just on X itself. In any case, it follows by induction
on m, using for m = 1 that σ(Φn) = Φn for all σ ∈ Aut(M).)

Lemma 2.12. Let Y ⊆ Mn be definable in M. Then there is a finite set
Φ ⊆ Mm (for some m) such that for all σ ∈ Aut(M),

σ(Y ) = Y ⇐⇒ σ(Φ) = Φ.

Proof. Take a 0-definable relation R ⊆ Mm+n = Mm × Mn such that Y =
R(a) for some a ∈ Mm. Consider the 0-definable equivalence relation ∼ on
Mm given by a ∼ b ⇐⇒ R(a) = R(b). If X is an equivalence class of ∼,
then by the remark preceding the lemma,

σ(X) = X ⇐⇒ σ
(

Φ(X)
)

= Φ(X), for all σ ∈ Aut(M).

Also, taking forX the equivalence class of some a ∈ Mm such thatR(a) = Y ,

σ(Y ) = Y ⇐⇒ σ(X) = X, for all σ ∈ Aut(M),

so Φ := Φ(X) has the desired property. �

Combining this lemma with the earlier result that each finite subset of each
Ωm has a code in Ω it follows that each definable subset of each Ωn has a
code in Ω. Thus ACF(p) has EI, for each p.

Let ∼n be the equivalence relation on Mn defined by

(a1, . . . , an) ∼n (b1, . . . , bn) ⇐⇒ there is a permutation π of {1, . . . , n}
such that bi = aπ(i) for i = 1, . . . , n.

Hence ∼n is 0-definable in M, and is the identity on M for n = 1. Thus the
quotient set Mn/ ∼n is the underlying set of a sort in the language of Meq

and the quotient map f∼n
: Mn → Mn/ ∼n given by f∼n

(a) := a/ ∼n is
0-definable in Meq. These quotients are enough to get EI, as the following
result states in a more precise way.

The smallest field of definition of a polynomial ideal. In Section 4
we shall prove that the theory of differentially closed fields has EI, and to
prepare for this we establish here an important fact about polynomial ideals
over fields, Proposition 2.14 below.

Lemma 2.13. Let F be finitely generated as a field over its subfield k, and
let K be an intermediate field, k ⊆ K ⊆ F . Then K is finitely generated as
a field over k.
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Proof. By adjoining to k a finite transcendence basis of K over k we can
assume thatK is algebraic over k. It suffices to show that then the dimension
[K : k] of K as a k-linear space is finite. Let B be a transcendence basis of F
over k. ThenB is also a transcendence basis of F over K, so if e1, . . . , en ∈ K
are linearly independent over k, they remain linearly independent over k(B).
Now F is algebraic over k(B) and finitely generated as a field over k(B),
hence [F : k(B)] is finite, so [K(B) : k(B)] is finite, and thus [K : k] is
finite. �

Let I be an ideal of F [T1, . . . , Tn]. A field of definition of I is a subfield K
of F such that I is generated by polynomials in K[T1, . . . , Tn]. Since I is
finitely generated, it has a finitely generated field of definition.

Proposition 2.14. I has a smallest field of definition.

Proof. Let F [T1, . . . , Tn]/I = F [t1, . . . , tn], ti = Ti + I for i = 1, . . . , n.
Let α = (α1, . . . , αn) range over Nn. As an F -linear space, F [t1, . . . , tn] is
generated by the elements tα := tα1

1 · · · tαn

n . Take Λ ⊆ Nn such that the

family (tλ)λ∈Λ is a basis of this vector space over F ; below we let λ range
over Λ. For each α we have

Tα = fα +
∑

λ

cαλT
λ, fα ∈ I, cαλ ∈ F for each λ ∈ Λ,

where cαλ 6= 0 for only finitely many λ. Let K be the subfield of F generated
by all cαλ. Then fα ∈ K[T1, . . . , Tn] for each α ∈ Nn; we claim that I is
generated by the fα. To see why, let f =

∑

α aαT
α ∈ I (all aα ∈ F ). Then

f =
∑

α

aα

(

fα +
∑

λ

cαλT
λ
)

=
∑

α

aαfα +
∑

α

aα

∑

λ

cαλT
λ

=
∑

α

aαfα +
∑

λ

(

∑

α

aαcαλ

)

T λ.

Going modulo I yields
∑

α aαcαλ = 0 for each λ, hence f =
∑

α aαfα.
By this claim, K is a field of definition of I. Let E with E ⊆ F be any

field of definition of I. It remains to show that K ⊆ E. Let g1, . . . , gm ∈
E[T1, . . . , Tn] generate I. For each α we have fα = Tα − ∑

λ cαλT
λ ∈ I, so

we can take hα1, . . . , hαm ∈ F [T1, . . . , Tn] such that

Tα −
∑

λ

cαλT
λ =

m
∑

j=1

gjhαj .

Fix α, and replace in this identity the nonzero cαλ and the nonzero coef-
ficients of the hαj by variables. Then the above identity translates into a
finite system of linear equations in these variables, with coefficients in E and
with a solution in F . Therefore this system has a solution in E, so we have
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elements cEαλ in E, nonzero for only finitely many λ, and we can arrange the
hαj to be in E[T1, . . . , Tn] such that

Tα −
∑

λ

cEαλT
λ =

m
∑

j=1

gjhαj .

By the basis property of the T λ this forces cEαλ = cαλ for all λ. Since K is
generated by the cαλ, this yields K ⊆ E. �

A smallest field of definition of I is unique, by the very meaning of smallest.
Let K be the smallest field of definition of I. Then K is contained in a
finitely generated subfield of F , and is thus itself a finitely generated field
by Lemma 2.13. Take a = (a1, . . . , am) ∈ Fm such that K = F(a) where
F is the prime field of F . Extend each σ ∈ Aut(F ) to an automorphism
of the ring F [T1, . . . , Tn], also denoted by σ, by requiring σ(Ti) = Ti for
i = 1, . . . , n. Then we have:

Corollary 2.15. For all σ ∈ Aut(F ),

σ(I) = I ⇐⇒ σ(a) = a.

Proof. Let σ ∈ Aut(F ). If σ(a) = a, then σ is the identity onK, so σ(I) = I.
Conversely, suppose that σ(I) = I. With the notations used in the proof of
Proposition 2.14, this gives for all α,

Tα = σ(fα) +
∑

λ

σ(cαλ)T λ,

and σ(fα) ∈ σ(I) = I, so tα =
∑

λ σ(cαλ)tλ, hence σ(cαλ) = cαλ for all
α, λ. Thus σ is the identity on K. �

This fact can be used to give another proof that ACF(p) has EI, but we
shall use it instead for differentially closed fields in Section 4.

Algebraically closed fields with a distinguished subring. In this sub-
section E and F denote algebraically closed fields. Let L(U) be the language
of rings augmented by the unary relation symbol U , and consider L(U)-
structures (E,R) where R is (the underlying set of) a subring of E.

Such R is said to be small in E, or a small subring of E, if for each n ≥ 1
there is a ∈ E such that f(a) 6= 0 for all nonzero polynomials f(T ) ∈ R[T ]
of degree n. (This has nothing to do with the notion of a small parameter
set in a big M.) For example, any proper algebraically closed subfield of E
is small in E. Note that there is a set Σ(small) of L(U)-sentences such that
for every E and subring R of E,

(E,R) |= Σ(small) ⇐⇒ R is small in E.

(It follows from a famous theorem of E. Artin that if a subring R is not
small in E, then the fraction field of R is either E itself, or is a real closed
field with E of dimension 2 as a vector space over this fraction field. Thus
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we can take Σ(small) to consist of a single sentence; we shall not use this in
what follows.)

Proposition 2.16. For any L(U)-sentence σ(U) there is an L-sentence σ
such that for every E and small subring R of E,

(E,R) |= σ(U) ⇐⇒ R |= σ.

Proof. By Stone duality this reduces to proving that Th(E,R) is completely
determined by Th(R), for E and R as in the proposition; more precisely, it
suffices to show:

Let R and S be subrings of E and F and small in E and F , respectively,
and suppose that R ≡ S as rings. Then (E,R) ≡ (F, S).

The statement of the proposition is of the kind that allows us to use the con-
tinuum hypothesis CH in its proof without sacrificing generality. Assuming
CH, we can reduce to the case that (E,R) and (F, S) are saturated of size
ℵ1. In particular, R and S are saturated and either both finite, or both of
size ℵ1, and in any case, R and S are isomorphic. It is also easy to check
—and here smallness comes in—that E has transcendence degree ℵ1 over
the fraction field of R inside E, and likewise with F relative to S. Thus an
isomorphism between R and S extends to an isomorphism between E and
F , and thus (E,R) ∼= (F, S). �

Remark. We have assumed familiarity with Stone duality and its uses
as in the proof above; for those not yet used to this routine we give the
details in this case. Take the boolean algebra B(U) of L(U)-sentences mod-
ulo equivalence in all structures (E,R) as in the proposition, and take the
boolean algebra B of L-sentences modulo equivalence in all domains. We
can construct for each L-sentence σ an L(U)-sentence σ(U) such that the
equivalence of the proposition holds for every E and small subring R of E;
this assignment σ 7→ σ(U) induces an embedding ι : B → B(U) of boolean
algebras. To prove the proposition it suffices to check that ι is an isomor-
phism. By Stone duality this reduces to showing that the ι-image of any
ultrafilter on B extends uniquely to an ultrafilter on B(U). It remains to
use the obvious correspondence between ultrafilters on B and complete the-
ories of domains, and between ultrafilters on B(U) and complete theories of
structures (E,R) as in the proposition.

The following special case is worth noting.

Corollary 2.17. The L(U)-theory whose models are the (E,R) with E of
characteristic p and R a proper algebraically closed subfield is complete.

The proof of the proposition works also when the small subrings are equipped
with extra structure. This leads to a much better version of Proposition 2.16:

Proposition 2.18. For any L(U)-formula φ(U)(x), x = (x1, . . . , xn), there
is an L-formula φ(x) such that for every E and small subring R of E,

(E,R) |= φ(U)(a) ⇐⇒ R |= φ(a), for all a ∈ Rn.
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Proof. As before this reduces by Stone duality to proving the following:

Let R and S be subrings of E and F and small in E and F , respectively. Let
a1, . . . , an ∈ R, b1, . . . , bn ∈ S be such that (R, a1, . . . , an) ≡ (S, b1, . . . , bn),
as rings with labeled elements. Then (E,R, a1, . . . , an) ≡ (F, S, b1, . . . , bn).

The proof is basically the same as that of Proposition 2.16. �

Corollary 2.19. Let E be an algebraically closed field and R a small subring
of E. Then for any set X ⊆ En definable in (E,R) its trace X ∩ Rn is
definable in the ring R.

3. Noetherian spaces

We have already used Hilbert’s basis theorem in constructing the smallest
field of definition of a polynomial ideal. In this section we study noetherian-
ity in a topological setting, with a corresponding notion of Krull dimension,
and relate this to Morley rank. This applies directly to algebraically closed
fields to give various elementary facts of algebraic geometry, but the general
facts on noetherian spaces can also be applied later when dealing with dif-
ferential fields. Noetherianity is a kind of topological-algebraic counterpart
to omega-stability, and these two phenomena often go together.

In this section X,Y,Z denote spaces.

Remark. The product set X ×Y is often equipped with a topology that is
not necessarily the product topology, but where the projection maps πX :
X × Y → X and πY : X × Y → Y are nevertheless continuous. Then we
have for X ′ ⊆ X, Y ′ ⊆ Y ,

X ′ closed in X, Y ′ closed in Y =⇒ X ′ × Y ′ closed in X × Y,

X ′ open in X, Y ′ open in Y =⇒ X ′ × Y ′ open in X × Y.

This is because X ′ × Y ′ = π−1
X (X ′) ∩ π−1

Y (Y ′).

Definition. X is said to be noetherian if it satisfies the descending chain
condition on closed sets: there is no strictly descending infinite sequence
C0 ⊃ C1 ⊃ · · · of closed subsets of X; equivalently, each nonempty collection
of closed subsets of X has a minimal element with respect to inclusion.

Remarks. A noetherian space is compact, but in the absence of being
hausdorff this is less useful than the following facts.

(1) Each subspace of a noetherian space is noetherian.
(2) If X is noetherian and f : X → Y is continuous, then f(X) ⊆ Y is

noetherian.
(3) If X is covered by finitely many noetherian subspaces, then X is

noetherian.
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Key Example. Let k be a field with subfieldK. Each set S ⊆ K[T1, . . . , Tn]
of polynomials determines the set

Z(S) := {t ∈ kn : f(t) = 0 for all f ∈ S}
of zeros of S in k. The subsets of kn of the from Z(S) with S as above are
called the K-algebraic subsets of kn, and also the K-Zariski closed (or just
K-closed) subsets of kn. They are the closed sets of a topology on kn, called
the K-Zariski topology on kn. To see this, use that

⋂

i∈I

Z(Si) = Z
(

⋃

i∈I

Si

)

where (Si)i∈I is any family of subsets of K[T1, . . . , Tn], and that

Z(S1) ∪ Z(S2) = Z({f1f2 : f1 ∈ S1, f2 ∈ S2})
for S1, S2 ⊆ K[T1, . . . , Tn]. Given any polynomials f1, . . . , fm ∈ K[T1, . . . , Tn]
the polynomial map

t 7→ (f1(t), . . . , fm(t)) : kn → km

is continuous for the K-Zariski topologies on kn and km. This topology is
not hausdorff if k is infinite and n > 0. Every singleton {a} with a ∈ Kn

is K-closed in kn. When K = k, we omit the prefix K in expressions like
“K-algebraic”, and “K-Zariski topology”.

Fact. The set kn with its K-Zariski topology is a noetherian space. To see
why this is so, we put for any set C ⊆ kn,

IK(C) := {f ∈ K[T1, . . . , Tn] : f(c) = 0 for all c ∈ C},
an ideal of K[T1, . . . , Tn]. If C0 ⊃ C1 ⊃ · · · were a strictly descending
infinite sequence of K-algebraic subsets of kn, then

IK(C0) ⊂ IK(C1) ⊂ · · ·
would be a strictly ascending sequence of ideals of K[T1, . . . , Tn], which
contradicts the noetherianity of the ring K[T1, . . . , Tn].

For f1, . . . , fm ∈ K[T1, . . . , Tn] we put

Z(f1, . . . , fm) := Z({f1, . . . , fm}) = {a ∈ kn : f1(a) = · · · = fm(a) = 0}.
Actually, the noetherianity of K[T1, . . . , Tn] (Hilbert’s basis theorem) yields
that for any subset S of K[T1, . . . , Tn] there are f1, . . . , fm ∈ S such that
each f ∈ S is a K[T1, . . . , Tn]-linear combination of f1, . . . , fm, and thus
Z(S) = Z(f1, . . . , fm): we need only consider zerosets of finite collections
of polynomials. For algebraically closed k this means that the subsets of
kn that are K-definable in the field k are exactly the boolean combinations
inside kn of the K-algebraic subsets of kn.

Exercise. With assumptions as in the Key Example, let I and J be ideals
of K[T1, . . . , Tn]. Then Z(I ∩ J) = Z(I) ∪ Z(J) and Z(I + J) = Z(I) ∩ Z(J).

The proof of the next result contains a useful device.
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Lemma 3.1. Let K be a subfield of a field k. Then the intersection of an
algebraic subset of kn with Kn is an algebraic subset of Kn. In other words,
the Zariski topology on kn induces the Zariski topology on Kn.

Proof. Let f ∈ k[T1, . . . , Tn]. It suffices to find polynomials f1, . . . , fm ∈
K[T1, . . . , Tn] such that for all a ∈ Kn,

f(a) = 0 ⇐⇒ f1(a) = · · · = fm(a) = 0.

Take a basis b1, . . . , bm of the K-linear subspace of k generated by the coef-
ficients of f . Then f = b1f1 + · · · + bmfm with f1, . . . , fm ∈ K[T1, . . . , Tn],
and then f1, . . . , fm have the desired property. �

Exercise. Let P be a set and C a collection of subsets of P such that ∅ ∈ C,
P ∈ C, for all C,C ′ ∈ C also C ∩ C ′ ∈ C, and there is no infinite sequence
C0, C1, C2, . . . in C such that C0 ⊃ C1 ⊃ · · · . Then

(1) each G ⊆ C has a finite subset G0 with
⋂G =

⋂G0;
(2) the finite unions of sets in C are the closed sets of a noetherian

topology on P .

Other example. Let V be a vector space, that is, a left module, over a
(not necessarily commutative) division ring k. An affine subset of V n is a
nonempty intersection inside V n of finitely many sets of the form

{(v1, . . . , vn) ∈ V n : λ1v1 + · · · + λnvn = b}
where λ1, . . . , λn ∈ k and b ∈ V . We leave it as an exercise to show:

(i) Every affine subset of V n is an intersection inside V n of at most n
subsets of V n of the form displayed above.

(ii) The finite unions of affine subsets of V n are the closed sets of a
noetherian topology on V n.

(iii) Let T∞
k

be the theory of infinite vector spaces over k in the language
{0,−,+} augmented by a unary function symbol λ for each λ ∈ k

to be interpreted as the function v 7→ λv in each vector space over
k. Then T∞

k
has QE and is complete.

(iv) Assume V is infinite. Then the definable subsets of V n are exactly
the boolean combinations inside V n of the affine subsets of V n.

Irreducibility. A space X is said to be irreducible if X 6= ∅ and X is not
the union of two proper closed subsets; equivalently, X 6= ∅ and any two
nonempty open subsets of X have a nonempty intersection. (Note that then
X is connected and each nonempty open subset of X is irreducible and dense
in X.)

Lemma 3.2. Irreducibility has the following invariance properties:

(1) X ⊆ Y is irreducible iff cl(X) ⊆ Y is irreducible.
(2) If f : X → Y is continuous and X is irreducible, then f(X) ⊆ Y is

irreducible, and thus cl f(X) is irreducible by (1).
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(3) Let X,Y be irreducible, and let X × Y be given a topology such that
for all a ∈ X and b ∈ Y the maps y 7→ (a, y) : Y → X × Y and
x 7→ (x, b) : X → X ×Y are continuous. Then X × Y is irreducible.

Proof. Since (1) and (2) are immediate, we only give the proof of (3). Let
X × Y = F1 ∪ F2 where F1, F2 are closed in X × Y . For i = 1, 2, put

F ∗
i := {x ∈ X : {x} × Y ⊆ Fi} =

⋂

b∈Y

{x ∈ X : (x, b) ∈ Fi},

an intersection of closed subsets of X, so F ∗
i is closed in X. For each a ∈ X

we have Y = F1(a) ∪ F2(a), and F1(a), F2(a) are closed in Y , so Y = F1(a)
or Y = F2(a). Hence, for each a ∈ X there is i ∈ {1, 2} with a ∈ F ∗

i , so
X = F ∗

1 ∪ F ∗
2 , and thus X = F ∗

1 or X = F ∗
2 . It follows that X × Y = F1 or

X × Y = F2. �

Special case of (1): for each x ∈ X the subspace cl{x} of X is irreducible.

Lemma 3.3. Suppose X is a finite union of irreducible closed subsets. Then
X has irreducible closed subsets C1, . . . , Cm such that X = C1 ∪ · · · ∪ Cm

and Ci 6⊆ Cj for i 6= j. This property determines {C1, . . . , Cm} uniquely.

Proof. Take irreducible closed subsets C1, . . . , Cm of X covering X with
Ci 6⊆ Cj for i 6= j. Suppose D1, . . . ,Dn are also irreducible closed subsets of
X that cover X with Dk 6⊆ Dl for all distinct k, l ∈ {1, . . . , n}. Given any
Ci we have Ci = (Ci ∩D1) ∪ · · · ∪ (Ci ∩Dn), so Ci ⊆ Dk for suitable k. By
symmetry, Dk ⊆ Cj for suitable j and thus Ci ⊆ Cj , which forces i = j, and
thus Ci = Dk. Hence m = n and {C1, . . . , Cm} = {D1, . . . ,Dn}. �

With X and C1, . . . , Cm as in this lemma, no Ci is contained in the union
of the Cj with j 6= i: X is the “irredundant union of C1, . . . , Cm”. The
C1, . . . , Cm as in this lemma are called the irreducible components of X.
The lemma applies to the empty space with m = 0.

Exercise. Let X and Y be finite unions of irreducible closed subsets and
let X × Y be given a topology such that the projection maps X × Y → X
and X × Y → Y are continuous and for all a ∈ X and b ∈ Y the maps
y 7→ (a, y) : Y → X × Y and x 7→ (x, b) : X → X × Y are continuous.

Then X × Y is a finite union of irreducible closed subsets, and the irre-
ducible components of X × Y are the sets C ×D where C is an irreducible
component of X and D is an irreducible component of Y .

Lemma 3.4. Each noetherian space is a finite union of irreducible closed
subsets.

Proof. Suppose X is noetherian but not a finite union of irreducible closed
subsets. Then we can take a minimal closed subset Y of X that is not a finite
union of irreducible closed subsets. Then Y 6= ∅ and Y is not irreducible, so
Y = C ∪D with C,D proper closed subsets of Y . Then C and D are finite
unions of irreducible closed subsets, so Y is as well, a contradiction. �
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Thus each noetherian space is the irredundant union of its (finitely many)
irreducible components. It is easy to check that in the Key Example earlier
in this section a K-algebraic set C ⊆ kn is irreducible iff its ideal IK(C) is a
prime ideal of K[T1, . . . , Tn]. Since the topology on kn depends here on K
we shall use the term K-irreducible instead of irreducible.

Proposition 3.5. Let k be an algebraically closed field with subfield K.
Using notations from the Key Example, a prime ideal p of K[T1, . . . , Tn]
satisfies IK(Z(p)) = p, and we have a bijection

{prime ideals of K[T1, . . . , Tn]} → {K-irreducible K-closed subsets of kn}
given by p 7→ Z(p), with inverse given by C 7→ IK(C).

Proof. The inclusion I ⊆ IK(Z(I)) holds for any ideal I of K[T1, . . . , Tn]
(without assuming that k is algebraically closed). Let p be a prime ideal
of K[T1, . . . , Tn] and f ∈ IK(Z(p)). Suppose towards a contradiction that
f /∈ p. Introduce the field extension K(t1, . . . , tn) of K as the fraction field
of the domain

K[t1, . . . , tn] := K[T1, . . . , Tn]/p, ti := Ti + p, i = 1, . . . , n.

Put t = (t1, . . . , tn), so f(t) = f + p 6= 0 in K(t). Let f1, . . . , fm ∈
K[T1, . . . , Tn] generate p, so f1(t) = · · · = fm(t) = 0. By (2) of Corol-
lary 2.3 this gives a zero of p in k that is not a zero of f , and we have a
contradiction. The rest is routine. �

The irreducible components of a noetherian space are like the irreducible
factors of a polynomial, and this is more than just a resemblance: let K be
a subfield of an algebraically closed field k, and let f ∈ K[T1, . . . , Tn], so

Z(f) := {a ∈ kn : f(a) = 0}
is a K-closed subspace of kn. If f = 0, then Z(f) = kn is clearly K-
irreducible, since the trivial ideal of K[T1, . . . , Tn] is prime. If f 6= 0, then f
is irreducible (inK[T1, . . . , Tn]) iff the ideal (f) ofK[T1, . . . , Tn] is prime, and
in that case Z(f) is a K-irreducible proper K-closed subset of kn. More gen-
erally, if f 6= 0, then Z(f) is a proper K-closed subset of kn and we can take
irreducible factors f1, . . . , fm of f in K[T1, . . . , Tn] such that each irreducible
factor of f in K[T1, . . . , Tn] equals fi for exactly one i ∈ {1, . . . ,m}, up to
a factor from K×, and then Z(f1), . . . ,Z(fm) are the distinct K-irreducible
components of Z(f).

We now extend the above correspondence between prime ideals and irre-
ducible closed sets to a correspondence between radical ideals and closed
sets. First we review the facts on radical ideals. Let R be a ring and I an
ideal of R. Then I said to be radical if for all a ∈ R such that a2 ∈ I we
have a ∈ I (and thus for all a ∈ R and all n, if an ∈ I, then a ∈ I). Note: I
is radical iff R/I has no nonzero nilpotents. The smallest radical ideal of R
that contains I, called the radical of I, is

√
I := {a ∈ R : an ∈ I for some n},
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and
√
I is the intersection within R of the prime ideals of R that contain I.

If R is noetherian, then
√
I is the intersection of finitely many prime ideals

of R.

Exercise. If R has no nonzero nilpotents, then the polynomial ring R[Y ]
has no nonzero nilpotents.

Corollary 3.6. Let k be an algebraically closed field with subfield K. With
notations from the Key Example, every ideal I of K[T1, . . . , Tn] satisfies

IK(Z(I)) =
√
I, and we have a bijection

{radical ideals of K[T1, . . . , Tn]} → {K-closed subsets of kn}
given by I 7→ Z(I), with inverse given by C 7→ IK(C).

Proof. Let I be an ideal of K[T1, . . . , Tn], so
√
I = p1 ∩ · · · ∩ pm, p1, . . . , pm prime ideals of K[T1, . . . , Tn], hence

Z(I) = Z(
√
I) = Z(p1) ∪ · · · ∪ Z(pm), so by Proposition 3.5,

IK(Z(I)) = IK(Z(p1)) ∩ · · · ∩ IK(Z(pm)) = p1 ∩ · · · ∩ pm =
√
I.

The rest follows easily. �

In the proof above we can arrange that pi 6⊆ pj for 1 ≤ i < j ≤ m, and then
Z(p1). . . . ,Z(pm) are the K-irreducible components of Z(I) ⊆ kn.

Exercises. Let V be an infinite vector space over a division ring k and give
each V n the noetherian topology whose closed sets are the finite unions of
affine subsets of V n. Then the irreducible closed subsets of V n are exactly
the affine subsets of V n. An affine function on V n is defined to be a function
f : V n → V such that for some λ1, . . . , λn ∈ k and a ∈ V we have

f(v1, . . . , vn) = λ1v1 + · · · + λnvn + a for all v1, . . . , vn ∈ V.

(1) For any subset S of V , dcl(S) = acl(S) is the k-linear span of S.
(2) If X ⊆ V n and f : X → V are definable in V , then there are

affine functions f1, . . . , fm on V n such that for each x ∈ X we have
f(x) = fi(x) for some i ∈ {1, . . . ,m}.

Constructibility. A constructible set in X is a boolean combination inside
X of closed subsets of X, equivalently, it is a finite union

(Y1 \ Z1) ∪ · · · ∪ (Yn \ Zn)

where all Yi, Zi are closed subsets of X.

It follows from this definition that if X is irreducible, then a constructible
set in X is dense in X iff it contains a nonempty open subset of X. In
particular, if X is irreducible, and Y is a constructible set in X, then either
Y or X \ Y contains a nonempty open subset of X.

Let con(X) be the boolean algebra of constructible subsets of X. If Y is
a closed irreducible subset of X, then by the previous remark,

F (Y ) := {Z ∈ con(X) : Z contains a nonempty open subset of Y }
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is an ultrafilter of con(X) and Y is the smallest closed subset of X that
belongs to F (Y ).

Lemma 3.7. Suppose X is noetherian. Then the map

Y 7→ F (Y ) : {irreducible closed subsets of X} → St
(

con(X)
)

is a bijection.

Proof. The previous remarks show that this map is injective. Let F be
an ultrafilter of con(X) and take Y minimal among the irreducible closed
subsets of X that belong to F . Then F (Y ) ⊆ F , and thus F (Y ) = F . �

Let us consider the case that K is a subfield of an algebraically closed field
k. Then the constructible sets in kn with its K-topology will be called K-
constructible subsets of kn, and they are exactly the K-definable subsets of
kn. In combination with the earlier correspondence between prime ideals of
K[T1, . . . , Tn] and K-irreducible K-closed sets in kn this yields a bijection

{prime ideals of K[T1, . . . , Tn]} → St(kn|K)

that assigns to each prime ideal I of K[T1, . . . , Tn] the ultrafilter (or type, if
you prefer) in the boolean algebra of K-definable sets in kn consisting of all
K-definable sets in kn that contain a set of the form {a ∈ Z(I) : f(a) 6= 0}
with f ∈ K[T1, . . . , Tn], f /∈ I.

Exercise. Let X be noetherian, let Y ∈ con(X), and let C1, . . . , Cm be the
irreducible components of cl(Y ). Then Y ∩ Ci contains a nonempty open
subset of Ci, for i = 1, . . . ,m.

Canonical filtration of a constructible set. In this subsection X is a
noetherian space. Let Y be a nonempty constructible set in X and define
closed subsets F0(Y ), F1(Y ) of X as follows:

F0(Y ) := cl(Y ), F1(Y ) := cl
(

F0(Y ) \ Y
)

.

It is immediate that F0(Y ) ⊇ F1(Y ), and F0(Y )\F1(Y ) ⊆ Y . We claim that
F0(Y ) ⊃ F1(Y ). Let C1, . . . , Cm be the distinct irreducible components of
F0(Y ). Then Y contains a nonempty open subset Ui of Ci for i = 1, . . . ,m,
so F1(Y ) ⊆ D1 ∪ · · · ∪Dm where Di := Ci \ Ui is a proper closed subset of
Ci for i = 1, . . . ,m, so F1(Y ) ⊂ F0(Y ), as claimed.

Now Y is the disjoint union of F0(Y ) \ F1(Y ) and Y1 := Y ∩ F1(Y ), and if
the constructible set Y1 is not empty, we repeat the above with Y1 in place
of Y , and set

F2(Y ) := F0(Y1), F3(Y ) := F1(Y1).

Continuing in this way we obtain a descending chain

F0(Y ) ⊃ F1(Y ) ⊇ F2(Y ) ⊃ F3(Y ) ⊇ · · · ⊇ F2p(Y ) ⊃ F2p+1(Y ) = ∅
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that stops as soon as we reach the empty set. It has the property that

Y =

p
⋃

i=0

F2i(Y ) \ F2i+1(Y ).

We call the sequence F0(Y ), . . . , F2p(Y ) the canonical filtration of Y . (If Y
is closed in X, then this sequence has just one term, namely F0(Y ) = Y .)
Note that if h : X → X is a homeomorphism, then h

(

F0(Y )
)

, . . . , h
(

F2p(Y )
)

is the canonical filtration of h(Y ).

This canonical filtration leads to the following lemma, which is used in the
next section to help eliminate imaginaries.

Lemma 3.8. Let M be a big many-sorted L-structure, let y be a finite
multivariable, and let My be given a noetherian topology such that:

(1) each closed subset of My is definable in M and has a code in M;
(2) every σ ∈ Aut(M) induces a homeomorphism a 7→ σ(a) : My → My.

Then every constructible subset of My has a code in M.

Proof. Let Y be a nonempty constructible subset of My, let F0(Y ), . . . , F2p(Y )
be the canonical filtration of Y , and let σ ∈ Aut(M). Then Fi

(

σ(Y )
)

=

σ
(

Fi(Y )
)

for i = 0, . . . , 2p by (2), and thus

σ(Y ) = Y ⇐⇒ σ
(

Fi(Y )
)

= Fi(Y ) for i = 0, . . . , 2p.

Let ai be a code of Fi(Y ) in M for i = 0, . . . , 2p. Then by the above
(a0, a1, . . . , a2p) is a code of Y in M. �

Constructible sets in noetherian spaces are ranked. Section 2 of
Introduction to model-theoretic stability introduced the rank of an element
of a boolean algebra. The case of main interest is when every nonzero
element of the boolean algebra is ranked. When X is noetherian its boolean
algebra of constructible sets has this useful property:

Proposition 3.9. If X is noetherian, then every nonempty constructible
set in X is ranked as an element of the boolean algebra con(X).

Towards proving this, first a definition and a lemma that works for general
X. By transfinite recursion we assign to each ordinal λ an ideal Jλ of con(X)
such that Jλ ⊆ Jµ for λ ≤ µ:

(1) J0 := the ideal of con(X) generated by the minimal closed nonempty
subsets of X;

(2) for λ > 0, assume inductively that Jα is an ideal of con(X) for all
α < λ, and that Jα ⊆ Jβ whenever α ≤ β < λ; put J<λ :=

⋃

α<λ Jα;
then Jλ is defined to be the ideal of con(X) generated by J<λ and the
closed subsets of X that are minimal with respect to not belonging
to J<λ.
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For convenience we let J<0 = {∅} be the trivial ideal of con(X).
In section 2 of Introduction to model-theoretic stability we defined the

ideals Iλ and I<λ of a boolean algebra B. For B = con(X) these ideals are
related to the Jλ as follows:

Lemma 3.10. Jλ ⊆ Iλ.

Proof. To get J0 ⊆ I0, let Y be a minimal closed nonempty subset of X;
it suffices to show that then Y is an atom of con(X). If Y were not an
atom of con(X), then Y would have a proper nonempty subset P \Q with
Y ⊇ P ⊇ Q and P,Q closed in X, and then either ∅ 6= P 6= Y or ∅ 6= Q 6= Y ,
a contradiction in both cases.

Let λ > 0 and let Y be a closed subset of X that is minimal with respect
to not belonging to J<λ. We claim that then the image of Y in con(X)/J<λ

is an atom of con(X)/J<λ. Suppose otherwise. Then we have closed P,Q
in X with Y ⊇ P ⊇ Q such that in the quotient algebra con(X)/J<λ,

∅/J<λ 6= (P \Q)/J<λ 6= Y/J<λ.

This easily gives a contradiction using the minimality of Y . With this claim
and the inductive assumption that J<λ ⊆ I<λ we obtain Jλ ⊆ Iλ. �

Note that there is always a λ such that Jλ = Jλ+1, and that if Jλ = Jλ+1,
then Jλ = Jµ for all ordinals µ ≥ λ. If X is noetherian and Jλ = Jλ+1,
then clearly all closed subsets of X belong to Jλ, and thus Jλ = con(X).
Proposition 3.9 above is an immediate consequence of this observation and
lemma 3.10.

Krull dimension. This is a notion of dimension suitable for noetherian
spaces and loosely related to Cantor-Bendixson rank for such spaces. In
this subsection we take supremums and infimums in N ∪ {−∞,+∞}. We
define the Krull dimension of X to be the supremum of the set of n for
which there is a chain

C0 ⊂ C1 ⊂ · · · ⊂ Cn

of irreducible closed subsets of X. In particular, the Krull dimension of X
is −∞ iff X = ∅. We denote the Krull dimension of X by dim(X). (If
X is a nonempty hausdorff space, then dim(X) = 0, so Krull dimension
is of no interest for hausdorff spaces.) For a point x ∈ X we define the
Krull dimension of X at x and denote by dimx(X) the infimum of the Krull
dimensions of the open neighborhoods of x in X.

Lemma 3.11. Let x ∈ X.

(1) If X ⊆ Y , then dim(X) ≤ dim(Y ) and dimx(X) ≤ dimx(Y ).
(2) If V is a neighborhood of x in X, then dimx(X) = dimx(V ).
(3) Let X1, . . . ,Xn be closed subsets of X that cover X. Then

dim(X) = sup{dim(Xi) : 1 ≤ i ≤ n},
dimx(X) = sup{dimx(Xi) : 1 ≤ i ≤ n, x ∈ Xi}.
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Proof. For (1), use that the closure in any space of an irreducible subset is
irreducible. For (2) and (3), use (1). �

Corollary 3.12. Suppose X is noetherian. Then

(1) dim(X) = sup{dim(C) : C is an irreducible component of X};
(2) for each x ∈ X we have

dimx(X) = sup{dimx(C) : C is an irreducible component of X, x ∈ C}.
Lemma 3.13. dim(X) = supx∈X dimx(X).

Proof. It is clear that dim(X) ≥ dimx(X) for each x ∈ X. Conversely,
assume dim(X) ≥ n. Take a chain C0 ⊂ · · · ⊂ Cn of closed irreducible sets
in X, and take x ∈ C0. Then for any open neighborhood U of x in X each
set U ∩ Ci is open in Ci (so cl(U ∩ Ci) = Ci), and closed and irreducible in
U , so we have a chain U ∩ C0 ⊂ · · · ⊂ U ∩ Cn in U witnessing dim(U) ≥ n.
Hence dimx(X) ≥ n. �

Corollary 3.14. If (Ui) is a covering of X by open subsets, then

dim(X) = sup
i

dim(Ui).

Lemma 3.15. Let X × Y be given a topology making the projection maps
X × Y → X and X × Y → Y continuous, such that for all a ∈ X and
b ∈ Y the maps y 7→ (a, y) : Y → X × Y and x 7→ (x, b) : X → X × Y are
continuous. Then

dim(X × Y ) ≥ dimX + dimY.

Proof. Suppose dimX ≥ m and dimY ≥ n; it suffices to show that then
dim(X × Y ) ≥ m+ n. Take chains

X0 ⊂ X1 ⊂ · · · ⊂ Xm, Y0 ⊂ Y1 ⊂ · · · ⊂ Yn

of irreducible closed sets in X, respectively Y . Then each set Xi × Yj is
closed in X × Y , and irreducible by ... This gives a chain

X0 × Y0 ⊂ X0 × Y1 ⊂ · · · ⊂ X0 × Yn ⊂ X1 × Yn ⊂ · · · ⊂ Xm × Yn

of irreducible closed sets in X × Y , so dim(X × Y ) ≥ m+ n. �

Cantor-Bendixson rank versus Krull dimension. To relate these two
dimension notions we need the following.

Lemma 3.16. Suppose X is noetherian. Then the ideal Jn of con(X) is
generated by the irreducible closed C ⊆ X with dim(C) ≤ n, and thus con-
tains no closed C ⊆ X with dim(C) > n.

Proof. For n = 0 this is because the minimal nonempty closed subsets of X
are exactly the irreducible closed sets in X of Krull dimension 0. Assuming
inductively that the statement holds for a certain n, use that the closed
subsets of X that are minimal with respect to not belonging to Jn are the
closed irreducible sets in X of Krull dimension n+ 1. �



24

Recall that X as an element of the boolean algebra con(X) has a Cantor-
Bendixson rank rk(X), defined as in Section 2 of Introduction to model-
theoretic stability.

Corollary 3.17. Assume X is noetherian. Then rk(X) ≤ dim(X).

Proof. If rk(X) ≥ n, then X /∈ Im for m < n, so X /∈ Jm for m < n by
Lemma 3.10, hence dim(X) ≥ n by Lemma 3.16. �

We say that rank is strictly monotone in X if rk(X0) < rk(X1) for all closed
irreducible X0,X1 in X with X0 ⊂ X1.

Lemma 3.18. Suppose X is covered by open subsets U1, . . . , Un such that
rank is strictly monotone in each Ui. Then rank is strictly monotone in X.

Proof. Let X0,X1 ⊆ X be closed irreducible with X0 ⊂ X1. Then rk(Ui ∩
X0) < rk(Ui ∩X1) if Ui ∩X1 6= ∅. Hence

rk(X0) = max
i

rk(Ui ∩X0) < max
i

rk(Ui ∩X1) = rk(X1).

�

Proposition 3.19. Suppose X is noetherian, rank is strictly monotone in
X, and rk(X) < ω. Let Y be a constructible set in X. Then

(1) rk(Y ) = rk
(

cl(Y )
)

= dim(Y );

(2) if Y 6= ∅, then rk
(

cl(Y ) \ Y
)

< rk(Y );
(3) if Y is irreducible, then deg(Y ) = 1;
(4) if Y 6= ∅, then deg(Y ) is the number of irreducible components of

cl(Y ) of the same rank as Y ;
(5) rank is strictly monotone in Y .

Proof. It follows from Corollary 3.17 and the assumptions onX that rk(X) =
dim(X). Next, observe that the assumptions on X are inherited by closed
subspaces of X, so rk(C) = dim(C) for all closed C ⊆ X.

Let U be nonempty open in a closed irreducible C ⊆ X. Then C =
cl(U), rk(C \ U) < rk(C) and thus rk(U) = rk(C). We claim that rank
is strictly monotone in U . To see why, let U0, U1 be closed irreducible in
U with U0 ⊂ U1. Then cl(Ui) ∩ U = Ui, cl(Ui) is closed irreducible in X
with Ui nonempty open in cl(Ui), for i = 0, 1, and cl(U0) ⊂ cl(U1), hence
rk(U0) = rk(cl(U0)) < rk(cl(U1)) = rk(U1).

Using these facts we now obtain the desired results on the constructible
set Y as follows. The case Y = ∅ is trivial, so assume Y 6= ∅, and let
C1, . . . , Cm be the irreducible components of cl(Y ). Then Y ∩Ci contains a
nonempty open subset Ui of Ci, for each i, by an earlier exercise. Hence

max
i

rk(Ci) ≤ rk(Y ) ≤ rk(cl(Y )) = max
i

rk(Ci),

and likewise with “dim” instead of “rk” and thus (1) holds. Also,

cl(Y ) \ Y ⊆
⋃

i

Ci \ Ui,
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which gives (2). We leave (3) and (4) as an exercise. As to (5), let Y0, Y1 be
closed irreducible sets in Y with Y0 ⊂ Y1. Then cl(Y0) and cl(Y1) are closed
irreducible in X and cl(Y0) ⊂ cl(Y1), so

rk(Y0) = rk
(

cl(Y0)
)

< rk
(

cl(Y1)
)

= rk(Y1),

as desired. �

Exercise. Let V be an infinite vector space over a division ring k and give
V n the noetherian topology whose closed sets are the finite unions of affine
subsets of V n. Then rank is strictly monotone in V n, and rk(V n) = n.

Morley rank = Krull dimension. Let Ω be an algebraically closed field
of infinite transcendence degree over its prime field; so Ω is saturated. We
give Ωn its Zariski topology, and make every set Y ⊆ Ωn into a (noetherian)
subspace of Ωn, with Krull dimension dim(Y ). If Y ⊆ Ωn is also definable
in Ω, then MR(Y ) is defined, and is the Cantor-Bendixson rank rk(Y ) of
Y viewed as an element of the boolean algebra of definable subsets of Ωn.
Recall that MR(Ωn) = n.

Theorem 3.20. Let Y ⊆ Ωn be definable in Ω. Then

(1) MR(Y ) = dim(Y );
(2) MR(Y ) = MR

(

cl(Y )
)

;

(3) if Y 6= ∅, then MR
(

cl(Y ) \ Y
)

< MR(Y );
(4) if Y is irreducible, then MD(Y ) = 1;
(5) if Y 6= ∅, then MD(Y ) is the number of irreducible components of

cl(Y ) of the same Morley rank as Y .

By Proposition 3.19 it suffices to show that (Morley) rank is strictly mono-
tone in Ωn; this strict monotonicity follows from Lemma 3.22 below by
noting that any closed irreducible set in Ωn is actually K-closed (and thus
K-irreducible) for some finitely generated subfield K of Ω, and that Ω has
infinite transcendence degree over such K.

More generally, let K be any subfield of Ω over which Ω has infinite
transcendence degree, and let in the next two lemmas X be a K-irreducible
K-closed set in Ωn. Let p := IK(X), so p is a prime ideal of K[T1, . . . , Tn].
Then

K[T1, . . . , Tn]/p = K[t1, . . . , tn], ti = Ti + p, i = 1, . . . , n.

Put t = (t1, . . . , tn), so K[t] has fraction field K(t), and as we saw in the
proof of Proposition 3.5 we have f(t) = 0 for all f ∈ p and f(t) 6= 0 for all
f ∈ K[T1, . . . , Tn] with f /∈ p.

Lemma 3.21. MR(X) = trdegK K(t).

Proof. By Proposition 2.11 we have

MR(X) = max{trdegK K(a) : a ∈ X}.
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SinceK(t) can be embedded into Ω overK, this gives MR(X) ≥ trdegK K(t).
Let a = (a1, . . . , an) ∈ X. Then we have a surjective K-algebra morphism

f(t) 7→ f(a) : K[t] → K[a], (f ∈ K[T1, . . . , Tn]).

If Λ ⊆ {1, . . . , n} and (aλ)λ∈Λ is algebraically independent over K, then
(tλ)λ∈Λ is algebraically independent over K, as is easily checked. It follows
that trdegK K(t) ≥ trdegK K(a). �

Lemma 3.22. Let Y be a K-irreducible K-closed proper subset of X. Then
MR(Y ) < MR(X).

Proof. Let q := IK(Y ), so p is properly contained in q. Let

K[T1, . . . , Tn]/q = K[u1, . . . , un], ui = Ti + q, i = 1, . . . , n,

and u := (u1, . . . , un). Then we have a non-injective K-algebra morphism

f(t) 7→ f(u) : K[t] 7→ K[u], (f ∈ K[T1, . . . , Tn]).

By the previous lemma and its proof we have trdegK K(t) ≥ trdegK K(u),
and it suffices to show that this inequality is strict. Towards a contradic-
tion, assume trdegK K(t) = trdegK K(u). We may as well assume that
u1, . . . , um is a transcendence basis of K(u) over K, and then t1, . . . , tm is a
transcendence basis of K(t) over K. Then the above morphism extends to
a K-algebra morphism

K(t1, . . . , tm)[tm+1, . . . , tn] → K(u1, . . . , um)[um+1, . . . , un]

with the left-hand side taken as a subring of K(t) and the right-hand side
as a subring of K(u). But both sides are clearly fields, so this morphism is
injective, and we have a contradiction. �

4. Differential Fields

Differential fields are fields equipped with a derivation. (See below for a
precise definition.) We are going to show that the theory of differential fields
of characteristic 0 has a model completion, the theory of differentially closed
fields. The theory of differentially closed fields is complete and omega-stable
and has elimination of imaginaries. Given a differentially closed field U the
zerosets of differential polynomials generate a natural noetherian topology
on each Un. These are some of the main facts to be established in this
section.

Differential rings. A derivation on a ring R is a map ∂ : R→ R satisfying
∂(a+ b) = ∂(a) + ∂(b) and ∂(ab) = ∂(a)b+ a∂(b) for all a, b ∈ R. Any ring R
has the trivial derivation on it, which maps every element of R to 0. When
∂ is a derivation on the ring R and ∂ is clear from the context, then, with
a ∈ R, we also write a′ and a′′ instead of ∂(a) and ∂(∂(a)), and similarly a(n)

for ∂n(a), with ∂n the nth iterate of ∂, in particular, a(0) = a.
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Example. For a ring A and indeterminate x the polynomial ring A[x] has
the derivation d

dx given by

n
∑

i=0

aix
i 7→

n
∑

i=1

iai−1x
i−1 (a0, . . . , an ∈ A).

It is the unique derivation on A[x] with a′ = 0 for all a ∈ A and x′ = 1.
More generally, given a ring A, distinct indeterminates x1, . . . , xn, and i ∈
{1, . . . , n} we have the derivation ∂

∂xi

on A[x1, . . . , xn] which is just d
dxi

as

above when the elements of A[x1, . . . , xn] are viewed as polynomials in xi

with coefficients in A[x1, . . . , xi−1, xi+1, . . . , xn].

A differential ring is a ring together with a derivation on the ring. A differ-
ential field is a differential ring whose underlying ring is a field. Let R be
a differential ring with derivation ∂ in this subsection. The elements a ∈ R
such that a′ = 0 are called constants and they are the elements of a subring
of R, called the ring of constants of R and denoted by CR (or just C if R is
clear from the context). In the example above the ring of constants of A[x]
with the derivation d

dx is A if A is a domain of characteristic 0. The ring of
constants of a differential field K is a subfield CK of K, called the field of
constants of K. In particular, there is only one derivation on Q, namely the
trivial derivation.

One easily shows that (an)′ = nan−1a′ for n > 0 and a ∈ R, and that if a is
a unit, then (ak)′ = kak−1a′ for k ∈ Z. To a polynomial

f = f(T ) =

n
∑

i=0

aiT
i = a0 + a1T + · · · + anT

n ∈ R[T ] (a0, . . . , an ∈ R)

we associate the polynomials f ∂, f ′ ∈ R[T ]:

f ∂ =

n
∑

i=0

a′iT
i, f ′ =

df

dT
:=

n
∑

i=1

iaiT
i−1.

It is easy to check that both maps f 7→ f ∂ and f 7→ f ′ are derivations on
R[T ]. With this notation we have for a ∈ R,

f(a)′ = f ∂(a) + f ′(a) · a′,
as is easily checked. Here are some consequences of this identity:

Lemma 4.1. Let K be a differential field of characteristic zero.

(1) CK is relatively algebraically closed in K.
(2) If K is algebraically closed as a field, so is CK .
(3) Let E be an overfield of K and algebraic over K. Then there is a

unique derivation on E that extends the derivation of K.

Proof. As to (1), suppose a ∈ K is algebraic over CK . Take the minimum
polynomial f(T ) ∈ K[T ] of a over K, so f(a) = 0. SinceK has characteristic
zero we have f ′(a) 6= 0. Then the identity above yields 0 = f ′(a)a′, so a′ = 0,
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hence a ∈ CK . Item (2) is obvious from (1). As to (3), let ∂ be extended to
a derivation on E. Then for any a ∈ E and f(T ) ∈ K[T ] with f(a) = 0 and
f ′(a) 6= 0 we have

a′ =
−f ∂(a)

f ′(a)
,

so there is at most one such derivation on E. To construct such a derivation,
let a ∈ E; it suffices to get a derivation on K[a] = K(a) extending ∂. Let
f(T ) be the minimum polynomial of a over K, so the ring morphism

K[T ] → K[a], g(T ) 7→ g(a)

has kernel fK[T ]. Consider the additive map

d : K[T ] → K[a] = K(a), d(g) = g∂(a) + g′(a)
−f ∂(a)

f ′(a)
.

An easy computation shows that if g ∈ fK[T ], then d(g) = 0, so fK[T ]
is in the kernel of the additive map d, and thus d induces an additive map

K[a] → K[a] that sends g(a) to g∂(a) + g′(a)−f ∂(a)
f ′(a) for each g ∈ K[T ]. This

last map is easily checked to be a derivation on K[a] extending ∂. �

For later use we extend the identity right before the lemma to polynomials
in several variables. Let f ∈ R[T1, . . . , Tn], f =

∑

i
aiT

i, and put

f ∂ :=
∑

i

a′
i
T i.

Then f 7→ f ∂ is easily checked to be a derivation on R[T1, . . . , Tn].

Lemma 4.2. Let b = (b1, . . . , bn) ∈ Rn and f ∈ R[T1, . . . , Tn]. Then

f(b)′ = f ∂(b) +
n

∑

i=1

∂f

∂Ti
(b) · b′i.

We leave the proof as a routine exercise.

If R is a differential domain (that is, the underlying ring of R is a domain),
then ∂ extends uniquely to a derivation of its fraction field by

(a/b)′ := (a′b− ab′)/b2 for a, b ∈ R, b 6= 0,

and we always consider the derivation of R extended in this way. We actually
need an easy variant of this fact:

Lemma 4.3. Let D be a domain with fraction field F and let ∂ : D → F be
a derivation into F , that is, ∂(a+ b) = ∂(a) + ∂(b) and ∂(ab) = ∂(a)b+ a∂(b)
for all a, b ∈ D. Then ∂ extends uniquely to a derivation on F .

For later use the reader should prove the following elementary facts by sim-
ilar reasoning as before.
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Exercise. Let A be a subring of the ring B and suppose the function
∂ : A→ B is a derivation of A into B, that is, for all x, y ∈ A,

∂(x+ y) = ∂(x) + ∂(y), ∂(xy) = x∂(y) + ∂(x)y.

(i) If A,B are domains with fraction fields E ⊆ F , respectively, then ∂
extends uniquely to a derivation of E into F .

(ii) If x, y ∈ B and f(x) 6= 0 for all nonzero f ∈ A[T ], then ∂ extends
uniquely to a derivation d of A[x] into B with d(x) = y.

(iii) If A and B are fields and x ∈ B is separably algebraic over A, then
∂ extends uniquely to a derivation of A[x] into B.

(iv) If A and B are fields, then ∂ extends to a derivation of B.

The language of differential rings is the language {0, 1,−,+, ·} of rings aug-
mented by an extra unary function symbol ∂. We view differential rings
as structures for this language in the obvious way, and a “differential ring
morphism” is just a map from a differential ring into a differential ring that
is a morphism with respect to this language. Likewise, a differential subring
of R is a subring of R closed under ∂, and is viewed as a substructure of R
with respect to the language of differential rings by restricting the derivation
of R to this subring.

If S is a differential overring of R (that is, S is a differential ring with R
as differential subring), and a ∈ S, then

R[a]d := R[a, a′, a′′, . . . ]

is easily seen to be the differential subring of S generated by a over R,
in other words, the elements of R[a]d have the form f(a, a′, . . . , a(n)) with
f(T0, . . . , Tn) ∈ R[T0, . . . , Tn].

Simple extensions of differential fields. In positive characteristic there
are complications. A modified notion of derivation, called Hasse derivation
is more appropriate in that case, but we shall not go there.

We assume from now on that differential fields have characteristic zero.

In the rest of this section K is a differential field.

Consider an element a in a differential field extension of K. Then a is
said to be differentially algebraic over K if there is a nonzero polynomial
f ∈ K[T0, . . . , Tn] (for some n) such that f(a, a′, . . . , a(n)) = 0; if there is no
such f (that is, a, a′, a′′, . . . are algebraically independent over the field K),
then we call a differentially transcendental over K. If b is also an element in a
differential field extension of K and a and b are both differentially transcen-
dental over K, then by Lemma 4.2 we have a differential ring isomorphism
K[a]d ∼= K[b]d that is the identity on K and sends a to b.

Suppose a is differentially algebraic over K. Take n minimal such that we
have a nonzero polynomial f(T0, . . . , Tn) ∈ K[T0, . . . , Tn] with

f(a, a′, . . . , a(n)) = 0.
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Note that f /∈ K and Tn appears in f . By factoring we can arrange that
f is irreducible in K[T0, . . . , Tn]. The key point is that then f completely
determines the isomorphism type of a over K. To explain what we mean by
this, note that by the minimality of n we have g(a, a′, . . . , a(n−1)) 6= 0 for all
nonzero g ∈ K[T0, . . . , Tn−1]. Let us call f with these properties a minimal
polynomial of a over K; it is easily seen to be unique up to a factor from
K×. A precise statement of the claim that f determines the isomorphism
type of a over K is as follows.

Lemma 4.4. Let a and b in differential field extensions of K be differentially
algebraic over K with common minimal polynomial f ∈ K[T0, . . . , Tn] over
K, such that Tn appears in f . Then there is a differential ring isomorphism
K[a]d ∼= K[b]d that is the identity on K and sends a to b.

Proof. Put ~a := (a, a′, . . . , a(n)) and ~b := (b, b′, . . . , b(n)). The ring morphism
h 7→ h(~a) : K[T0, . . . , Tn] → K[~a] has kernel fK[T0, . . . , Tn], and likewise

with b instead of a, so we have a ring isomorphism K[~a] ∼= K[~b] over K that

sends a(i) to b(i) for i = 0, . . . , n. Lemma 4.2 gives

h(~a)′ = h∂(~a) +

n
∑

i=0

∂h

∂Ti
(~a) · a(i+1) for h ∈ K[T0, . . . , Tn].

Now (∂f/∂Tn)(~a) 6= 0, so for h = f we obtain

a(n+1) = −f
∂(~a) +

∑n−1
i=0 (∂f/∂Ti)(~a) · a(i+1)

(∂f/∂Tn)(~a)
∈ K(~a),

so K[~a]′ ⊆ K(~a) (as sets), hence K[~a] ⊆ K[a]d ⊆ K(~a) (as rings). Likewise
with b instead of a, so the ring isomorphism above extends to a differential
ring isomorphism as desired. �

We can also construct an element with a prescribed minimal polynomial:

Lemma 4.5. Let f ∈ K[T0, . . . , Tn] be irreducible such that Tn appears in
f . Then there is an element a in a differential field extension of K such
that a is differentially algebraic over K with minimal polynomial f over K.

Proof. We have K[T0, . . . , Tn]/(f) = K[t0, . . . , tn] = K[t], with ti := Ti+(f),
i = 0, . . . , n and t = (t0, . . . , tn), so K[t] is a domain with fraction field K(t),
and f(t) = 0 but (∂f/∂Tn)(t) 6= 0. We are going to extend ∂ to a derivation
on K(t) such that t′i = ti+1 for 0 ≤ i < n. We first set

tn+1 := −f
∂(t) +

∑n−1
i=0 (∂f/∂Ti)(t) · ti+1

(∂f/∂Tn)(t)
in K(t),

which by Lemma 4.2 is the value that t′n will necessarily have for any deriva-
tion on K(t) extending ∂ with t′i = ti+1 for 0 ≤ i < n. Next we define the
additive map d : K[T0, . . . , Tn] → K(t) by

d(h) := h∂(t) +

n
∑

i=0

∂h

∂Ti
(t) · ti+1.
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As in the proof of Lemma 4.1 we check that (f) is part of the kernel of d
and that the induced additive map

h(t) 7→ h∂(t) +

n
∑

i=0

∂h

∂Ti
(t) · ti+1 : K[t] → K(t)

is a derivation into K(t), which by Lemma 4.3 extends uniquely to a deriva-

tion on K(t). This derivation extends ∂, and setting a := t0 we have a(i) = ti
for i = 0, . . . , n. This a has the desired property. �

Differentially closed fields. A consequence of the last lemma is that if
Tn appears in f ∈ K[T0, . . . , Tn], and g ∈ K[T0, . . . , Tn−1] \ {0}, then there
is an a in a differential field extension of K such that

f(a, a′, . . . , a(n)) = 0, g(a, a′, . . . , a(n−1)) 6= 0.

(This consequence does not mention irreducibility; to use the lemma, replace
f by an irreducible factor in K[T0, . . . , Tn] in which Tn appears.) Note that
if K is existentially closed as a differential field, such an a already exists in
K itself.

We define K to be differentially closed if for all f and g as above there is an
a ∈ K satisfying the above equation and inequation. By taking n = 0 we
see that a differentially closed field is algebraically closed as a field. Also,
existentially closed differential fields are differentially closed, and so every
differential field embeds into a differentially closed field. Note that there is
a set of universal-existential sentences in the language of differential rings
whose models are exactly the differentially closed fields. We let DCF be the
theory of differentially closed fields in this language.

Theorem 4.6. DCF has QE and is complete.

Proof. Let E and F be differentially closed fields such that F is |E|+-
saturated, and let R be a proper differential subring of E and φ : R → F
an embedding. If R is not a field we can extend φ to its fraction field inside
E (which is also a differential subfield of E). So assume R is a differential
field K. Take any a ∈ E \K. Consider first the case that a is differentially
transcendental over K. By saturation we can take b ∈ F differentially tran-
scendental over the subfield φ(K) of F . Then φ extends to an embedding
K[a] → F sending a to b. Next assume that a is differentially algebraic
over K, and let f ∈ K[T0, . . . , Tn], with Tn appearing in f , be a minimal
polynomial of a over K, so

f(a, a′, . . . , a(n)) = 0, g(a, a′, . . . , a(n−1)) 6= 0 for all g ∈ K[T0, . . . , Tn−1]\K.
By saturation we can take b ∈ F such that this equation and these inequa-
tions hold with b instead of a and with f and the g’s replaced by their
φ-images. Then by Lemma 4.4 we can extend φ to an embedding of K[a]d
into F that sends a to b.
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This finishes the proof that DCF has QE. The second part of the theorem
now follows since the ring Z with the trivial derivation embeds into every
differentially closed field. �

The substructures of differentially closed fields are exactly the differential
domains of characteristic zero, so DCF is by the above the model completion
of the theory of differential domains of characteristic zero.

Let U be a differentially closed field, K a differential subfield, and x a
variable. It follows from QE and Lemma 4.4 that a, b ∈ U realize the same
x-type over K in U iff they are either both differentially transcendental
over K, or both differentially algebraic over K with a common minimal
polynomial over K. In particular, if K is countable and U is big, there
are only countably many x-types over K realized in U, and thus by the
equivalence (1) ⇔ (4) of Corollary 8.3 in Introduction to model-theoretic
stability:

Corollary 4.7. DCF is omega-stable.

There are obvious analogies between ACF(0) and DCF; we shall see more of
those, but DCF is less misleading as an example of an omega-stable theory.

From now on U is a differentially closed field and C denotes its constant
field, so C is an algebraically closed field. Morley ranks and Morley degrees
in this section are with respect to the model U of DCF. We shall see that
MR(C) = 1 and MR(U) = ω, where C and U are taken as definable sets in
U.

Exercise. {y ∈ U : y(n) = 0} is a C-linear subspace of U of dimension n,

and if n > 0 and g ∈ U[T0, . . . , Tn−1] \ {0}, then g(y, y′, . . . , y(n−1)) 6= 0 for
some y in this subspace.

Definably closed and algebraically closed sets. It is easy to charac-
terize these sets in U:

Proposition 4.8. Let K a differential subfield of U. Then K is definably
closed in U.

Proof. By extending U if necessary we first arrange that U is |K|+-saturated.
Let a ∈ U \K. It suffices to show then there is a b ∈ U such that a 6= b and
a and b realize the same type over K in U. Assume first that a is algebraic
over K (in the field sense), and let f(T ) ∈ K[T ] be its minimum polynomial
over K. Since a /∈ K the degree of f is > 1, so f has a zero b 6= a in U. Then
b has the desired property by the remarks preceding Corollary 4.7. Next,
assume a is transcendental and differentially algebraic over K. So it has a
minimal polynomial f ∈ K[T0, . . . , Tn] with n > 0 and Tn appearing in f .
Given any nonzero polynomials g1, . . . , gm ∈ K[T0, . . . , Tn−1], the axioms of
DCF guarantee the existence of a t ∈ U such that

f(t, . . . , t(n)) = 0, g(t, . . . , t(n−1)) · (t− a) 6= 0, g := g1 · · · gm.
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By saturation this gives b 6= a in U such that b is differentially algebraic over
K with minimal polynomial f over K. Then a and b realize the same type
over K in Ω. Finally, if a is differentially transcendental over K a similar
argument gives b 6= a in U such that b is differentially transcendental over
K, and then a and b realize the same type over K in U. �

Proposition 4.9. Let K be a differential subfield of U and suppose K is
algebraically closed as a field. Then K is algebraically closed in U in the
model theory sense.

Proof. By extending U if necessary we first arrange that U is |K|+-saturated.
Let a ∈ U \K. It suffices to show then there are infinitely many b ∈ U that
realize the same type as a over K in U. The proof follows the steps in the
proof of Proposition 4.8, but note that a is not algebraic over K, so this
case drops out. �

Differential polynomials. Let R be a differential ring and Y = (Yi)i∈I a
family of distinct indeterminates. We define R[Y ]d, the ring of differential
polynomials in Y over R, as follows. As a ring, R[Y ]d is just the polynomial

ring R[
(

Y
(j)
i

)

] in distinct indeterminates Y
(j)
i (i ∈ I, j ∈ N) over R. (Of

course, only finitely many of the Y
(j)
i actually appear in any given differential

polynomial P (Y ) ∈ R[Y ]d.) We make R[Y ]d into a differential overring
of R whose derivation, also denoted by ∂, is uniquely determined by the
requirements that it extends the derivation ∂ of R and satisfies

∂(Y (j)
i ) = Y

(j+1)
i , (i ∈ I, j ∈ N).

Note that if R is a domain, so is R[Y ]d. Likewise, if R has no nonzero
nilpotents, neither does R[Y ]d, by an exercise in the previous section.

We continue with the case that I is finite, say I = {1, . . . , n}, and then
also denote R[Y ]d by R[Y1, . . . , Yn]d. For y1, . . . , yn in a differential overring
S of R we have a unique differential ring morphism

P (Y1, . . . , Yn) 7→ P (y1, . . . , yn) : R[Y1, . . . , Yn]d → S

that is the identity on R and sends Yi to yi, i = 1, . . . , n: P (y1, . . . , yn) is just
the element of S obtained by substituting yi, y

′
i, y

′′
i , . . . for Yi, Y

′
i , Y

′′
i , . . . in

P (Y1, . . . , Yn) ∈ R[Y1, . . . , Yn]d, for i = 1, . . . , n. We let R[y1, . . . , yn]d be the
image of this differential ring morphism, so R[y1, . . . , yn]d is the differential
subring of S generated by y1, . . . , yn over R.

If E is a differential overfield of K and y = (y1, . . . , yn) ∈ En, then K(y)d
denotes the fraction field of K[y]d inside E, so K(y)d is the differential sub-
field of E generated by y1, . . . , yn over K, and its elements are the P (y)/Q(y)
such that P,Q ∈ K[Y1, . . . , Yn]d with Q(y) 6= 0.

We can now state some easy consequences of Propositions 4.8 and 4.9, in
terms of the closure operations dcl and acl in our ambient U.

Corollary 4.10. Let K be a differential subfield of U and consider a point
a = (a1, . . . , an) ∈ Un. Then
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(1) dcl(Ka) is the underlying set of K(a)d;
(2) acl(Ka) is the underlying set of the algebraic closure in the field

sense of K(a)d in U.

Item (1) yields a differential analogue of Corollary 2.5:

Corollary 4.11. Let K be a differential subfield of U, and let X ⊆ Un

and f : X → U be K-definable in U. Then there are g1, . . . , gk, h1, . . . , hk ∈
K[Y1, . . . , Yn]d such that for each y ∈ X there is i ∈ {1, . . . , k} with hi(y) 6= 0
and f(y) = gi(y)/hi(y).

Exercise. Let K be a differential subfield of U and let S ⊆ U be definable
in U over K. Then S is finite iff S ⊆ {a ∈ U : f(a) = 0} for some
f ∈ K[T ] \ {0}.
In terms of differential polynomials QE for DCF means the following:

Corollary 4.12. Let K be a differential subfield of U. Then the subsets of
Un that are K-definable in U are exactly the boolean combinations inside Un

of the sets

{y ∈ Un : P (y) = 0}, P ∈ K[Y ]d, Y = (Y1, . . . , Yn).

Just as with ordinary polynomials we have:

Lemma 4.13. Let E be a differential overfield of K, and P ∈ E[Y ]d, Y =
(Y1, . . . , Yn). Then there are P1, . . . , Pm ∈ K[Y ]d such that for all y ∈ Kn,

P (y) = 0 ⇐⇒ P1(y) = · · · = Pm(y) = 0.

The proof is the same as that of Lemma 3.1. As a consequence, the structure
induced by U on C is just the field structure of C:

Corollary 4.14. Suppose S ⊆ Un is definable in U. Then S∩Cn is definable
in the field C.

Proof. By QE we reduce to the case that S = {y ∈ Un : P (y) = 0}
where P ∈ U[Y ]d, Y = (Y1, . . . , Yn). Now apply the previous lemma with
K = C. �

The fact that U induces on the field C no extra structure is important. Here
is one consequence that we shall need later in the proof of “Mordell-Lang
for function fields of characteristic zero”.

Lemma 4.15. Let X ⊆ Cm be definable in U, let Y ⊆ Un be definable in
U as algebraically closed field, and let f : X → Y be definable in U. Then
f extends to a map f ′ : X ′ → Y where X ⊆ X ′ ⊆ X(U) and X ′ and f ′ are
definable in U as algebraically closed field.

Proof. We can assume that U is big. Take a small differential subfield K of
U such that X, Y , and f are definable over K in U. If a ∈ X, then a ∈ Cm,
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so K(a)d = K(a) is the definable closure of Ka in U, hence f(a) ∈ K(a)n,
and so there are f1, . . . , fn, g ∈ K[T1, . . . , Tn] with g(a) 6= 0 such that

f(a) =
1

g(a)

(

f1(a), . . . , fn(a)
)

.

Saturation yields a finite partition ofX into disjoint subsetsX1, . . . ,XN that
are definable in the algebraically closed field U, such that for i = 1, . . . ,N
we have polynomials fi1, . . . , fin, gi ∈ K[T1, . . . , Tn] with the property that
gi has no zero in Xi and for all a ∈ Xi,

f(a) =
1

gi(a)

(

fi1(a), . . . , fin(a)
)

.

For i = 1, . . . , N we have Xi ⊆ Cm, so Xi is definable in C, and we put

X ′
i := {a ∈ Xi(U) :

1

gi(a)

(

fi1(a), . . . , fin(a)
)

∈ Y },

Set X ′ := X ′
1 ∪ · · · ∪X ′

N , and define f ′ : X ′ → Y by

f ′(a) :=
1

gi(a)

(

fi1(a), . . . , fin(a)
)

for a ∈ X ′
i, i = 1, . . . ,N.

�

Remark. By Corollary 4.14 the set C ⊆ U is strongly minimal in U, that is,
MR(C) = 1, MD(C) = 1. By the Exercise following Corollary 4.7 we have
for each n a C-linear bijection from Cn ⊆ Un onto the C-linear subspace

Z(Y (n)) := {y ∈ U : y(n) = 0}

of U, so MR
(

Z(Y (n))
)

= n, MD
(

Z(Y (n))
)

= 1. It follows that MR(U) ≥ ω.
The reverse inequality will be established later.

Let R be a differential ring and Y a single indeterminate. Given f(Y ) ∈
R[Y ]d with f /∈ R, the smallest r ∈ N such that f(Y ) ∈ R[Y, Y ′, . . . , Y (r)] is
called the order of the differential polynomial P and denoted by ord f . For
f ∈ R ⊆ R[Y ]d we set ord f := −∞.

Suppose a in a differential field extension of K is differentially algebraic
over K with minimal polynomial F ∈ K[T0, . . . , Tn] over K where Tn ap-
pears in F . The ordinary polynomial F plays here the role of the differential
polynomial f(Y ) := F (Y, Y ′, . . . , Y (n)) ∈ K[Y ]d, and we also call f a mini-
mal differential polynomial of a over K. Then ord f = n, and f is irreducible
in the unique factorization domain K[Y ]d, and K(a)d = K(a, . . . , a(n)) with
trdegK K(a)d = n.

Lemma 4.16. Let K be a differential subfield of U and let S ⊆ U be definable
in U over K. Then S is infinite iff S ⊇ {a ∈ U : f(a) = 0, g(a) 6= 0} for
some f, g ∈ K[Y ]d with 0 ≤ ord g < ord f .
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Proof. By passing to some elementary extension of U we can assume that U

is |K|+-saturated. Suppose S is infinite. Then

|S| = |U| > | acl(K)| = |K|,
so S has an element a that is not algebraic over K. Consider first the case
that a is differentially transcendental over K. Then our earlier quantifier-
free description of tp(a|K) gives a g ∈ K[Y ]d with g /∈ K such that

S ⊇ {a ∈ U : g(a) 6= 0}.
Take any f ∈ K[Y ]d with ord g < ord f . Then

S ⊇ {a ∈ U : f(a) = 0, g(a) 6= 0}.
Next, assume a is differentially algebraic over K with minimal differential

polynomial f ∈ K[Y ]d over K. Then ord f > 0 and our earlier quantifier-free
description of tp(a|K) gives the existence of g ∈ K[Y ]d such that

0 ≤ ord g < ord f, S ⊇ {a ∈ U : f(a) = 0, g(a) 6= 0}.
The other direction of the lemma is clear from earlier results. �

Corollary 4.17. Let S ⊆ Un+1 be definable in U. Then there is m such
that for all a ∈ Un, either |S(a)| ≤ m or S(a) is infinite.

Proof. We can reduce to the case that S is 0-definable and U is ℵ0-saturated.
The set of a ∈ Un for which S(a) is finite is both a union of 0-definable
subsets of Un and an intersection of 0-definable subsets of Un: this follows
from the previous lemma with K = Q(a)d. Thus the set of such a is 0-
definable. �

Differential ideals and division. In this subsection R is differential ring.
A differential ideal of R is an ideal I of R such that ∂I ⊆ I. Given any
subset A of R the differential ideal generated by A in R (that is, the smallest
differential ideal of R that contains A) is the ideal of R generated by the

a(n) with a ∈ A, and is denoted by [A]. When A = {a1, . . . , am} ⊆ R, this
differential ideal [A] is also denoted by [a1, . . . , am]. If I is a differential ideal
of R, then we regard the residue ring R/I as a differential ring by setting
(a/I)′ := a′/I for a ∈ R, so that the map

a 7→ a/I : R→ R/I

is a differential ring morphism with kernel I. Conversely, the kernel of a
differential ring morphism from R into a differential ring is a differential
ideal of R.

Division with remainder for polynomials causes a drop in degree. This
is the key to the algebraic properties of polynomial rings, in particular to
Hilbert’s basis theorem for polynomial ideals. In this subsection we derive
an analogue of division for differential polynomials.
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Fix a differential indeterminate Y . Let P ∈ R[Y ]d with P /∈ R. Let

m = ordP , call Y (m) the leader of P and denote it by uP , so with u = uP ,

P = adu
d + ad−1u

d−1 + · · · + a0, a0, . . . , ad ∈ R[Y, . . . , Y (m−1)], ad 6= 0.

We put dP := d, the degree of P as a polynomial in uP , and we also define

iP := ad (the initial of P ),

sP :=
∂P

∂uP
(the separant of P ), so sP = dadu

d−1 + · · · + a1.

Example. Let P = (Y ′)3 − Y ′′(Y ′′′)2 + (Y ′)2Y ′′′ ∈ K[Y ]d. Then

uP = Y ′′′, dP = 2, iP = −Y ′′, sP = −2Y ′′Y ′′′ + (Y ′)2.

We define a strict partial order < on R[Y ]d as follows: for P,Q ∈ R[Y ]d,

P < Q :⇐⇒ either ordP < ordQ, or 0 ≤ ordP = ordQ and dP < dQ,

in particular, if P ∈ R, then

P < Q ⇐⇒ Q /∈ R.

If P ∈ R[Y ]d, P /∈ R, then iP < P , sP < P , and with u := uP ,

P = iPu
d +Q, Q ∈ R[Y ]d, Q < P,

and by an easy induction on i ≥ 1,

P (i) = sPu
(i) + Pi, Pi ∈ R[Y ]d, Pi < u(i).

A key fact about this partial ordering is that there is no infinite strictly
decreasing sequence in R[Y ]d.

The next result is Ritt’s analogue for differential polynomials of division
with remainder. The proof is constructive.

Theorem 4.18. Let F,G ∈ R[Y ]d, F /∈ R. Then

ipF s
q
FG ≡ G∗ mod [F ]

for some p, q ∈ N and G∗ ∈ R[Y ]d with G∗ < F .

Proof. By induction on ordG. If G < F we can take p = q = 0 and G∗ = G.
If ordG = ordF = m and dG ≥ dF , then ordinary division by F in the
polynomial ring R[Y, . . . , Y (m)] yields

ipFG = QF +G∗, p = 1 + dG − dF , Q,G
∗ ∈ R[Y, . . . , Y (m)], G∗ < G,

and we are done. It remains to consider the case that ordG > ordF = m,
say ordG = m+ i, i ≥ 1. We shall prove that

ipF s
q
FG ≡ G∗ mod (F,F ′, . . . , F (i)) in the ring R[Y, . . . , Y (m+i)]

for suitable p, q ∈ N and G∗ ∈ R[Y ]d with G∗ < F . Set u := uF . Then

F (i) = sFu
(i) + Fi, Fi ∈ R[Y ]d, ordFi < m+ i.
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Ordinary division by F (i) in the polynomial ring R[Y, . . . , Y (m+i)] gives

sd
FG = QiF

(i) +Gi, d = dG, Qi, Gi ∈ R[Y ]d, ordGi < m+ i.

Inductively, assume that we have p, q ∈ N and G∗
i ∈ R[Y ]d such that

ipF s
q
FGi ≡ G∗ mod (F, . . . , F (i−1)), G∗ < F.

with the ideal (F, . . . , F (i−1)) taken in R[Y, . . . , Y (m+i−1)]. In combination
with the previous identity this gives, with d = dG,

ipF s
d+q
F G ≡ G∗ mod (F, . . . , F (i))

with the ideal (F, . . . , F (i)) taken in R[Y, . . . , Y (m+i)]. �

Remark. The proof shows that if we ask only that ordG∗ ≤ ordF rather
than G∗ < F , then we can take p = 0.

The ∂-basis theorem and the ∂-topology. Let K be a differential sub-
field of U in this subsection. For any set S ⊆ K[Y1, . . . , Yn]d of differential
polynomials we put

Z(S) := {y ∈ Un : P (y) = 0 for all P ∈ S}.
As in the case of the Zariski topology we see that these sets Z(S) are the
closed sets of a topology on Un, called the (∂,K)-topology of Un. The main
aim of this section is to show:

Theorem 4.19. Un with the (∂,K)-topology is a noetherian space.

For F1, . . . , Fm ∈ K[Y1, . . . , Yn]d we put

Z(F1, . . . , Fm) := Z({F1, . . . , Fm}) = {a ∈ Un : F1(a) = · · · = Fm(a) = 0}.
Theorem 4.19 says that any set S ⊆ K[Y1, . . . , Yn]d has elements F1, . . . , Fm

such that Z(S) = Z(F1, . . . , Fm).
Noetherianity of the Zariski topology came from Hilbert’s basis theorem

for polynomial ideals. Likewise, the theorem above will follow from a basis
theorem for the differential polynomial ring K[Y1, . . . , Yn]d due to Ritt and
Raudenbusch; but in contrast to Hilbert’s basis theorem we need to restrict
attention to radical differential ideals.

In the rest of this subsection R is a differential ring containing Q as a
subring.

Lemma 4.20. Let I be a differential ideal of R. Then
√
I is a differential

ideal of R.

Proof. First, for a ∈ R and 1 ≤ i ≤ n, induction on i gives

an−i(a′)2i−1 ∈
i

∑

j=0

Q[a, a′, . . . , a(i)](an)(j).

If an ∈ I, then i = n gives (a′)2n−1 ∈ I. �
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Lemma 4.21. Let I be a radical differential ideal of R and a ∈ R. Then
the ideal I : a := {b ∈ R : ab ∈ I} is a radical differential ideal of R.

Proof. Let b ∈ I : a. Then ab ∈ I, so ab′ + a′b ∈ I, and multiplication by ab′

gives (ab′)2 ∈ I, so ab′ ∈ I, so b′ ∈ I : a. Thus I : a is a differential ideal of
R, and is clearly radical since I is. �

Lemma 4.22. Let S, T be subsets of R. Then
√

[S] ·
√

[T ] ⊆
√

[ST ].

Proof. Let a ∈
√

[S]; we wish to show a
√

[T ] ⊆
√

[ST ], that is,
√

[T ] ⊆
√

[ST ] : a. By the previous lemma,
√

[ST ] : a is a radical differential ideal,

so it is enough to show that T ⊆
√

[ST ] : a. So, given b ∈ T , it remains to

show that ab ∈
√

[ST ], that is, a ∈
√

[ST ] : b. But
√

[ST ] : b is a radical
differential ideal and contains S, so contains a. �

Lemma 4.23. Let I be a radical differential ideal of R. Then I is an
intersection of prime differential ideals of R.

Proof. Let s ∈ R \ I; it is enough to show that then there is a prime dif-
ferential ideal p ⊇ I of R such that s /∈ p. To obtain p, note first that I
is disjoint from the multiplicative set S := {1, s, s2, . . . }. Let p be maximal
among the differential ideals of R that contain I and are disjoint from S.
Then S ∩√

p = ∅, so p =
√

p is radical. In fact, p is prime. Otherwise, take
a, b ∈ R \ p with ab ∈ p, so we can take m,n such that sm ∈ [p ∪ {a}] and
sn ∈ [p ∪ {b}], so

sm+n ∈ [p ∪ {a}][p ∪ {b}] ⊆
√

[p ∪ {ab}] = p

by the previous lemma, and we have a contradiction. �

A basis of a radical differential ideal I of R is a finite set B ⊆ R such that
I =

√

[B]. As with ordinary noetherianity the usual arguments show that
the following two conditions are equivalent:

(1) Every radical differential ideal of R has a basis.
(2) Ascending chain condition for radical differential ideals of R: there is

no strictly increasing infinite sequence I0 ⊂ I1 ⊂ I2 ⊂ . . . of radical
differential ideals of R.

Exercise. If S is a subset of R, a ∈ R, and
√

[S ∪ {a}] has a basis, then it
has a basis {s1, . . . , sm, a} with s1, . . . , sm ∈ S.

We now fix a differential indeterminate Y and recall from the subsection on
differential polynomials that if R has no nonzero nilpotents, then R[Y ]d has
no nonzero nilpotents. We now have things ready for the ∂-basis theorem.

Theorem 4.24. Assume that every radical differential ideal of R has a
basis. Then every radical differential ideal of R[Y ]d has a basis.

Proof. Let I be a radical differential ideal of R[Y ]d. If 1 ∈ I, then {1} is a
basis of I, so assume 1 /∈ I. Then I∩R is a radical differential ideal of R, and
thus has a basis {b1, . . . , bm}. The image of I under the natural morphism
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R[Y ]d → (R/I ∩ R)[Y ]d is a radical differential ideal of (R/I ∩ R)[Y ]d,
and if {c1, . . . , cn} ⊆ R[Y ]d is such that its image under this morphism
is a basis of the image of I in (R/I ∩ R)[Y ]d under this morphism, then
{b1, . . . , bm, c1, . . . , cn} is a basis of I. Thus we can work modulo I ∩ R:
replace R by R/I ∩ R and I by its image under the natural morphism
R[Y ]d → (R/I∩R)[Y ]d. After renaming we are in the case that I ∩R = {0}
and R has no nonzero nilpotents. With this assumption, we are done if I is
the trivial ideal, so assume I 6= {0}. Take a nonzero F ∈ I such that there
is no nonzero G ∈ I with G < F . Note that F /∈ R, so d := dF > 0.

We proceed by induction on the quantity (ordF, d) ∈ N2, which depends
only on I and not on the choice of F . Setting u := uF we have

sF = iF · dud−1 + f, where f ∈ R[Y ]d, degu f < d− 1, so

iF sF = i2F · dud−1 + iF f.

Now iF 6= 0 and R has no nonzero nilpotents, so i2F 6= 0. In view of Q ⊆ R,
it follows easily that iF sF 6= 0. Also iF sF < F , hence iF sF /∈ I. Inductively
we can therefore assume that

√

[I ∪ {iF sF}] has a basis; by the exercise
preceding the theorem we can assume it has a basis {F1, . . . , Fn, iF sF} with
F1, . . . , Fn ∈ I. We shall prove that then {F,F1, . . . , Fn} is a basis of I.

Claim. iF sF I ⊆
√

[F ]. To see why, let G ∈ I, so by Theorem 4.18,

ipF s
q
FG = G∗ +H, p, q ∈ N, G∗,H ∈ R[Y ]d, G

∗ < F, H ∈ [F ].

Then G∗ ∈ I, so G∗ = 0, hence ipF s
q
FG ∈ [F ], and thus iF sFG ∈

√

[F ].

This claim and Lemma 4.22 give for P ∈ I,

P 2 ∈ I
√

[I ∪ {iF sF}] ⊆ I
√

[F1, . . . , Fn, iF sF ]

⊆
√

[F1I ∪ · · · ∪ FnI ∪ iF sF I] ⊆
√

[F,F1, . . . , Fn],

so P ∈
√

[F,F1, . . . , Fn]. This gives

I =
√

[F,F1, . . . , Fn],

so {F,F1, . . . , Fn} is a basis of I as promised. �

This proof is close to the usual one, but is more constructive by indicating
how a basis might be obtained under suitable conditions.

Corollary 4.25. Every radical differential ideal of K[Y1, . . . , Yn]d has a
basis.

This follows from Theorem 4.24 by induction on n, starting with the trivial
case n = 0. In particular, the ascending chain condition for radical differen-
tial ideals of K[Y1, . . . , Yn]d is satisfied. Now, K being a differential subfield
of U, we assign to each (∂,K)-closed set C ⊆ Un the radical differential ideal

IK(C) := {F ∈ K[Y1, . . . , Yn]d : F (y) = 0 for all y ∈ C}
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of K[Y1, . . . , Yn]d, so Z(IK(C)) = C. The ascending chain condition on
radical differential ideals of K[Y1, . . . , Yn]d now yields the descending chain
condition on (∂,K)-closed subsets of Un, and so Theorem 4.19 is established.

If the radical differential ideal I of K[Y1, . . . , Yn]d has basis {F1, . . . , Fm},
then Z(I) = Z(F1, . . . , Fm). In particular, every (∂,K)-closed set in Un is
definable in U over K. As in the case of algebraically closed fields we have:

Proposition 4.26. If I is a differential ideal of K[Y1, . . . , Yn]d, then

IK(Z(I)) =
√
I.

The set of radical differential ideals of K[Y1, . . . , Yn]d is in bijective corre-
spondence with the set of (∂,K)-closed subsets of Un, by I 7→ Z(I), with
inverse C 7→ IK(C), and under this bijection the prime differential ideals of
K[Y1, . . . , Yn]d correspond to the irreducible (∂,K)-closed subsets of Un.

The proof is similar to that of Proposition 3.5 and its corollary, using that
each prime differential ideal of K[Y1, . . . , Yn]d has a basis, and the following
general fact.

Lemma 4.27. Assume that every radical differential ideal of R has a basis.
Then every radical differential ideal is an intersection of finitely many prime
differential ideals of R.

Proof. Otherwise, take a radical differential ideal I of R that is maximal
among the radical differential ideals that are not intersections of finitely
many prime differential ideals of R. In particular, I 6= R and I is not prime,
so we can take a, b ∈ R with ab ∈ I and a, b /∈ I. Then every prime differen-
tial ideal of R containing I contains a or b. To get a contradiction, represent
√

[I ∪ {a}] and
√

[I ∪ {b}] as finite intersections of prime differential ideals

of R, and use that by Lemma 4.23 we have I =
√

[I ∪ {a}] ∩
√

[I ∪ {b}]. �

Elimination of imaginaries for DCF. The (∂,U)-topology on Un is also
called its ∂-topology.

Theorem 4.28. DCF admits elimination of imaginaries.

Proof. Let U be a big differentially closed field. To show that DCF has EI,
let X ⊆ Un be any definable set; it suffices to show that then X has a code
in U. By Lemma 3.8 we reduce to the case that X is ∂-closed in Un. In this
case we put

I := IU(X) = {F ∈ U[Y1, . . . , Yn]d : F (a) = 0 for all a ∈ X}.
Extend each σ ∈ Aut(U) to an automorphism, also denoted by σ, of the
differential ring U[Y1, . . . , Yn]d by requiring σ(Yi) = Yi for i = 1, . . . , n.
Then for all σ ∈ Aut(U),

σ(I) = I ⇐⇒ σ(X) = X.

Take a basis B of I, and take a natural number p so large that

B ⊆ U[Y
(j)
i : i = 1, . . . , n, j = 0, . . . , p],
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and put I(p) := I ∩U[Y
(j)
i : i = 1, . . . , n, j = 0, . . . , p], so I =

√

[I(p)], and
thus for all σ ∈ Aut(U),

σ
(

I(p)
)

= I(p) ⇐⇒ σ(I) = I.

By the remarks following Proposition 2.14 we can take a ∈ UN , for some
natural number N , such that for all field automorphisms σ of U we have

σ(a) = a ⇐⇒ σ
(

I(p)
)

= I(p).

Then a codes X by the above. �

Differential prime ideals of K[Y ]d. In this subsection Y is a single in-
determinate. Suppose a in a differential field extension of K is differentially
algebraic over K with minimal differential polynomial F ∈ K[Y ]d over K of
order n. We define

pK(a) := {G ∈ K[Y ]d : G(a) = 0},
a differential prime ideal of K[Y ]d.

Lemma 4.29. pK(a) =
√

[F ] : sF . For every nonzero differential prime
ideal p of K[Y ]d there is a b in a differential field extension of K such that
b is differentially algebraic over K and p = pK(b).

Proof. From F (a) = 0 and sF (a) 6= 0 we get pK(a) ⊇
√

[F ] : sF . For the
reverse inclusion, let G ∈ pK(a). By the remark following Theorem 4.18,

sq
FG ≡ G∗ mod [F ], where q ∈ N, G∗ ∈ K[Y ]d, ordG∗ ≤ ordG.

Then G∗(a) = 0, and so G∗ ∈ FK[Y, . . . , Y (n)], using Lemmas 4.4 and 4.5

and their proof. Hence sq
FG ∈ [F ], and thus G ∈

√

[F ] : sF .
Let p be a nonzero differential prime ideal of K[Y ]d. Take a nonzero Φ ∈ p

such that there is no G ∈ p with G < Φ. Then Φ ∈ K[Y ]d is irreducible. By
Lemma 4.5 we can take b in a differential field extension of K such that b is
differentially algebraic over K with Φ as minimum differential polynomial
over K. Since sΦ /∈ p we have

pK(b) =
√

[Φ] : sΦ ⊆ p.

For the reverse inclusion, let G ∈ p. By Theorem 4.18 we have ipΦs
q
ΦG ∈ [Φ],

with suitable p, q ∈ N, hence iΦG ∈
√

[Φ] : sΦ = pK(b), so G ∈ pK(b) in
view of iΦ(b) 6= 0. Thus p = pK(b), as desired. �

By the basis theorem there must exist F1, . . . , Fm ∈ K[Y ]d such that
√

[F ] : sF =
√

[F,F1, . . . , Fm],

but it seems that no effective construction of F1, . . . , Fm from F is known.
For example, do there exist F1, . . . , Fm as above where m and the orders
and total degrees of F1, . . . , Fm can be bounded in terms of the order and
total degree of F?
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Let p be a nonzero differential prime ideal of K[Y ]d, and put

ord p := min{ordF : 0 6= F ∈ p} (a natural number).

An element a in a differential field extension that is differentiallly algebraic
over K such that p = pK(a) is also said to be a generic zero of p over K;
note that for such a we have ord p := trdegK K(a)d.

Lemma 4.30. Let p and q be nonzero differential prime ideals of K[Y ]d
such that p ⊂ q. Then ord p > ord q.

Proof. Take generic zeros a and b of p and q over K, respectively, and
let F,G ∈ K[Y ]d be minimimal differential polynomials of a and b over K,
respectively. Then F ∈ p, so F ∈ q, and thus ord p = ordF ≥ ordG = ord q.
If ordF = ordG = n, then F ∈ GK[Y, . . . , Y (n)] by Lemmas 4.4 and 4.5
and their proof, but F ∈ K[Y ]d is irreducible, so F = cG for some c ∈ K×,
and thus p = q, contradicting p ⊂ q. �

In the rest of this subsection U is a big differentially closed field, and the set
U is given its ∂-topology. We apply the above with K = U.

Lemma 4.31. Let X be an irreducible closed subset of U with X 6= U, so
p := I(X) is a nonzero differential prime ideal of U[Y ]d. Then

MR(X) ≤ dim(X) ≤ ord p,

where dim(X) is the Krull dimension of X as a noetherian subspace of U.

Proof. Consider a chain

X0 ⊂ X1 ⊂ · · · ⊂ Xn = X

of irreducible closed subsets of U, and put pi := I(Xi) for i = 0, . . . , n. This
gives a chain

p0 ⊃ p1 ⊃ · · · ⊃ pn = p

of nonzero differential prime ideals of K[Y ]d, so by the previous lemma,

ord p0 < · · · < ord pn = ord p,

so ord p ≥ n. It follows that ord p ≥ dim(X). The inequality MR(X) ≤
dim(X) follows from Corollary 3.17. �

Corollary 4.32. MR(X) < ω for every proper closed subset X of U, and
MR(U) = ω, MD(U) = 1.

Proof. The first assertion follows from the lemma above. By the remark
following Corollary 4.14 we have MR(U) ≥ ω. Suppose towards a contradic-
tion that either MR(U) > ω, or MR(U) = ω and MD(U) > 1. Then we have
disjoint constructible X,Y ⊆ U such that MR(X) ≥ ω and MR(Y ) ≥ ω.
Then the first part of the corollary yields cl(X) = U and cl(Y ) = U. But U

is irreducible, so X and Y both contain a nonempty open subset of U, and
thus X ∩ Y 6= ∅, a contradiction. �
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More on differentially closed fields. We mention here some results that
we shall not use but which it is good to be aware of. First, DCF being omega-
stable, it follows that every K has a so-called differential closure Kdc, that
is, K ⊆ Kdc |= DCF, and every embedding of K into a differentially closed
field E extends to an embedding of Kdc into E. It can be shown that any
two differential closures of K are isomorphic over K, but in contrast to
algebraic closures of fields, a differential closure of K might have a strictly
smaller differential subfield containing K that is also a differential closure
of K. One can also show that the constant field of a differential closure Kdc

of K is the algebraic closure of the constant field of K inside Kdc.

5. Algebraic Sets

Throughout this section we fix an algebraically closed field k; we shall work
in the concrete but rather narrow setting of algebraic subsets of cartesian
spaces kn. The tools we develop here will enable us to introduce in the next
section the more general and flexible notion of algebraic variety.

For each set S, let kS be the ring of all functions f : S → k, with
pointwise addition and multiplication of such functions. We consider kS as
a k-algebra via the ring morphism k → kS that sends each c ∈ k to the
k-valued function on S (also indicated by c) taking the constant value c.
Given any non-trivial k-algebra A we identify k with its image in A via
c 7→ c · 1 : k → A. By “algebra” we mean “k-algebra” in this section, in
particular, an “algebra morphism” is a morphism of k-algebras.

Throughout this section we also fix an algebraic set X ⊆ km with its Zariski
topology, induced by the Zariski topology of km. This topology is good
enough to define some invariants of X like its (Krull) dimension but is too
weak for most purposes. To get a better view of X we shall introduce its
coordinate ring k[X], in terms of which we can define its tangent bundle
TX ⊆ k2m and other geometric objects associated to X.

First, to each polynomial f ∈ k[T1, . . . , Tm] we associate the polynomial
function f |X : X → k on X given by x 7→ f(x). These polynomial functions
on X form a subalgebra k[X] of the algebra kX ; we call k[X] the coordinate
ring of X. The map

f 7→ f |X : k[T1, . . . , Tm] → k[X]

is a surjective algebra morphism with kernel I(X), so induces an algebra
isomorphism k[T1, . . . , Tm]/ I(X) ∼= k[X]. Let ti := Ti|X for i = 1, . . . ,m,
so k[X] = k[t1, . . . , tm] as rings if X 6= ∅.

We often identify a polynomial f ∈ k[T1, . . . , Tm] with the polynomial
function x 7→ f(x) : km → k on km; this is harmless, since I(km) = {0}.
This identification makes k[T1, . . . , Tm] the coordinate ring of the algebraic
set km and explains the notation f |X used in defining polynomial functions
on X. For a = (a1, . . . , am) ∈ km, let

ma := {f ∈ k[T1, . . . , Tm] : f(a) = 0} = (T1 − a1, . . . , Tm − am)
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be the corresponding maximal ideal of k[T1, . . . , Tm], and note that

ma ⊇ I(X) ⇐⇒ a ∈ X.
It follows that a point a = (a1, . . . , am) ∈ X yields the maximal ideal

mX,a := {f ∈ k[X] : f(a) = 0} = (t1 − a1, . . . , tm − am)k[X]

of k[X]. Also, by part (4) of Corollary 2.3, the above isomorphism

k[T1, . . . , Tm]/ I(X) ∼= k[X]

yields a bijective correspondence

a 7→ mX,a : X → {maximal ideals of k[X]}
between the points of X and the maximal ideals of its coordinate ring. In
particular, if g1, . . . , gn ∈ k[X] have no common zero in X, then there are
f1, . . . , fn ∈ k[X] such that f1g1 + · · · + fngn = 1. For n = 1 this means
that if g ∈ k[X] has no zero in X, then 1/g ∈ k[X].

Regular functions on open sets, and regular maps. In the next section
we define algebraic varieties essentially by glueing algebraic sets along open
subsets, with regular transition maps as glue. This is one reason to pay
attention to open sets and regular maps.

A function f ∈ k[X] yields the open subset Xf := {x ∈ X : f(x) 6= 0} of
X, and sets of this form are called basic open sets in X. Open subsets of X
are finite unions of basic open sets in X: Let U ⊆ X be open; then

X \ U = {x ∈ X : f1(x) = · · · = fn(x)}, where f1, . . . , fn ∈ k[X],

so U = Xf1
∪ · · · ∪Xfn

.
Let U ⊆ X be open. A regular function on U is a function f : U → k

such that each x ∈ U has an open neighborhood Ux ⊆ U on which f is a
rational function: there are p, q ∈ k[X] such that q has no zero on Ux and
f(y) = p(y)/q(y) for all y ∈ Ux. Regular functions on U are definable in
the field k. This is because U is a noetherian space, hence U is compact,
so finitely many of the Ux in the definition above will already cover U . The
regular functions on U are continuous with respect to the Zariski topology
on domain and codomain, and are the elements of a subalgebra OX(U) of
kU . Note that if f : U → k is regular and f(x) 6= 0 for all x ∈ U , then
1/f : U → k is regular. The assignment

U 7→ OX(U), (U an open set in X)

is the so-called structure sheaf OX on X, but the role of sheafs will become
clear only in the more general setting of algebraic varieties. It turns out
that the regular functions on X are exactly the polynomial functions on X:

Lemma 5.1. OX(X) = k[X].
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Proof. It is obvious that k[X] ⊆ OX(X). For the reverse inclusion, let
f ∈ OX(X). By compactness of X we have a covering of X by basic open
sets U1, . . . , Un in X and for i = 1, . . . , n we have pi, qi ∈ k[X] such that
qi has no zero in Ui and f(y) = pi(y)/qi(y) on Ui. Now Ui = Xfi

with
fi ∈ k[X], so fiqif = fipi, not only on Ui but on all of X. The functions
f1q1, . . . , fnqn have no common zero in X, so there are g1, . . . , gn ∈ k[X]
such that g1f1q1 + · · · + gnqnfn = 1, and then

f = (g1f1q1 + · · · + gnqnfn)f = g1f1p1 + · · · + gnfnpn ∈ k[X],

as claimed. �

For the rest of this section we also fix an algebraic set Y ⊆ kn. A map

φ = (φ1, . . . , φn) : X → Y, (φi : X → k for i = 1, . . . , n)

is said to be regular if all φi ∈ k[X]. For example, the identity map X → X
is regular, the inclusion map (t1, . . . , tm) : X →֒ km is regular, and each
constant map X → Y is regular. A regular map X → Y is continuous. If
Z ⊆ kp is an algebraic set and φ : X → Y and ψ : Y → Z are regular,
then ψ ◦ φ : X → Z is regular. Thus we have the category of algebraic
sets and regular maps; an isomorphism between X and Y in this category
is a biregular map X → Y , that is, a bijective regular map X → Y whose
inverse is a regular map Y → X.

Let φ : X → Y be regular. Then it transforms regular functions on Y into
regular functions on X by composition with φ. More precisely, let V ⊆ Y
be open, and put U := φ−1(V ). Then φ induces an algebra morphism

φ∗V : OY (V ) → OX(U), φ∗V (f) := f ◦ (φ|U).

In particular, φ∗ := φ∗Y : k[Y ] → k[X]. If Z ⊆ kp is an algebraic set and
ψ : Y → Z are regular, then

(ψ ◦ φ)∗ = φ∗ ◦ ψ∗ : k[Z] → k[X].

When X = Y and φ = idX , then φ∗ is the identity map on k[X].

Exercise. For any algebra morphism α : k[Y ] → k[X] there is a unique
regular map φ : X → Y such that φ∗ = α.

Algebraic sets as intrinsic objects. We defined algebraic sets as subsets
of coordinate spaces k0,k1,k2, . . . , but the key features of an algebraic set
are those that are invariant under biregular maps: our focus is on properties
of the algebraic set X that are independent of its inclusion in the ambient
space km. These features are encoded in k[X]. Indeed, a biregular map
φ : X → Y induces an algebra isomorphism φ∗ : k[Y ] → k[X], and any
algebra isomorphism k[Y ] → k[X] has the form φ∗ for a unique biregular
φ : X → Y . As an example of this general philosophy, note that the points
of X correspond to the maximal ideals of k[X]; likewise, the closed subsets
of X are in bijective correspondence with the radical ideals of k[X].

The inclusion X →֒ km is of course a geometric object associated to X.
What is it in terms of k[X]? This inclusion is the regular map (t1, . . . , tm),
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and specifying this inclusion amounts therefore to specifying the generating
system t1, . . . , tm of the algebra k[X]. But any other generating system
u1, . . . , un of the algebra k[X] yields also an embedding

u = (u1, . . . , un) : X → kn,

that is, u(X) is closed in kn and u : X → u(X) is biregular. (We leave it to
the reader to verify this fact, which is not used later on.)

Application of Krull’s Intersection Theorem. First a bit of notation.
Let R be a ring and let I1, . . . , Ie be ideals of R. Then I1 · · · Ie denotes the
ideal of R generated by the products a1 · · · ae with a1 ∈ I1, . . . , ae ∈ Ie, so
the elements of I1 · · · Ie are the (finite) sums of such products. Note that
I1 · · · Ie ⊆ I1 ∩ · · · ∩ Ie. When I1 = · · · = Ie = I we set Ie := I1 · · · Ie. In
particular, I0 = R, I1 = I, and Ie ⊇ Ie+1, for any ideal I of R.

Let a ∈ X, so mX,a = {f ∈ k[X] : f(a) = 0}; think of the elements of me
X,a

as the regular functions onX that vanish at a with order ≥ e. Let φ : X → Y
be a regular map and let φ(a) = b ∈ Y . Then φ∗(f)(a) = f(b) for f ∈ k[Y ],
so φ∗(mY,b) ⊆ mX,a, with equality if φ∗ is surjective. Take for example the

(regular) inclusion map ι : X →֒ km. Then ι∗ : k[T1, . . . , Tm] → k[X] is the
restriction map f 7→ f |X, and is surjective by the definition of k[X]. With

ma = (T1 − a1, . . . , Tm − am)k[T1, . . . , Tm]

this gives ι∗(ma) = mX,a, and thus ι∗(me
a) = me

X,a for all e.

Now, k[X] and its ideal mX,a are k-vector spaces, in general of infinite
dimension, but:

Lemma 5.2. k[X]/me
X,a has finite dimension as a k-vector space.

Proof. The above ι∗ induces a surjective k-algebra morphism

k[T1, . . . , Tm]/me
a → k[X]/me

X,a,

so it is enough to show that k[T1, . . . , Tm]/me
a has finite dimension as a vector

space over k. To keep notations simple we just do the case a = (0, . . . , 0).
Then ma = (T1, . . . , Tm) and the elements of (T1, . . . , Tm)e are those

f =
∑

i

aiT
i ∈ k[T1, . . . , Tm], (i = (i1, . . . , im) ∈ Nm)

such that ai = 0 for all i with i1 + · · · + im < e. . So a basis of the k-linear
space k[T1, . . . , Tm]/(T1, . . . , Tm)e is given by the residue classes

T i1
1 · · ·T im

m + (T1, . . . , Tm)e,
(

(i1, . . . , im) ∈ Nm, i1 + · · · + im < e
)

.

In particular, this vector space has finite dimension. �

In particular, the k-linear subspace mX,a/m
2
X,a of k[X]/m2

X,a has finite di-
mension. This vector space will later be interpreted as the cotangent space
of X at a.
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A key result from Commutative Algebra is the Krull Intersection Theorem,
which in one of its forms says: if R is a noetherian domain and m is a
maximal ideal of R, then

⋂

e me = {0}.
This has a consequence that we shall use later:

Lemma 5.3. Suppose Y ⊆ km is an irreducible algebraic set, and a ∈ X∩Y .
Then X ⊇ Y if and only if for all f ∈ k[T1, . . . , Tm] and e with f |X ∈ me

X,a

we have f |Y ∈ me
Y,a.

Proof. If X ⊇ Y , then the inclusion map Y → X induces the surjective ring
morphism

f |X → f |Y : k[X] → k[Y ], (f ∈ k[T1, . . . , Tm]),

which maps mX,a onto mY,a, and thus me
X,a onto me

Y,a for each e.

For the converse, assume that for all f ∈ k[T1, . . . , Tm] and e with f |X ∈
me

X,a we have f |Y ∈ me
Y,a. To obtain X ⊇ Y it suffices to show that

I(X) ⊆ I(Y ). If f ∈ I(X), then f |X = 0, so f |X ∈ me
X,a for all e, hence

f |Y ∈ me
Y,a for all e, and thus f |Y = 0 (since k[Y ] is a noetherian domain),

that is, f ∈ I(Y ). �

Products. The product X × Y ⊆ km+n is an algebraic set, and it has the
following key property: the projection maps X × Y → X and X × Y → Y
are regular, and if Z ⊆ kp is an algebraic set and f : Z → X and g : Z → Y
are regular, so is (f, g) : Z → X × Y . Also, for a ∈ X the map

y 7→ (a, y) : Y → X × Y

is regular, and for b ∈ Y the map

x 7→ (x, b) : X → X × Y

is regular. Thus by Lemma 3.2, if X,Y are irreducible, so is X × Y .
Let T1, . . . , Tm, U1, . . . , Un be distinct indeterminates and consider the

ideals I(X) ⊆ k[T1, . . . , Tm] and I(Y ) ⊆ k[U1, . . . , Un]. For f ∈ k[X] and
g ∈ k[Y ] we have the regular function (x, y) 7→ f(x)g(y) : X×Y → k, which
for simplicity we denote by fg. It is clear that k[X×Y ] consists of the finite
sums of such products fg.

Lemma 5.4. Let (fi)i∈I be a basis of the k-linear space k[X] and (gj)j∈J a
basis of the k-linear space k[Y ]. Then (figj)i∈I,j∈J is a basis of the k-linear
space k[X × Y ].

Proof. Let i range over I and j over J in what follows. Let (cij) be a family
of elements of k with cij = 0 for all but finitely many (i, j), such that
∑

i,j cijfigj = 0. Then we have for all a ∈ X,

0 =
∑

ij

cijfi(a)gj =
∑

j

(

∑

i

cijfi(a)
)

gj,

in k[Y ], so
∑

i cijfi(a) = 0 for all a ∈ X and all j. Thus
∑

i cijfi = 0 for all
j, so cij = 0 for all i, j. �
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Corollary 5.5. I(X × Y ) ⊆ k[T1, . . . , Tm, U1, . . . , Un] is generated by the
F (T ) ∈ I(X) and the G(U) ∈ I(Y ).

Proof. Let f ∈ I(X × Y ). With α and β ranging over Nm and Nn we have

f =
∑

α,β

cαβT
αUβ

with all cαβ ∈ k and cαβ 6= 0 for only finitely many α, β. Take Fi ∈
k[T1, . . . , Tm] for i ∈ I and take Gj ∈ k[U1, . . . , Un] for j ∈ J such that
(Fi|X) is a basis of the k-linear space k[X] and (Gj |Y ) is a basis of the
k-linear space k[Y ]. For all α, β we have

Tα = fα +
∑

i

aiαFi, fα ∈ I(X),

Uβ = gβ +
∑

j

bjβGj , gβ ∈ I(Y ).

where all aiα, bjβ ∈ k with aiα 6= 0 for only finitely many i and bjα 6= 0 for
only finitely many j. The desired result then follows by substitution in the
expression for f , using also Lemma 5.4. �

Germs and local rings. Let a ∈ X and let U, V,W range over open
neighborhoods of a in X. The intrinsic features of X near a are encoded
in the local ring OX,a whose elements are the germs of regular functions on
open neighborhoods of a in X. The precise definition of OX,a is as follows.
We introduce an equivalence relation ∼a on the disjoint union of the rings
OX(U): for f ∈ OX(U), g ∈ OX(V ),

f ∼a g :⇐⇒ f |W = g|W for some W ⊆ U ∩ V.
The equivalence class γaf of f ∈ OX(U) with respect to ∼a is called the
germ of f at a; for such a germ γ = γaf we set γ(a) := f(a). The set of
germs of functions in

⋃

U OX(U) is denoted by OX,a, and is made into an
algebra in the obvious way, by requiring that for each U the map

f 7→ γaf : OX(U) → OX,a

is an algebra morphism.
Note that γ 7→ γ(a) : OX,a → k is a surjective algebra morphism and that

if γ ∈ OX,a and γ(a) 6= 0, then γ is a unit of OX,a. Thus OX,a is a local ring
with maximal ideal m(OX,a) = {γ ∈ OX,a : γ(a) = 0}, and

OX,a = k⊕ m(OX,a) (internal direct sum of k-linear subspaces).

If f, g ∈ k[X] and g(a) 6= 0, then γag is a unit of OX,a, so γaf/γag denotes
an element of OX,a. All elements of OX,a are of this form, and are thus in
some sense quotients of regular functions on X.

Exercise. The algebra morphism f 7→ γaf : k[X] → OX,a maps mX,a

onto m(OX,a). If X is irreducible, then OX,a is a domain, and the algebra
morphism f 7→ γaf : k[X] → OX,a is injective.
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Let φ : X → Y be a regular map and put b = φ(a). Then we have the
algebra morphism φ∗a : OY,b → OX,a given by

φ∗a(γbg) := γa

(

φ∗O(g)
)

(g ∈ OY (O), O open in Y, b ∈ O),

with φ∗a
(

m(OY,b)
)

⊆ m(OX,a). When in addition ψ : Y → Z is regular and
c = ψ(b), then

(ψ ◦ φ)∗a = φ∗a ◦ ψ∗
b .

Tangent spaces. Fix a point a = (a1, . . . , am) ∈ km. Given a polynomial
F ∈ k[T1, . . . , Tm] of degree ≤ d we expand F around a:

F (a+ v) = F (a) + F1(v) + F2(v) + · · · + Fd(v) (v ∈ km),

where Fi(V1, . . . , Vm) ∈ k[V1, . . . , Vm] is homogeneous of degree i and de-
pends on a but not on v, for i = 1, . . . , d. Here V1, . . . , Vm are distinct new
variables, “new” in the sense of not belonging to {T1, . . . , Tm}. In particular,

F1 =
∂F

∂T1
(a) · V1 + · · · + ∂F

∂Tm
(a) · Vm ∈ kV1 + · · · + kVm

is a linear polynomial, also called the differential of F at a and denoted by
daF . (Think of it as the linear function that best approximates F − F (a)
at a.) It is easy to check that the map

F 7→ daF : k[T1, . . . , Tm] → kV1 + · · · + kVm

is k-linear, with dac = 0 for c ∈ k, and satisfies the derivation-like rule

da(FG) = F (a) · daG+G(a) · daF, (F,G ∈ k[T1, . . . , Tm]).

We also have the following chain rule.

Lemma 5.6. Let F1, . . . , Fn ∈ k[T1, . . . , Tm] and G ∈ k[U1, . . . , Un], and
set H := G(F1, . . . , Fn) ∈ k[T1, . . . , Tm]. Then we have for a ∈ km and
b := (F1(a), . . . , Fn(a)) ∈ kn,

daH = dbG(daF1, . . . , daFn) ∈ kV1 + · · · + kVm.

One can verify this by checking the identity for G ∈ k and for G = Uj,
j = 1, . . . , n, and by showing that the identity is preserved by sums and
products of polynomials G for which it holds.

Exercise. Let F ∈ k[T1, . . . , Tm] and a ∈ km. Then

daF = 0 ⇐⇒ F − F (a) ∈ m
2
a.

To express the dependence of daF on a we define, for F ∈ k[T1, . . . , Tm],

dF :=
∂F

∂T1
· V1 + · · ·+ ∂F

∂Tm
· Vm ∈ k[T1, . . . , Tm]V1 + · · · + k[T1, . . . , Tm]Vm,

the differential of F , a polynomial in the variables T1, . . . , Tm, V1, . . . , Vm

which is linear in V1, . . . , Vm. Thus

daF = dF (a, V1, . . . , Vm), Vi = dTi = daTi, (i = 1, . . . ,m).
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It is in fact traditional to write the new variables V1, . . . , Vm as dT1, . . . , dTm.

We now return to our algebraic set X ⊆ km, and put I := I(X). Let a ∈ X.
Then we define the tangent space of X at a by

TaX := {v ∈ km : daF (v) = 0 for all F ∈ I},

a linear subspace of the vector space km over k. It follows easily from the
computation rules for differentials that if I = (F1, . . . , Fn), then

TaX = {v ∈ km : daF1(v) = · · · = daFn(v) = 0}.

(Think of a+ TaX as the best linear approximation to X at a.) We bundle
the tangent spaces of X at its various points into a single object, the tangent
bundle TX of X:

TX := {(x, v) ∈ km × km : x ∈ X, dF (x, v) = 0 for all F ∈ I},

Note that TX(a) = TaX for a ∈ X, and that if I = (F1, . . . , Fn), then TX
consists of the points (x, v) ∈ km × km such that

F1(x) = · · · = Fn(x) = 0, dF1(x, v) = · · · = dFn(x, v) = 0.

In particular, TX is an algebraic set in km × km = k2m.

The case of a hypersurface. A hypersurface H in km is the zero set

H = Z(F ) ⊆ km

of a single polynomial F ∈ k[T1, . . . , Tm], F /∈ k. Let H be an irreducible
hypersurface in km, so H = Z(F ) where F ∈ k[T1, . . . , Tm] is irreducible.
Then I(H) = (F ), so for a ∈ H,

TaH = {v ∈ km :
∂F

∂T1
(a)v1 + · · · + ∂F

∂Tm
(a)vm = 0},

so TaH has dimension m − 1 iff ∂F
∂Ti

(a) 6= 0 for some i, and TaH = km

otherwise. We claim that the closed subset

{a ∈ H : TaH = km} = {a ∈ H :
∂F

∂T1
(a) = · · · =

∂F

∂Tm
(a) = 0}

of H is a proper subset of H. To see why this is so, assume first that
k has characteristic 0. Since F /∈ k we can take i ∈ {1, . . . ,m} such
that Ti occurs in F ; viewing F as a polynomial in Ti with coefficients in
k[T1, . . . , Ti−1, Ti+1, . . . , Tm] we get that ∂F

∂Ti

6= 0 (using the characteristic 0

assumption) and ∂F
∂Ti

has lower degree in Ti than F . Since F is irreducible,

it follows that ∂F
∂Ti

/∈ (F ) = I(H), so there is a ∈ H such that ∂F
∂Ti

(a) 6= 0.
When k has positive characteristic one needs to choose i with a little more
care, and this case is left as an exercise.
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The dimension of a tangent space. Suppose that I(X) = (F1, . . . , Fn).
Then TaX consists of all v = (v1, . . . , vm) ∈ km such that

∂F1

∂T1
(a)v1 + · · · + ∂F1

∂Tm
(a)vm = 0

.....................................................

.....................................................

∂Fn

∂T1
(a)v1 + · · · + ∂Fn

∂Tm
(a)vm = 0.

The matrix of this system of linear equations is the so-called jacobian matrix

J(F1, . . . , Fn)(a) :=
(∂Fi

∂Tj
(a)

)

,

an n×m-matrix with entries in k, so

dim Ta(X) + rank
(

J(F1, . . . , Fn)(a)
)

= m.

Consider any n×m-matrix

A = (aij) (1 ≤ i ≤ n, 1 ≤ j ≤ m)

with entries in a field. A minor of A is a square submatrix

(aij)i∈I,j∈J I ⊆ {1, . . . , n}, J ⊆ {1, . . . ,m}, |I| = |J |,
and the size of this minor is the number |I| = |J | ≤ min(m,n). Recall that
the rank of A equals the largest r ∈ N such that A has a minor of size r
with nonzero determinant.

Lemma 5.7. Suppose X is irreducible. Then there is d ∈ {0, . . . ,m} and a
proper closed subset Sing(X) of X such that

(1) dim TaX > d for all a ∈ Sing(X);
(2) dim TaX = d for all a ∈ X \ Sing(X).

Proof. Take r ∈ N to be the maximum value of rank
(

J(F1, . . . , Fn)(a)
)

as
a ranges over X, and take d ∈ N such that d + r = m. It follows from
the considerations above that for all a ∈ X we have dimTaX ≥ d and
that dim TaX > d iff all minors of size r of J(F1, . . . , Fn)(a) have vanishing
determinant. �

The set Sing(X) defined in this lemma is called the singular locus of X, and
its points are called singular points of X; the nonsingular points of X are
also called simple points of X, and if a is a simple point of X, we also say
that X is smooth at a. It is an important fact that the number d defined by
this lemma equals dimX: this is clear when X is an irreducible hypersurface
in km, and will be proved later by reduction to this case.

Functoriality of the tangent space construction. A reminder about
terminology: Let K be a field and V a finite-dimensional K-vector space.
Then V ∗ denotes the dual vector space of K-linear functions V → K. Recall
that V ∗ has the sameK-vector space dimension as V . For k = K and a ∈ X,
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the dual (TaX)∗ of the tangent space TaX of X at a is also denoted by
T∗

aX and called the cotangent space of X at a.

Returning to algebraic sets, let a ∈ X and define for f ∈ k[X] the k-linear
function daf : TaX → k to be daF |TaX with F ∈ k[T1, . . . , Tm] such that
F |X = f . (This makes sense, since if F,G ∈ k[T1, . . . , Tm] and F |X = G|X,
then F − G ∈ I(X), so daF |TaX = daG|TaX.) Thus daf ∈ T∗

aX for
f ∈ k[X] and the map f 7→ daf : k[X] → T∗

aX is k-linear and satisfies

da(fg) = f(a)dag + g(a)daf (f, g ∈ k[X].

Let Y ⊆ kn be a second algebraic set, let f = (f1, . . . , fn) : X → Y be a
regular map, and let b = f(a).

Lemma 5.8. If v ∈ TaX, then (daf1(v), . . . , dafn(v)) ∈ Tb Y .

Proof. Take F1, . . . , Fn ∈ k[T1, . . . , Tm] with Fi|X = fi for i = 1, . . . ,m, and
let G ∈ I(Y ). Then H := G(F1, . . . , Fm) ∈ I(X), so by the earlier chain rule
we have, for v ∈ TaX,

0 = daH(v) = dbG(daf1(v), . . . , dafn(v)),

which yields the desired result. �

We define daf := (daf1, . . . , dafn) : TaX → Tb Y , a k-linear map, and we
bundle these maps as a varies into a single map

T f : TX → TY, T f(x, v) := (f(x), dxf(v)).

It is easy to check that T f : TX → TY is a regular map.
Suppose Z ⊆ kp is also an algebraic set and g = (g1, . . . , gp) : Y → Z is a

regular map, and c = g(b). Then the earlier chain rule yields

da(g ◦ f) = dbg ◦ daf, T(g ◦ f) = (T g) ◦ (T f).

Note that if m = n and X ⊆ Y , then TaX ⊆ Ta Y ⊆ km, and the inclusion
map ι : X →֒ Y yields the inclusion maps

daι : TaX →֒ Ta Y, T ι : TX →֒ TY.

Corollary 5.9. Let a ∈ X, b ∈ Y . Then

T(a,b)(X × Y ) = (TaX) × (Tb Y ) ⊆ km × kn = km+n.

Proof. Let T1, . . . , Tm, U1, . . . , Un be distinct variables. Take polynomials
F1, . . . , Fp ∈ k[T1, . . . , Tm] and G1, . . . , Gq ∈ k[U1, . . . , Un] such that

I(X) = (F1, . . . , Fp)k[T1, . . . , Tm], I(Y ) = (G1, . . . , Gq)k[U1, . . . , Un].

Then by Corollary 5.5

I(X × Y ) = (F1, . . . , Fp, G1, . . . , Gq)k[T1, . . . , Tm, U1, . . . , Un],

from which the desired result follows. �
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The basic duality. Let K be a field and V and W finite-dimensional
K-vector spaces. A dual pairing of V and W is a function

(v,w) 7→ 〈v,w〉 : V ×W → K

with the following properties:

(i) 〈 , 〉 is K-bilinear, that is, 〈v,−〉 : W → K and 〈−, w〉 : V → K are
K-linear for all v ∈ V and w ∈W ;

(ii) if v ∈ V and 〈v,w〉 = 0 for all w ∈ W , then v = 0, and if w ∈ W
and 〈v,w〉 = 0 for all v ∈ V , then w = 0.

Such a dual pairing yields the injective K-linear maps

v 7→ 〈v,−〉 : V →W ∗, w 7→ 〈−, w〉 : W → V ∗,

and since V and V ∗ have the same finite K-vector space dimension, as
well as W and W ∗, it follows that these two maps are actually K-linear
isomorphisms, and that V and W have the same K-vector space dimension.

Let a ∈ X. We have the k-bilinear map

da : mX,a × TaX → k, da(f, v) := daf(v)

and since daf(v) = 0 for f ∈ m2
X,a, this gives a k-bilinear map

(f + m
2
X,a, v) 7→ daf(v) : (mX,a/m

2
X,a) × TaX → k (f ∈ mX,a),

which we also denote by da. Here both vector spaces mX,a/m
2
X,a and TaX

are finite dimensional.

Lemma 5.10. The map da : (mX,a/m
2
X,a) × TaX → k is a dual pairing

of the k-linear spaces mX,a/m
2
X,a and TaX.

Proof. Let v ∈ TaX be such that daf(v) = 0 for all f ∈ mX,a. For f = ti−ai,
1 ≤ i ≤ m, we have f ∈ mX,a, so

daf(v) = da(Ti − ai)(v) = daTi(v) = vi = 0,

hence v = 0. Next, let f ∈ mX,a be such that daf(v) = 0 for all v ∈ TaX.

Take F,F1, . . . , Fn ∈ k[T1, . . . , Tm] such that

F |X = f, I(X) = (F1, . . . , Fn).

Then daF vanishes on TaX = {v ∈ km : daF1(v) = · · · = daFn(v) = 0}, so

daF = c1daF1 + · · · + cndaFn, c1, . . . , cn ∈ k.

With G := F − (c1F1 + · · · + cnFn) this yields daG = 0 and G(a) = 0, so
G ∈ m2

a by an earlier exercise, and thus f = G|X ∈ m2
X,a. �

Corollary 5.11. dimTaX = dim(mX,a/m
2
X,a).
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Intrinsic tangent spaces. Let a be a point in X. Our definition of TaX
used the inclusion of X in km. It is important that a more intrinsic definition
is available. The idea is to think of a tangent vector v ∈ TaX ⊆ km as the
operation Dv of taking the derivative at a in the v-direction,

Dv : k[X] → k, Dv(f) = daf(v) (“the v-derivation”).

More precisely, this operation is a derivation on X at a; this is by definition
a k-linear map D : k[X] → k such that

D(fg) = f(a)D(g) + g(a)D(f) for all f, g ∈ k[X].

Let Der(k[X], a) be the set of derivations on X at a; it is a k-vector space
with respect to the pointwise addition and scalar multiplication operations.

Lemma 5.12. The map

v 7→ Dv : TaX → Der(k[X], a)

is an isomorphism of k-vector spaces.

Proof. It is easy to check that this map is k-linear. Injectivity of this map
means that if v ∈ TaX and daf(v) = 0 for all f ∈ k[X], then v = 0; this
was established in the beginning of the proof of Lemma 5.10. Surjectivity:
let D be a derivation on X at a, and set v :=

(

D(t1), . . . ,D(tm)
)

∈ km.
Then one checks easily that v ∈ TaX and D = Dv. �

This lemma suggests an intrinsic redefinition of TaX as the k-vector space
Der(k[X], a). A key point is how this translates under regular maps. Let
φ : X → Y be a regular map, b = φ(a). One verifies easily that then for
v ∈ TaX and w := daφ(v) ∈ Tb Y we have

Dw = Dv ◦ φ∗ ∈ Der(k[Y ], b).

It is desirable to be even more intrinsic by defining TaX purely in terms of
the local algebra OX,a.

Towards this goal, define an evaluation on an algebra A to be an algebra
morphism χ : A → k. An algebra with evaluation is a pair (A,χ) where A
is an algebra and χ is an evaluation on A. Let (k[X], a) denote the algebra
k[X] with evaluation f 7→ f(a). The only evaluation on OX,a is γ 7→ γ(a),
so we consider OX,a as an algebra with evaluation in the only way possible.
Let (A,χ) be an algebra with evaluation. Then Der(A,χ) is the set of all
k-linear maps D : A → k such that D(fg) = χ(f)D(g) + χ(g)D(f) for all
f, g ∈ A. Then Der(A,χ) is a k-vector space with respect to the pointwise
addition and scalar multiplication operations.

This yields in particular the k-vector space Der(OX,a), whose elements
are the k-linear maps D : OX,a → k such that

D(βγ) = β(a)D(γ) + γ(a)D(β), (β, γ ∈ OX,a).
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Lemma 5.13. For each D ∈ Der(k[X], a) there is a unique Da ∈ Der(OX,a)
such that Da(γaf) = D(f) for all f ∈ k[X]. The map

D 7→ Da : Der(k[X], a) → Der(OX,a)

is an isomorphism of k-linear spaces.

In particular, each tangent vector v ∈ TaX yields an element

Dv,a := (Dv)a ∈ Der(OX,a).

We now define the intrinsic tangent space of X at a to be the k-vector space
Der(OX,a). When we use words like “the intrinsic tangent space TaX” we
mean that we identify the tangent space TaX ⊆ km with the intrinsic
tangent space of X at a via the k-linear isomorphism

v 7→ Dv,a : TaX → Der(OX,a).

If φ : X → Y is a regular map and b = φ(a), v ∈ TaX and w := daφ(v) ∈
Tb Y , then

Dw,b = Dv,a ◦ φ∗b ∈ Der(OY,b).

Fields of definition. Let K a subfield of k. Then K is said to be a field
of definition of X if K is a field of definition of its ideal I(X), that is, I(X)
is generated as an ideal of k[T1, . . . , Tm] by polynomials in K[T1, . . . , Tm].
Note that if K is a field of definition of X, then X is defined over K in k, in
the sense of model theory. The converse is true if K is perfect, in particular,
if k has characteristic zero:

Proposition 5.14. Suppose K is perfect. Then K is a field of definition of
X if and only if X is defined over K in the sense of model theory.

Proof. Let X be defined over K. Then σ(X) = X for all σ ∈ Aut(k|K), so
with I := I(X) we have σ(I) = I for all σ ∈ Aut(k|K). Take a ∈ kn such
that F(a) is the smallest field of definition of I, where F is the prime field
of k. Then σ(I) = I ⇔ σ(a) = a, for all σ ∈ Aut(k), and thus σ(a) = a
for all σ ∈ Aut(k|K). Since K is perfect, it is the fixed field of Aut(k|K),
so a ∈ Kn, and thus F(a) ⊆ K. �

We cannot omit in this result the assumption that K is perfect. To see why,
suppose K is not perfect. Then K has characteristic p > 0 and we can take
a ∈ K such that a 6= bp for all b ∈ K. Then the set

X := {x ∈ k : xp = a} = {a1/p} ⊆ k

is defined over K in the sense of model theory, but X does not have K as a
field of definition. This is because

I(X) ∩K[T1] = (T p
1 − a)K[T1]

but T1 − a1/p ∈ I(X) \ (T p
1 − a)k[T1].
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6. Algebraic varieties and algebraic groups

The basic features of algebraic sets in spaces km can be seen as direct
consequences of simple facts about polynomials. We now turn to algebraic
varieties that are in general not given as subsets of spaces km, but are
obtained by glueing algebraic sets. We first describe glueing very generally.

k-spaces. Till further notice, k is any set. A k-space is by definition a pair
(X,F) where X is a space and F a sheaf of k-valued functions on X, that
is, F assigns to each open U ⊆ X a subset F(U) of the set kU of functions
f : U → k such that:

(Sh1) if U ⊆ V with open V ⊆ X, then the restriction map f 7→ f |U maps
F(V ) into F(U);

(Sh2) if (Ui) is a covering of U by open subsets and f : U → k has the
property that f |Ui ∈ F(Ui) for all i, then f ∈ F(U).

Example. Suppose k is an algebraically closed field and X ⊆ km is an
algebraic set. Then (X,OX ) is a k-space, as is easily verified.

Below we let (X,F), (Y,G), and (Z,H) denote k-spaces. A morphism
(X,F) → (Y,G) (of k-spaces) is a continuous map α : X → Y such that for
each open V ⊆ Y and U := α−1(V ),

g ∈ G(V ) =⇒ g ◦ (α|U) ∈ F(U).

For such α and U, V we denote the operation g 7→ g ◦ (α|U) : G(V ) → F(U)
by α∗

V . The identity map idX on X is a morphism (X,F) → (X,F), and if
α : (X,F) → (Y,G) and β : (Y,G) → (Z,H) are morphisms, so is

β ◦ α : (X,F) → (Z,H).

Thus the k-spaces with their morphisms form a category with the above
identity maps as identity morphisms and where composition of morphisms
is given by composition of maps. A morphism α as above is an isomorphism
in this category iff α is a homeomorphism and α∗

V is a bijection for each
open V ⊆ X.

Suppose k is a ring. For any set U , consider kU = {f : U → k} as a ring
with pointwise defined addition and multiplication. Adding to the above
definition of “k-space” the requirement that F(U) is a subring of kU for
each open U ⊆ X, makes (X,F) into a ringed k-space. (The restriction
map F(V ) → F(U) in (Sh1) above is then a ring morphism.) If (X,F)
and (Y,G) are ringed k-spaces and α : (X,F) → (Y,G) is a morphism of
k-spaces, then α is automatically a morphism of ringed k-spaces in the sense
that each α∗

V is a ring morphism.

Example. Let k be an algebraically closed field. If X ⊆ km is an algebraic
set, then (X,OX ) is clearly a ringed k-space. If X ⊆ km and Y ⊆ kn are
algebraic sets, then the regular maps X → Y are exactly the morphisms
(X,OX ) → (Y,OY ).
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Let (X,F) be a k-space and let U ⊆ X be open. Then we define the sheaf
F|U of k-valued functions on U by:

(F|U)(V ) := F(V ) for open V ⊆ U.

Then the inclusion U →֒ X is a morphism (U,F|U) → (X,F). Let (Y,G)
be a second k-space, α : X → Y a map, and V an open subset of Y with
α(X) ⊆ V . Then the following are equivalent:

(i) α is a morphism (X,F) → (V,G|V );
(ii) α is a morphism (X,F) → (Y,G);
(iii) for each x ∈ X there is an open neighborhood U of x in X such that

α|U : (U,F|U) → (Y,G) is a morphism.

We shall use this fact without mentioning it in what follows.

Example. Let k be an algebraically closed field, X ⊆ km an algebraic set,
and U := Xf a basic open set, f ∈ k[X]. Then

Y := {(x, t) ∈ km+1 : f(x)t = 1}
is an algebraic set in km+1, and the regular map (x, t) 7→ x : Y → X has
image U and gives an isomorphism (Y,OY ) → (U,OX |U) of k-spaces.

Lemma 6.1. (Glueing k-spaces). Let (Ui) be a covering of a set X by
subsets, and suppose for each i there is given a topology ti on Ui and a sheaf
Fi of k-valued functions on (Ui, ti) such that for all i, j,

(a) Ui∩Uj is open in (Ui, ti) and in (Uj , tj) and the topologies on Ui∩Uj

induced by ti and tj are the same;
(b) Fi|Ui ∩ Uj = Fj |Ui ∩ Uj.

Then there is a unique pair (t,F) consisting of a topology t on X and a sheaf
F of k-valued functions on (X, t) such that for each i the set Ui is open in
(X, t), the topology on Ui induced by t is ti, and F|Ui = Fi.

Proof. Let t be the topology on X whose open sets are the U ⊆ X such that
U ∩ Ui is open in (Ui, ti) for each i. For each t-open U ⊆ X, let

F(U) := {f : U → k : f |U ∩ Ui ∈ Fi(U ∩ Ui) for all i}.
It is easy to check that (t,F) has the desired properties. �

Let (X,F) be a k-space and Y a subspace of X. Then we obtain a k-space
(Y,F|Y ) as follows. For an open subset U of Y , a function f : U → k

belongs to (F|Y )(U) iff for each x ∈ U there is an open neighborhood Ux of
x in X with a function fx ∈ F(Ux) such that f |U ∩ Ux = fx|U ∩ Ux. Note
that the inclusion Y →֒ X is a morphism (Y,F|Y ) → (X,F), and that if Z
is a subspace of Y (and hence of X), then (F|Y )|Z = F|Z.

This construction is particularly relevant when Y is closed in X. If Y is
open in X, this sheaf F|Y coincides with the sheaf F|Y defined earlier in
that case. If k is a ring and (X,F) is a ringed k-space, then (Y,F|Y ) is a
ringed k-space.
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Example. Let k be an algebraically closed field, X ⊆ km an algebraic set,
and Y a closed subset of X. Then Y is an algebraic set and OY = OX |Y .

Geometric k-spaces. In this subsection k is a field.

A geometric k-space is a ringed k-space (X,F) such that for every open U
in X,

(i) all constant functions U → k belong to F(U);
(ii) if a ∈ U , f ∈ F(U), and f(a) 6= 0, then there is an open V ⊆ U such

that a ∈ V and f |V is a unit of F(V ) (so f(x) 6= 0 for all x ∈ V ).

Note that if (X,F) is a geometric k-space and Y is a subspace of X, then
(Y,F|Y ) is also a geometric k-space. If (X,F) is a ringed k-space and (Ui)
is a covering of X by open subsets such that each (Ui,F|Ui) is a geometric
k-space, then (X,F) is a geometric k-space.

Let (X,F) be a geometric k-space. For open U ⊆ X we consider the ring
F(U) as a k-algebra via the ring morphism k → F(U) that assigns to each
c ∈ k the constant function on U with value c. If U ⊆ X is open and U 6= ∅,
then we identify k with a subring of F(U) via this ring morphism.

Let a ∈ X and let U, V,W range over open neighborhoods of a in X. The
behaviour of X near a is encoded in the k-algebra Fa whose elements are the
germs of functions in the various k-algebras F(U). The precise definition of
Fa is as follows. Introduce an equivalence relation ∼a on the disjoint union
of the sets F(U): for f ∈ F(U), g ∈ F(V ),

f ∼a g :⇐⇒ f |W = g|W for some W ⊆ U ∩ V.
The equivalence class γaf of f ∈ F(U) with respect to ∼a is called the germ
of f at a; for such a germ γ = γaf we set (γaf)(a) := f(a). The set of germs
of functions in

⋃

U F(U) is denoted by Fa, and is made into a k-algebra by
requiring that for each U the map

f 7→ γaf : F(U) → Fa

is a k-algebra morphism. We identify the k-algebras Fa and (F|U)a in the
obvious way: for V ⊆ U and f ∈ F(V ) = (F|U)(V ),

γaf (in Fa) = γaf (in (F|U)a).

Note that γ 7→ γ(a) : Fa → k is a k-algebra morphism, and that if γ ∈ Fa

and γ(a) 6= 0, then γ is a unit of Fa. It follows that Fa is a local k-algebra
with maximal ideal m(Fa) = {γ ∈ Fa : γ(a) = 0}, and

Fa = k⊕ m(Fa) (internal direct sum of k-linear subspaces),

Note that γ 7→ γ(a) : Fa → k is the unique evaluation on the k-algebra Fa;
we view Fa as a k-algebra with evaluation in the only way possible. This
allows us to define the (intrinsic) tangent space Ta(X,F) of (X,F) at a to
be the k-linear space

Ta(X,F) := Der(Fa).
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In particular, Ta(X,F) = Ta(U,F|U). These constructions are functorial:
Let a morphism φ : (X,F) → (Y,G) into a geometric k-space (Y,G) be
given, and let b = φ(a). Then we have the k-algebra morphism

φ∗a : Gb → Fa, φ∗a(γbg) := γa

(

φ∗O(g)
)

(g ∈ G(O), O open in Y, b ∈ O),

with φ∗a
(

m(Gb)
)

⊆ m(Fa), so we can define the k-linear map

daφ : Ta(X,F) → Tb(Y,G), daφ(v) := v ◦ φ∗a.
When in addition ψ : (Y,G) → (Z,H) is a morphism into the geometric
k-space (Z,H) and c = ψ(b), then

(ψ ◦ φ)∗a = φ∗a ◦ ψ∗
b , da(ψ ◦ φ) = (dbψ) ◦ (daφ).

We bundle these tangent spaces into a single object

T(X,F) :=
⋃

a∈X

{a} × Ta(X,F) (the tangent bundle of (X,F)),

and for φ : (X,F) → (Y,G) as above we define the map

Tφ : T(X,F) → T(Y,G), Tφ(a, v) =
(

φ(a), daφ(v)
)

.

Again, we have functoriality: with φ and ψ as above,

T(ψ ◦ φ) = (Tψ) ◦ (T φ).

Affine models and Products. In this subsection we take the sets

k0 = {0}, k1 = k, k2,k3, . . .

to be mutually disjoint. We assume that certain subsets of kn, for n =
0, 1, 2, . . . , have been singled out, which we shall call affine sets, and that
to each affine set X a topology tX and a sheaf FX of k-valued functions on
(X, tX) is associated, so (X, tX ,FX) is a k-space. These distinguished k-
spaces will be referred to as affine models. Since an affine model (X, tX ,FX)
is uniquely determined by its underlying affine set X we also indicate it just
by X. A k-space is said to be affine if it is isomorphic to an affine model.
A k-space (X,F) is said to be locally affine if each x ∈ X has an open
neighborhood U such that (U,F|U) is affine. Unless specified otherwise,
“morphism” means “morphism of k-spaces”.

We now make three further assumptions about affine sets X ⊆ km:

(C) all constant functions X → k belong to FX(X);
(LA) if U ⊆ X is open, then the k-space (U,FX |U) is locally affine;
(Pr) if Y ⊆ kn is also an affine set, then X × Y ⊆ km+n is an affine set,

the projection maps X × Y → X and X × Y → Y are morphisms
and whenever Z is an affine set and f : Z → X and g : Z → Y are
morphisms, then (f, g) : Z → X × Y is a morphism.
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It is clear from (C) and (LA) that for any locally affine k-space (X,F) all
constant functions X → k belong to F(X). It also follows from (LA) that
if (X,F) is a locally affine k-space and U is an open subset of X, then
(U,F|U) with the induced topology on U is a locally affine k-space, which
for simplicity we just denote by U if the ambient (X,F) is clear from the
context. By an affine open part of a locally affine k-space (X,F) we mean
an open U ⊆ X that is affine as a k-space. With the notations of (Pr), the
affine set X × Y with the projection maps to X and Y is a product of X
and Y in the full subcategory of affine k-spaces of the category of k-spaces;
it is even a product in the full subcategory of locally affine k-spaces, as is
easily verified.

Example. Let k be an algebraically closed field. Taking as affine models
the (X,OX ) where X ⊆ km is an algebraic set with its Zariski topology,
m = 0, 1, 2, . . . , the assumptions above are satisfied. To see why (LA) holds,
let X ⊆ km be an algebraic set and U = Xf a basic open set in X, f ∈ k[X].
Then we saw earlier that (U,OX |U) ∼= (Y,OY ) where

Y := {(x, t) ∈ km+1 : x ∈ X, f(x) · t = 1}
is an algebraic set in km+1, so (U,OX |U) is affine.

Let (X,F) and (Y,G) be locally affine k-spaces. A set-like product of (X,F)
and (Y,G) is a locally affine k-space (X × Y, t,H), where t is a topology
on the cartesian product X × Y , and H is a sheaf of k-valued functions on
(X × Y, t) such that the projection maps to X and Y are morphisms

(X × Y, t,H) → (X,F), (X × Y, t,H) → (Y,G),

and for each locally affine k-space (Z,K) and morphisms

f : (Z,K) → (X,F), g : (Z,K) → (Y,G)

the map (f, g) : Z → X × Y is a morphism (Z,K) → (X × Y, t,H).
Suppose (X × Y, t,H) and (X × Y, t′,H′) are both set-like products of

(X,F) and (Y,G). Then the identity on X × Y must be an isomorphism
(X × Y, t,H) → (X × Y, t′,H′), so t = t′ and H = H′. Because of this
uniqueness we put H := F ⊙G and let (X × Y,F ⊙G) denote (X × Y, t,H),
leaving out t for simplicity.

If U ⊆ X and V ⊆ Y are open, then U × V ⊆ X × Y is open, by the
continuity of the projection maps X × Y → X and X × Y → Y . But
the topology t on X × Y is not necessarily the product topology. We have
already noted that any two affine k-spaces have a set-like product (which is
not just locally affine, but even affine).

Lemma 6.2. Suppose the locally affine k-spaces (X,F) and (Y,G) have a
set-like product, and let U ⊆ X and V ⊆ Y be open. Then (U,F|U) and
(V,G|V ) have a set-like product, namely (U×V, (F⊙G)|U×V ), the topology
on U × V being induced by that of X × Y .
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Proposition 6.3. Let (X,F) and (Y,G) be locally affine k-spaces. Then
(X,F) and (Y,G) have a set-like product.

Proof. Let (Ui)i∈I be a covering of X by affine open parts, and let (Vj)j∈J

be a covering of Y by affine open parts. Let i and j range over I and J ,
respectively, and put Fi := F|Ui, Gj := G|Vj . Consider each Ui×Vj ⊆ X×Y
with the unique topology tij and sheaf Fi⊙Gj making (Ui×Vj, tij ,Fi⊙Gj) the
set-like product of (Ui,Fi) with (Vj ,Gj). Now, for i1, i2 ∈ I and j1, j2 ∈ J ,
the set

(Ui1 × Vj1) ∩ (Ui2 × Vj2) = (Ui1 ∩ Ui2) × (Vj1 ∩ Vj2)

is open in (Ui1 ×Vj1, ti1j1) and by the previous lemma, the induced topology
and the restriction of the sheaf Fi1 ⊙ Gj1 make it the set-like product of
(Ui1 ∩Ui2,F|Ui1 ∩Ui2) with (Vj1 ∩Vj2,G|Vj1 ∩Vj2). But the same is true for
the topology induced by Ui2 × Vj2 and the restriction of the sheaf Fi2 ⊙Gj2.
This allows us to apply the Glueing Lemma 6.1: equipX×Y with a topology
t and a sheaf H making (X × Y, t,H) a k-space and such that for all i and
j, Ui × Vj is open in X × Y and

(Ui × Vj , tij ,Fi ⊙ Gj) = (Ui × Vj, t|Ui × Vj ,H|Ui × Vj).

This already makes (X ×Y, t,H) a locally affine k-space. Let now (Z,K) be
a locally affine k-space and let f : (Z,H) → (X,F) and g : (Z,H) → (Y,G)
be morphisms. Then for all i, j the set f−1(Ui) ∩ g−1(Vj) = Zij is open
in Z and the maps f |Zij : Zij → (Ui,Fi) and g|Zij : Zij → (Vj ,Gj) are
morphisms so that

(f, g)|Zij : (Zij ,K) → (Ui × Vj ,Fi ⊙ Gj)

is a morphism. Since we have the inclusion morphisms

(Ui × Vj,Fi ⊙ Gj) → (X × Y, t,H)

and Z =
⋃

i,j Zij, the map (f, g) : (Z,K) → (X×Y, t,H) is a morphism. �

Lemma 6.4. Let (X,F) and (Y,G) be locally affine spaces and b ∈ Y . Then
the constant map X → {b} ⊆ Y is a morphism (X,F) → (Y,G), and the
map x 7→ (x, b) : X → X × Y is a morphism (X,F) → (X × Y,F ⊙ G).

Prevarieties. In the rest of this section k is an algebraically closed field and
our affine models are just the algebraic sets X with their Zariski topology
and their structure sheaf OX . Since every algebraic set with this topology
and sheaf is a geometric k-space, all locally affine k-spaces are geometric
k-spaces. If (X,F) is a locally affine k-space and x ∈ X, then {x} is closed
in X, since X \ {x} is open in X.

A prevariety is a locally affine k-space with a finite covering by affine open
subsets; equivalently, it is a noetherian locally affine k-space. Every open
subset of a prevariety is also a prevariety. Likewise for closed subsets: if
(X,F) is a prevariety and Y is a closed subset of X, then (Y,F|Y ) (with
the induced topology on Y ) is a prevariety.
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We denote the sheaf of a prevariety X by OX and the set-like product
of prevarieties X,Y by X × Y . If X,Y are prevarieties, so is X × Y ; if
X and Y are irreducible prevarieties, so is X × Y . The affine model kn is
also referred to as affine n-space and denoted by An. (It would be more
accurate to denote it by An(k), but as long as k remains fixed this abuse of
notation is harmless.) We identify in the usual way the product Am ×An of
prevarieties with the prevariety Am+n.

Exercise. Let X be a prevariety. The irreducible affine open parts of X
form a basis for the topology of X. A morphism X → A1 is the same as
a function f ∈ OX(X). Given functions φ1, . . . , φn : X → k, the map
φ = (φ1, . . . , φn) : X → kn is a morphism X → An iff φ1, . . . , φn ∈ OX(X).

Projective Spaces. The projective space Pn has as its points the lines
ka ⊆ An+1 through the origin, with

a = (a0, . . . , an) ∈ An+1, ai 6= 0 for some i.

We denote such a line ka also by [a0 : a1 : · · · : an]. The symbol : is meant
to indicate that only the ratios between the ai matter: if a0, . . . , an ∈ k are
not all zero, and b0, . . . , bn ∈ k are not all zero, then

[a0 : a1 : · · · : an] = [b0 : b1 : · · · : bn] ⇐⇒ there is λ ∈ k× with ai = λbi

for i = 0, . . . , n.

Suppose the polynomial F ∈ k[T0, . . . , Tn] is homogeneous of degree d. Then

F (λa) = λdF (a) for λ ∈ k and a ∈ kn+1,

so we can define that a point p = [a0 : · · · : an] ∈ Pn is a zero of F if
F (a0, . . . , an) = 0, since this depends only on p and not on the choice of
a0, . . . , an. (But there is no such thing as a function p 7→ F (p) : Pn → k.)
For each set S of homogeneous polynomials in k[T0, . . . , Tn] we set

Z(S) := {p ∈ Pn : p is a zero of every F ∈ S},
and we note that there is a finite subset S0 of S such that Z(S) = Z(S0).
Thus the sets Z(S) are the closed sets of a noetherian topology on Pn, the
Zariski topology of Pn.

For i = 0, . . . , n we have the open subset Ui := Pn \ Z(Ti) of Pn and the
bijection hi : An → Ui given by

hi(a1, . . . , an) = [a1 : · · · : ai : 1 : ai+1 : · · · : an].

We claim that hi is a homeomorphism. Consider for example

h = h0 : An → U0, h(a1, . . . , an) = [1 : a1 : · · · : an].

Then for F ∈ k[T1, . . . , Tn] of total degree ≤ d its homogenization

G(T0, . . . , Tn) := T d
0 F (T1/T0, . . . , Tn/T0) ∈ k[T0, . . . , Tn]

is homogeneous of degree d, and for all a ∈ An,

a is a zero of F ⇐⇒ h(a) is a zero of G.
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Conversely, if G ∈ k[T0, . . . , Tn] is homogeneous of degree d, then

F := G(1, T1, . . . , Tn) ∈ k[T1, . . . , Tn]

is of total degree ≤ d and G = T d
0 F (T1/T0, . . . , Tn/T0).

Note that Pn = U0 ∪ · · · ∪ Un. In order to make Pn into a prevariety we
now equip each Ui with the induced topology and the sheaf Oi of k-valued
functions such that we have an isomorphism hi : An ∼= (Ui,Oi). Let us
check that the conditions of the glueing lemma are satisfied. This is trivial
for n = 0 (in which case U0 = P0 is just a point), so let n > 0. Then
O0|U0 ∩ U1 = O1|U0 ∩ U1 because

h−1
0 (U0 ∩ U1) = h−1

1 (U0 ∩ U1) = {(x1, . . . , xn) ∈ kn : x1 6= 0}
is a basic open set in An, and the transition maps

h−1
1 ◦ h0 : h−1

0 (U0 ∩ U1) → h−1
1 (U0 ∩ U1),

h−1
0 ◦ h1 : h−1

1 (U0 ∩ U1) → h−1
0 (U0 ∩ U1)

are both given by (x1, . . . , xn) 7→ ( 1
x1
, x2

x1
, . . . , xn

x1
), and are thus isomorphisms

of prevarieties. Of course, all this works in the same way with hi and hj

instead of h0 and h1. Thus the conditions of the glueing lemma 6.1 are
satisfied. We equip Pn with the unique sheaf O of k-valued functions on Pn

such that O|Ui = Oi for i = 0, . . . , n; this makes Pn a prevariety. It has the
Ui as affine open parts, and each Ui is an isomorphic copy of An via hi.

What we defined to be Pn is more properly denoted by Pn(k), but as long
as k is fixed, this abuse of notation is harmless.

Exercise. With the notations above, we have

(1) Pn is irreducible of dimension n;
(2) if n > 0, then we have an isomorphism

[0 : a1 : · · · : an] 7→ [a1 : · · · : an] : Pn \ U0 → Pn−1;

(3) a set X ⊆ Am × Pn is closed in the prevariety Am × Pn iff there are
polynomials f1, . . . , fN ∈ k[T1, . . . , Tm, U0, . . . , Un], homogeneous in
(U0, . . . , Un), such that for all a ∈ Am and all b ∈ An+1 with b 6= 0
and p = [b0 : · · · : bn] ∈ Pn,

(a, p) ∈ X ⇐⇒ f1(a, b) = · · · = fN(a, b) = 0.

Tangent spaces and smoothness. Let X be a prevariety. Since X is in
particular a geometric k-space, we have for a ∈ X the tangent space TaX,
a k-vector space of finite dimension, since TaX = TaU where U is an affine
open part of X with a ∈ U . We are going to show that if X is irreducible of
dimension d, then dim TaX = d for all a ∈ X outside some proper closed
subset Sing(X) of X. The key fact is as follows.

Lemma 6.5. Suppose the algebraic set X ⊆ km is irreducible of dimension
d. Then some nonempty affine open part of X is isomorphic to a nonempty
affine open part of an irreducible hypersurface H in kd+1.
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Proof. The coordinate ring k[X] = k[t1, . . . , tm] is a domain and its fraction
field k(t1, . . . , tm) has transcendence degree d over k. Then by standard
facts in Lang’s Algebra (X, 6.8, and VII, 6.1 and their proofs),

k(t1, . . . , tm) = k(y1, . . . , yd, yd+1), y1, . . . , yd+1 ∈ k[t1, . . . , tm]

where y1, . . . , yd is a transcendence basis of k(t1, . . . , tm) over k and yd+1

is separably algebraic over k(y1, . . . , yd). Take an irreducible polynomial
F ∈ k[Y1, . . . , Yd+1] such that F (y1, . . . , yd+1) = 0; this gives the irreducible
hypersurface H = Z(F ) in kd+1. For i = 1, . . . , d + 1, take a polynomial
fi ∈ k[T1, . . . , Tm] such that yi = fi(t1, . . . , tm). This gives a regular map

φ : X → H, φ(a) = (f1(a), . . . , fd+1(a)).

Next, take polynomials g1, . . . , gm, g ∈ k[Y1, . . . , Yd+1] such that

g(y1, . . . , yd+1) 6= 0, tj = gj(y1, . . . , yd+1)/g(y1, . . . , yd+1) (j = 1, . . . ,m).

Then V := {b ∈ H : g(b) 6= 0} is nonempty open in H, and we have a
morphism

ψ : V → X, ψ(b) =
(g1(b)

g(b)
, . . . ,

gm(b)

g(b)

)

.

It is easy to check that φ ◦ ψ = idV . Put U := φ−1(V ), so U is open in X
and ψ(V ) ⊆ U . Next one checks that ψ ◦ (φ|U) = idU , so U ∼= V . Since V
is affine, so is U . �

In the next proof we use the “local character of closedness”: if (Ui) is a
covering of a space X by open sets in X and Y ⊆ X, then Y is closed in X
iff Y ∩ Ui is closed in Ui for each i.

Corollary 6.6. Suppose the prevariety X is irreducible and dimX = d.
Then there is a proper closed subset Sing(X) of X such that dimTaX = d
for all a ∈ X \ Sing(X), and dim TaX > d for all a ∈ Sing(X).

Proof. If X is affine, this follows from the lemma above and the description
of tangent spaces of hypersurfaces in the previous section.

In general, take nonempty affine open parts U1, . . . , Un of X that cover
X. Then Ui is irreducible and dimUi = d for all i, and Sing(Ui) ∩ Uj =
Ui ∩ Sing(Uj) for all i, j. from which it follows that

Sing(X) := Sing(U1) ∪ · · · ∪ Sing(Un)

is closed in X. �

Let X be an irreducible prevariety. The set Sing(X) defined in Corollary 6.6
is called the singular locus of X, and its points are called singular points
of X; the nonsingular points of X are also called simple points of X, and
if a is a simple point of X, we also say that X is smooth at a. Thus in
some sense X is smooth at almost all its points. We say that X is smooth
if Sing(X) = ∅.
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Tangent bundles. Let X be a prevariety. Since X is a geometric k-space,
TX is defined as a set. We make TX into a prevariety as follows.

First consider the case that X is affine. Take an affine model X ′ with an
isomorphism φ : X ′ → X. Then φ induces a bijection Tφ : TX ′ → TX.
Now TX ′ as defined in section 5 is naturally an affine model, and we now
equip TX with the topology on TX and sheaf of k-valued functions on TX
that makes Tφ into an isomorphism of k-spaces. (This topology and sheaf
is independent of the choice of X ′ and φ.)

Next consider the general case, and take a covering (Ui)i∈I of X by affine
open parts, with finite I, so, as sets,

TX =
⋃

i

TUi, TUi ∩ TUj = T(Ui ∩ Uj).

Each TUi has been made into a prevariety, and it is easy to check that the
conditions of the glueing lemma 6.1 are satisfied with TX and the TUi in
place of X and the Ui. We now give TX the topology that makes each TUi

into an open subset and induces on TUi its given topology. We also equip
TX with the sheaf of k-valued functions on TX whose restriction to each
TUi is the structure sheaf of the prevariety TUi. This makes TX into a
prevariety. If φ : X → Y is a morphism of X into a prevariety Y , then
Tφ : TX → TY is a morphism of prevarieties.

Varieties. A variety is a prevariety X whose diagonal

∆(X) := {(x, y) ∈ X ×X : x = y}
is closed in the prevariety X ×X. This condition is a substitute for being
hausdorff. Any affine space Am is a variety. Any open subset and any closed
subset of a variety is a variety. The set-like product X×Y of varieties X,Y
is a variety. By a curve we shall mean a variety of dimension 1.

Let X be a variety. If Y is a locally closed subset of X, then Y with
the induced topology and sheaf OX |Y is itself a variety, and unless specified
otherwise we consider Y as a variety in this way, and this makes the inclusion
map Y →֒ X into a morphism. A subvariety of X is a locally closed subset
of X viewed as a variety in this way.

We leave it to the reader to show that each projective space Pn is a variety.
A variety is said to be projective if it is isomorphic to a closed subvariety of
some projective space Pn.

Exercise. Let X be a prevariety and Y a variety. Then

(i) If f, g : X → Y are morphisms, then {x ∈ X : f(x) = g(x)} is
closed in X.

(ii) If f : X → Y is a morphism, then its graph

Γ(f) := {(x, y) ∈ X × Y : f(x) = y}
is closed in X×Y , and x 7→ (x, f(x)) : X → Γ(f) is an isomorphism.
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Complete varieties. A complete variety is a variety X such that for each
m the projection map Am ×X → Am maps each closed subset of Am ×X
onto a closed subset of Am. The variety A1 is not complete: the image

{(x, y) ∈ A2 : xy = 1} s closed subset of A2

under the projection map (x, y) 7→ x : A2 → A1 is {x ∈ A1 : x 6= 0}, which
is not closed in A1. Completeness is a substitute for compactness: while va-
rieties are compact as a topological space, this is not so useful in the absence
of being hausdorff. It is a key fact that projective spaces Pn are complete.
(There is a short proof of this, using the exercise above characterizing closed
subsets of Am × Pn, and some model theory; this will be handed out.) It
follows from item (2) in the next lemma that every projective variety is
complete.

In the next lemma X and Y are varieties.

Lemma 6.7. Suppose X is complete variety. Then

(1) the projection map X × Y → Y maps each closed subset of X × Y
onto a closed subset of Y ;

(2) each closed subvariety of X is complete;
(3) if Y is complete, so is X × Y ;
(4) if φ : X → Y is a morphism, then φ(X) is closed in Y and complete;
(5) if X is a subvariety of Y , then X is closed in Y ;
(6) if X is irreducible, then OX(X) = k and every morphism of X into

an affine variety is constant.

Proof. Item (1) holds for Y = An, and thus for any affine variety Y . The gen-
eral case can be reduced to this case by taking affine open parts Y1, . . . , Ym

of Y that cover Y . Items (2) and (3) are easy consequences of the definition
and (1). As to (4), let φ : X → Y be a morphism. Then φ(X) is the image
of the closed subset Γ(f) of X×Y under the projection map X×Y → Y , so
f(X) is closed in Y . To get completeness of f(X), suppose Z ⊆ f(X)× An

is closed. Then the inverse image Z ′ of Z under the morphism

(f, idAn) : X × An → f(X) × An

is closed in X × An, and the image of Z under the projection map

f(X) × An → An

equals the image of Z ′ under the projection map X × An → An, and this
image is therefore closed in An. Item (5) follows from (4) by considering the
inclusion morphismX →֒ Y . As to (6), let X be irreducible and f ∈ OX(X).
Then f(X) ⊆ A1 is closed by (5), and irreducible, so either f(X) has just
one point, or f(X) = A1. But f(X) is also complete by (5), and A1 is not
complete, so f must be constant. It follows that any morphism from X into
an affine variety is constant. �

Lemma 6.8. Let X,Y be irreducible varieties with X complete, and suppose
φ : X × Y → Z is a morphism into a variety Z such that φ(−, b) : X → Z
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is constant for some b ∈ Y . Then φ(−, y) : X → Z is constant for every
y ∈ Y .

Proof. Take b ∈ Y and c ∈ Z such that φ(x, b) = c for all x ∈ X. Take an
affine open neighborhood U of c in Z. Then

P := {(x, y) ∈ X × Y : φ(x, y) /∈ U}
is closed in X × Y , so its image Q under the projection map X × Y → Y
is closed in Y . We have b ∈ Y \ Q, and if y ∈ Y \ Q, then the morphism
φ(−, y) : X → Z takes its values in the affine variety U , so φ(−, y) is constant
by (6) of Lemma 6.7. Let x, x′ ∈ X. Then {y ∈ Y : φ(x, y) = φ(x′, y} is
closed in Y and contains the nonempty open subset Y \ Q of Y , and thus
equals Y . �

Algebraic groups. An algebraic group is a prevariety G equipped with a
distinguished element 1, and morphisms ι : G→ G and µ : G×G→ G such
that (G; 1, ι, µ) is a group; in practice we shall write x−1 and xy instead of
ι(x) and µ(x, y) for x, y ∈ G. Note that then G is actually a variety, since
∆(G) is the inverse image of the closed set {1} ⊆ G under the morphism

(x, y) 7→ µ(x, ι(y)) : G×G→ G.

Let G and H be algebraic groups. An algebraic group morphism G→ H is
a morphism G→ H of varieties that is also a group morphism. We consider
the set-like product G × H as an algebraic group in the obvious way by
taking the product group as the underlying group.

Lemma 6.9. Suppose G is an algebraic group. Then

(1) for each g ∈ G the maps

x 7→ gx : G→ G, x 7→ xg : G→ G, x 7→ gxg−1 : G→ G

are isomorphisms of varieties;
(2) if G is irreducible, then G is a smooth variety;
(3) each closed subgroup of G is an algebraic group;
(4) if G′ is any subgroup of G, then its closure in G is also a subgroup;
(5) if G′ is a subgroup of G and a constructible set in G, then G′ is a

closed subgroup of G.

Proof. Items (1) and (3) are clear from earlier results, and (2) follows from
(1) and the fact that if G is irreducible, then G is smooth at some point
of G by Corollary 6.6. Item (4) is an easy exercise. As to (5), let G′ be a
subgroup of G and a constructible set in G. Let H be the closure of G′ in
G. Then H is a closed subgroup of G by (4), and dim(H \G′) < dimH by
results in the section on noetherian spaces. Suppose that G′ 6= H, and take
h ∈ H, h /∈ G′. Then hG′ ⊆ H \ G′, but dimhG′ = dimG′, and we have a
contradiction. �
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Examples of algebraic groups. To specify an algebraic group we usually
indicate just the underlying variety and the group multiplication, since the
latter determines the group inversion and group identity.

(1) A1 with the usual addition is an algebraic group, referred to as the
additive group and denoted by Ga.

(2) the basic open subvariety A1\{0} of A1 with the usual multiplication
is an algebraic group, referred to as the multiplicative group and
denoted by Gm.

(3) View an n× n-matrix over k as an element of kn2

in the usual way.

Then the basic open subvariety GLn(k) of An2

with the usual matrix
multiplication is an algebraic group, the general linear group GLn.
For n = 1 this is just Gm.

(4) The closed subgroup SLn(k) := {A ∈ GLn : det(A) = 1} of GLn is
an algebraic group, the special linear group SLn.

These algebraic groups are all affine as varieties.

Proposition 6.10. Let G be an algebraic group. Then

(1) G has a unique irreducible component G0 that contains 1;
(2) G0 is a closed normal subgroup of G of finite index in G;
(3) G0 is the connected component of 1 in G;
(4) any closed subgroup of G of finite index in G contains G0.

Proof. Let X and Y be irreducible components of G containing 1. Then the
set XY ⊆ G is the image of X×Y under a morphism G×G → G, so XY is
irreducible, hence cl(XY ) is irreducible. But X ⊆ cl(XY ) and Y ⊆ cl(XY ),
so X = Y = cl(XY ). Thus XX = X; it is also clear that X = X−1. So X is
a closed subgroup G0 of G. By (1) of Lemma 6.9 we see in the same way that
gG0g−1 = G0 for each g ∈ G, so G0 is a normal subgroup. It also follows
that the cosets gG0 of G0 in G are exactly the irreducible components of G,
so there can only be finitely many cosets of G0 in G, that is, G0 has finite
index in G. Since G0 is irreducible, it is connected. The complement of G0

is a finite union of cosets gG0, so is closed in G, and thus G0 is open in G. It
follows that G0 is the connected component of 1. This argument also shows
that any closed subgroup of G of finite index in G is open as well as closed
in G, and thus must contain the connected component G0 of 1. �

It follows that for algebraic groups, connected is the same as irreducible; the
preferred terminology is connected algebraic group. Note that the connected
components of an algebraic group G are the cosets gG0 of G0, and that these
are also its irreducible components.

An algebraic group is said to be linear if it is isomorphic as algebraic group
to a closed subgroup of GLn for some n. Closed subgroups of linear algebraic
groups are clearly linear algebraic groups, and it is also easy to see that if G
and H are linear algebraic groups, then G ×H is a linear algebraic group.
Linear algebraic groups are clearly affine varieties. We shall not use this
fact, but the converse is also true: affine algebraic groups are linear.
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An algebraic torus is an algebraic group isomorphic as algebraic group to
a power Gn

m of the multiplicative group. In particular, an algebraic torus is
a linear algebraic group, since Gn

m is isomorphic as algebraic group to the
closed subgroup of GLn consisting of the diagonal n × n-matrices over k

with nonzero determinant.
Let T be an algebraic torus of dimension d; so T is isomorphic as algebraic

group to Gd
m. In particular, T is commutative and connected. If in addition

k has characteristic 0, then for each n > 0 the n-torsion subgroup

T [n] := {g ∈ T : gn = 1}
of T is isomorphic as a group to (Z/nZ)d.

An abelian variety is by definition a complete connected algebraic group. If
A is an abelian variety, so is every closed connected subgroup. Note that if
A and B are abelian varieties, so is A×B.

Abelian varieties are amazing objects and very different from linear alge-
braic groups, although there are resemblances to algebraic tori.

Lemma 6.11. Let A be an abelian variety. Then A is commutative, and
every morphism A → G of varieties into an algebraic group G sending 1A

to 1G is an algebraic group morphism.

Proof. Apply Lemma 6.8 with X = Y = Z = A, φ(x, y) = xyx−1, and
b = 1, to get commutativity. The second statement is proved likewise with
X = Y = A and Z = G and a suitable map that the reader can guess. �

Corollary 6.12. If the abelian varieties A and B are isomorphic as vari-
eties, then they are isomorphic as algebraic groups. If X is a variety and
e ∈ X, then there is at most one group operation X ×X → X that makes
X into an abelian variety with identity element e.

Abelian varieties of dimension 1 are called elliptic curves for complicated
historical reasons. It is traditional to use additive notation when dealing
with abelian varieties, and we shall do so in what follows.

Examples of elliptic curves. Assume that characteristic(k) 6= 2, 3 and
consider a polynomial T 3 + aT + b (a, b ∈ k) with three distinct zeros in k.
Then we have the irreducible algebraic set C ⊆ A2 defined by the equation
y2 = x3+ax+b, that is, its points are the (x, y) ∈ A2 satisfying this equation.
Identifying A2 with the affine open part U2 of the projective plane P2 via
(x, y) 7→ [x : y : 1], the closure E := cl(C) of C in P2 is defined by the
homogeneous equation

y2z = x3 + axz2 + bz3,

that is, its points are the [x : y : z] ∈ P2 satisfying this equation. Setting
z = 0 in this equation we see that E has just one point not in C, namely
the point O = [0 : 1 : 0]. It is easy to check that E is a smooth projective
irreducible curve. It is a remarkable fact, but less easy to prove, that there
is a unique group operation + : E × E → E that makes E into an abelian



71

variety with zero element O; this addition operation can be visualized as
follows: if L is a line in A2 that intersects C in three distinct points P,Q,R,
then P +Q+ R = O; for any point P = (x, y) ∈ C we have −P = (x,−y).
Thus by our definition of an elliptic curve, E with this addition operation
is an elliptic curve.

A semiabelian variety is a commutative algebraic group G for which there
exist an algebraic torus T and an abelian variety A with an exact sequence

1 → T → G→ A→ 0

of algebraic group morphisms. In particular, algebraic tori and abelian
varieties are semiabelian varieties.

Constructible sets and groups. For model theorists it is natural to work
in the category of constructible sets rather than that of varieties, because
constructible sets in varieties are basically the same as the definable relations
on k. By EI, the quotient of a constructible set by a constructible equivalence
relation is again a constructible set in a natural way, but in general the
quotient of a variety by a closed equivalence relation is not a variety in a
natural way. Fortunately, in characteristic zero, constructible groups are
equivalent to algebraic groups as explained below, and forming quotients
of algebraic groups by closed normal subgroups can be reduced to forming
quotients of constructible groups by constructible normal subgroups. Below
we fill in the above sketch.

In this subsection X,Y,Z are varieties. By a constructible set we mean here
a pair (C,X) where C is a constructible set in X, referring to it as “the
constructible set C ⊆ X” or “the constructible set C in X” and indicating
it just by C if we don’t wish to mention its ambient variety X. Given
constructible sets C ⊆ X and D ⊆ Y , a constructible map C → D is a map
f : C → D whose graph is a constructible subset of X × Y . Note that if
f : C → D is a constructible bijection, then f−1 : D → C is constructible.
A variety X is viewed as a constructible set in itself. Note that a morphism
X → Y is constructible. The next two lemmas are easy consequences of the
definitions and QE. The way QE comes in is via its obvious consequence
that if X and Y are affine and C ⊆ X × Y is constructible, then the image
of C under the projection map X × Y → Y is constructible in Y .

Lemma 6.13. Let C ⊆ X, D ⊆ Y , E ⊆ Z be constructible sets. Then

(1) if f : C → D is constructible, then f(C) ⊆ Y is constructible;
(2) C × D ⊆ X × Y is constructible, and whenever f : E → C and

g : E → D are constructible, so is (f, g) : E → C ×D;
(3) if f : C → D is constructible and D′ ⊆ D is constructible in Y , then

f−1(D′) ⊆ X is constructible;
(4) if the relation R ⊆ C ×D is constructible in X × Y , then

R(C) := {y ∈ D : (c, y) ∈ R for some c ∈ C}
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is constructible in Y ;
(5) if f : C → D and g : D → E are constructible, so is g ◦ f : C → E.

Proof. The main fact here is (1); we leave the rest to the reader. Let f be
as in (1); so its graph Γ(f) ⊆ X × Y is constructible. Let π : X × Y → Y
be the projection map, so f(C) = π(Γ(f)). Let U be an affine open part of
X and V an affine open part of Y , and put

CU,V := Γ(f) ∩ (U × V ),

a constructible subset of U×V . By the observation preceding the lemma the
set π(CU,V ) is constructible in Y . Covering X and Y by finitely many affine
open parts, we obtain in this way f(C) as a finite union of constructible sets
π(CU,V ) in Y , so f(C) is constructible in Y . �

Lemma 6.14. There is a constructible bijection b : X → b(X) between X
and a constructible set b(X) ⊆ kn, for some n.

Proof. Let U1, . . . , Um be a covering of X by affine open parts. Take n,
disjoint algebraic sets V1, . . . , Vm ⊆ kn, and isomorphisms

h1 : U1 → V1, . . . , hm : Um → Vm.

Put Yi = hi

(

Ui \ (U1 ∪ · · · ∪Ui−1)
)

for i = 1, . . . ,m. Then Y := Y1 ∪ · · · ∪Ym

is a constructible set in kn. Let b : X → Y be the constructible bijection
that agrees with hi on Ui \ (U1 ∪ · · · ∪ Ui−1) for i = 1, . . . ,m. �

By these two lemmas there is no significant difference between constructible
sets and definable relations on k. Thus by EI,

Lemma 6.15. Let E be a constructible equivalence relation on a constructible
set C ⊆ X, that is, E is an equivalence relation on C and is constructible
in X×X. Then there is a constructible set D and a surjective constructible
map f : C → D such that

E(a, b) ⇐⇒ f(a) = f(b), for all a, b ∈ C.

Let C,E, f,D be as in this lemma, and suppose g : C → C ′ is a constructible
map into a constructible set C ′ such that g(a) = g(b) for all (a, b) ∈ E.
Then the unique map h : D → C ′ such that h(f(a)) = g(a) for all a ∈ C is
constructible.

Lemma 6.16. Suppose k has characteristic 0.

(1) If φ : X → Y is constructible, then there is a nonempty open subset
U of X such that φ|U : U → Y is a morphism;

(2) Let G and H be algebraic groups and φ : G → H a constructible
group morphism. Then φ is an algebraic group morphism.

Proof. For (1) we can assume that X is irreducible. Take affine open parts
V1, . . . , Vn of Y that cover Y . Then the constructible sets

φ−1(V1), . . . , φ
−1(Vn) ⊆ X
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cover X, so some φ−1(Vi) contains a nonempty open subset of X. Replacing
X by such a nonempty open subset and Y by some Vi we reduce to the case
that Y is affine. Shrinking X further we can assume also that X is affine.
This gives a reduction to the case that X is an irreducible closed set in km

and Y = kn. It remains to use the characterization of definable functions in
k as piecewise rational functions. Item (2) follows easily. �

A constructible group is a constructible set G (in some X) together with a
distinguished element 1, and constructible maps

ι : G→ G and µ : G×G→ G

such that (G; 1, ι, µ) is a group. Algebraic groups are constructible groups
in the obvious way.

Theorem 6.17. If G is a constructible group, then there is a constructible
group isomorphism G→ Ga onto an algebraic group Ga.

Proof. This follows from a result of A. Weil. A proof is given in Weil’s group
chunk theorem: a topological setting. �

The proof is a little easier when k has characteristic 0, and we shall only
use the theorem for that case in the next section.

Corollary 6.18. Suppose k has characteristic 0. Let G be an algebraic
group and N a closed normal subgroup. Then there is a unique structure of
variety on G/N that makes the quotient group G/N an algebraic group and
the canonical map G→ G/N a morphism of algebraic groups.

Assume k has characteristic 0. With G and N as in the above corollary we
shall consider G/N as an algebraic group as specified there. In particular, if
A is an abelian variety and B is a closed subgroup of A, then A/B is again
an abelian variety.

We finish this section with a result related to Weil’s theorem. We shall need
it in the proof of “Mordell-Lang for function fields of characteristic zero”.

Lemma 6.19. Let G be a connected algebraic group, S a constructible set
in G, and f : S → H a constructible map into an algebraic group H, and
D a dense subgroup of G, such that D ⊆ S and f |D : D → H is a group
morphism D → H. Then there is an algebraic group morphism φ : G → H
such that φ|D = f |D.

Proof. The constructible subset

{(x, y) ∈ S × S : xy ∈ S, f(xy) = f(x)f(y)}
of G×G contains the dense subset D×D of G×G, so it contains a nonempty
open subset O of G×G. Since S is dense in G we can take a nonempty open
set X in G such X ⊆ S and f |X : X → H is a morphism of varieties and
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X is contained in the image of O under both projection maps G×G → G.
Replacing X by X ∩X−1 we can assume that X = X−1. Put

U := {(x, y) ∈ O ∩ (X ×X) : xy ∈ X},
a nonempty open subset of G×G such that for each x ∈ X there are y, z ∈ G
with (z, x) ∈ U . It follows that X with the multiplication of G restricted
to U and the inversion of G restricted to X is a group chunk, with G and
the inclusion map X → G as a realization of this group chunk. Note that
f(xy) = f(x)f(y) for all (x, y) ∈ U , so by Lemma 7 in Weil’s group chunk
theorem: a topological setting there is a group morphism φ : G → H such
that φ|X = f |X. We claim that φ|D = f |D. Let a ∈ D and note that
{x ∈ X : ax−1 ∈ X} is a nonempty open subset of G, which gives b ∈ D∩X
with ab−1 ∈ D ∩ X. Then φ(a) = φ(ab−1)φ(b) = f(ab−1)f(b) = f(a).
Since φ|X : X → H is a morphism (of varieties), φ is an algebraic group
morphism. �

Further results on algebraic groups. When we later deal with “Mordell-
Lang for function fields of characteristic 0” we need some basic facts on
algebraic groups that we state here without proof. In this subsection we
assume that k has characteristic 0.

Fact 1. If T is an algebraic torus and N a closed subgroup of T , then T/N
is an algebraic torus.

From this we easily derive:

Corollary 6.20. If A is a semiabelian variety and N a closed subgroup of
A, then A/N is a semiabelian variety.

Proof. Let A be a semiabelian variety, and take a closed subgroup T of
A such that T is a torus and A/T is an abelian variety. let N be a closed
subgroup of A. Then T/(N∩T ) is an algebraic torus and we have an obvious
exact sequence

0 −→ T/(N ∩ T ) −→ A/N −→ A/(N + T ) −→ 0

of algebraic group morphisms. Since A/(N + T ) is an abelian variety, A/N
is a semiabelian variety. �

Exercise. The closed subgroups of km = Gm
a are exactly the k-linear

subspaces of km. The algebraic group morphisms Gm
a → Gn

a are exactly the
k-linear maps km → kn.

By an algebraic vector group we mean an algebraic group that is isomorphic
as algebraic group to Gn

a for some n. If G is an algebraic vector group, then
G is connected, and (using additive terminology for G) each nonzero g ∈ G
is contained in a closed subgroup of G isomorphic as algebraic group to Ga.

Lemma 6.21. Let G be an algebraic vector group and T an algebraic torus.

(1) There is no nontrivial algebraic group morphisms G→ T .
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(2) There is no nontrivial algebraic group morphisms T → G.
(3) There is no nontrivial algebraic group morphisms G → A with A a

semiabelian variety.

Proof. For (1), use that there is no nontrivial algebraic group morphism
Ga → Gm. For (2), use that there is no nontrivial algebraic group morphism
Gm → Ga. Let φ : G → A be an algebraic group morphisms with A
a semiabelian variety. Let T be a closed subgroup of A such that T is
an algebraic torus and A/T is an abelian variety. Composing φ with the
canonical morphism A → A/T gives a morphism G → A/T , whose image
is closed subgroup of A/T . This image is a complete variety, but is also an
algebraic vector group, so it is trivial. Hence φ(G) ⊆ T , and thus φ is trivial
by (1). �

Fact 2. If G is a connected commutative linear algebraic group, then G is
isomorphic as algebraic group to Gm

a × Gn
m for some m,n.

Fact 3. If G is a connected algebraic group, then there is a closed normal
subgroup N of G such that N is a connected linear algebraic group and
G/N is an abelian variety. (Chevalley’s Theorem.)

Corollary 6.22. Suppose G is a connected commutative algebraic group.
Then G is a semiabelian variety iff G has no nontrivial algebraic vector
group as a closed subgroup.

Proof. It follows from Lemma 6.21 that if G is a semiabelian variety, then
G has no nontrivial algebraic vector group as a closed subgroup. For the
converse, assume G has no nontrivial algebraic vector group as a closed
subgroup. Take N as in Fact 3. Then N is a connected commutative linear
algebraic group, so N is an algebraic torus by Fact 2 and the assumption
on G. Hence G is a semiabelian variety. �

Here is an immediate consequence:

Corollary 6.23. If A is a semiabelian variety and B is a closed connected
subgroup of A, then B is also a semiabelian variety.

Fact 4. If A is a semiabelian variety, then for each n > 0 the n-torsion
subgroup A[n] := {a ∈ A : na = 0} is finite, and the torsion subgroup

t(A) :=
⋃

n>0

A[n]

is dense in A.

Corollary 6.24. Suppose the semiabelian variety A is defined over the al-
gebraically closed subfield K of k. Then any connected closed subgroup of A
is defined over K.
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Proof. Let B be a connected closed subgroup of A defined over K. In
particular, B is a semiabelian variety by Corollary 6.24. Also,

t(B) ⊆ t(A) ⊆ A(K),

so each point in t(B) is fixed under the action of Aut(k|K) on A. But t(B)
is dense in B, so B is invariant under this action, and thus B is defined over
K. �

7. Definable sets of finite Morley rank in differentially

closed fields

As before, “differential field” means “differential field of characteristic 0”
and K will denote a differential field. We also let k be an algebraically
closed differential field. Terminology and notation like “closed”, “open”,
“irreducible”, “dense”, “dim”, refers to the relevant Zariski topology, not to
the ∂-topology.

For a = (a1, . . . , am) ∈ Km we set ∂a := (∂a1, . . . , ∂am) ∈ Km.

A simple device in the study of differential equations is to eliminate higher
derivatives by introducing new variables. For example, an equation

f(x, x′, x′′) = 0

is equivalent to the system of equations

f(x, y, z) = 0, y = x′, z = y′,

in the sense that solutions to the original equation correspond bijectively
to solutions of the new system. In general we hope to reduce differential
equations as much as possible to algebraic equations. This hope can be
realized to a large extent in the setting of differentially closed fields, for
definable sets of finite Morley rank. The method we follow comes from a
paper by Pillay and Ziegler, and also applies to difference equations.

A criterion for extending derivations. Let a1, . . . , am, b1, . . . , bm be
elements in an extension field E of K. When is there a derivation d of E
that extends the derivation ∂ of K such that d(a1) = b1, . . . , d(am) = bm?
Lemma 4.2 yields the necessary condition that for all f ∈ K[T1, . . . , Tm]
with f(a) = 0 we have

f ∂(a) +
m

∑

i=1

∂f

∂Ti
(a) · bi = 0.

It turns out that this condition is also sufficient.

Proposition 7.1. Suppose for all f ∈ K[T1, . . . , Tm] with f(a) = 0 we have

f ∂(a) +
m

∑

i=1

∂f

∂Ti
(a) · bi = 0.

Then there is a derivation d of E that extends the derivation ∂ of K such
that d(a1) = b1, . . . , d(am) = bm.
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Proof. The assumption allows us to define a map d : K[a] → E by

d(f(a)) = f ∂(a) +

m
∑

i=1

∂f

∂Ti
(a) · bi (f ∈ K[T1, . . . , Tm]).

Moreover, d is easily seen to be a derivation of K into E extending ∂. The
exercises concerning this extended notion of derivation early in Section 4
then show that d can be extended to a derivation of E. �

Remarks. For the conclusion of this proposition to hold it suffices that the
identity in the proposition holds for all f in a set of generators of the ideal
{g ∈ K[T1, . . . , Tm] : g(a) = 0} of K[T1, . . . , Tm].

When E = K(a1, . . . , am), there is just one extension d as in the propo-
sition, and this case is covered by a theorem in Lang’s Algebra. For our
purpose, however, we prefer not to require b1, . . . , bm ∈ K(a1, . . . , am).

Torsors and prolongations. Fix distinct variables T1, . . . , Tm, V1, . . . , Vm.
For F ∈ k[T1, . . . , Tm] and a ∈ km we set

τa(F )(V1, . . . , Vm) := F ∂(a) +

m
∑

i=1

∂F

∂Ti
(a)Vi ∈ k[V1, . . . , Vm], so

τaF = F ∂(a) + daF ∈ k + kV1 + · · · + kVm, F (a)′ = (τaF )(∂a).

For F,G ∈ k[T1, . . . , Tm] and a ∈ km we have

τa(F +G) = τa(F ) + τa(G), τa(FG) = F (a) · τa(G) +G(a) · τa(F ).

We also have the following chain rule.

Lemma 7.2. Let F1, . . . , Fn ∈ k[T1, . . . , Tm] and G ∈ k[U1, . . . , Un], and
set H := G(F1, . . . , Fn) ∈ k[T1, . . . , Tm]. Then we have for a ∈ km and
b := (F1(a), . . . , Fn(a)) ∈ kn,

τa(H) = τb(G)
(

τa(F1), . . . , τa(Fn)
)

∈ k + kV1 + · · · + kVm.

Let X ⊆ km be an algebraic set. Then we define, for a ∈ X,

τaX := {v ∈ km : τa(F )(v) = 0 for all F ∈ I(X)},
the torsor of X at a. If I(X) = (F1, . . . , Fn), then in the definition above one
can replace “for all F ∈ I(X)” by “for F = F1, . . . , Fn”. The next lemma is
now obvious.

Lemma 7.3. Let a ∈ X. Then ∂a ∈ τa(X) and thus τaX = ∂a+ TaX.

We bundle the spaces τaX as a varies over X into a single algebraic subset

τX := {(x, v) ∈ km × km : x ∈ X, τx(F )(v) = 0 for all F ∈ I(X)}
of k2m. We call τX the prolongation of X, and consider it as a variety over
X via the regular map

πX : τX → X, πX(x, v) = x.
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Let f ∈ k[X] and choose F ∈ k[T1, . . . , Tm] with f = F |X. For a ∈ X the
function

τaF |τaX : τaX → k

does not depend on F , so we can define τaf := τaF |τaX. Then

f(a)′ = (τaf)(∂a) for all a ∈ X.

Suppose Y ⊆ kn is a second algebraic set, f = (f1, . . . , fn) : X → Y is a
regular map, a ∈ X and b = f(a). The chain rule (Lemma 7.2) yields:

Lemma 7.4. If v ∈ τaX, then (τaf1(v), . . . , τafn(v)) ∈ τbY .

We define τaf := (τaf1, . . . , τafn) : τaX → τbY , an affine map between affine
spaces over k. Note that then

(τaf)(∂a) = ∂b.

We bundle the maps τaf as a varies into a single regular map

τf : τX → τY, τf(x, v) := (f(x), τxf(v)).

Suppose Z ⊆ kp is a third algebraic set and g = (g1, . . . , gp) : Y → Z is a
regular map, and c = g(b). Then the chain rule Lemma 7.2 yields

τa(g ◦ f) = τbg ◦ τaf, τ(g ◦ f) = (τg) ◦ (τf).

Note that if m = n and X ⊆ Y , then τaX ⊆ τaY ⊆ km, and the inclusion
map ι : X →֒ Y yields the inclusion maps

τaι : τaX →֒ τaY, τι : τX →֒ τY.

Lemma 7.5. Suppose k is differentially closed, X ⊆ km is an irreducible
algebraic set, U is a nonempty open set in X, and Y is a closed irreducible
subset of τX such that πX(Y ) ⊇ U . Then there is a ∈ U such that (a, ∂a) ∈
Y .

Proof. Take a |k|+-saturated algebraically closed field extension Ω of k and
take a point x ∈ X(Ω) such that trdegk k(x) = dimX, so for all F ∈
k[T1, . . . , Tm] we have

F (x) = 0 ⇐⇒ F ∈ I(X).

Hence x ∈ U(Ω), so we can take a point (x, y) ∈ Y (Ω). Then τx(F )(y) = 0
for all F ∈ k[T1, . . . , Tm] with F (x) = 0. It follows that there is a derivation
d on Ω that extends ∂ such that d(x) = y. Since k is existentially closed as
a differential field, there is (a, b) ∈ Y such that a ∈ U and b = ∂(a). �

Algebraic ∂-sets. These are algebraic sets with a section into their pro-
longation. To be precise, an algebraic ∂-set in km is a pair (X, s) where
X ⊆ km is an algebraic set and s : X → τ(X) is a regular map such that
πX ◦ s = idX .
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Let (X, s) be an algebraic ∂-set in km. Then we obtain a derivation ∂s on
the coordinate ring k[X] as follows. A regular function f ∈ k[X] yields the
regular map τf : τX → τk = k2, so we have a regular map

τf ◦ s = (f, ∂sf) : X → k2, ∂s(f) ∈ k[X].

Explicitly, take sm+1, . . . , s2m ∈ k[X] such that

s(x) = (x, sm+1(x), . . . , s2m(x)) for all x ∈ X.

Then for f ∈ k[X] and x ∈ X,

(∂sf)(x) = (τxf)(sm+1(x), . . . , s2m(x)).

The map ∂s : k[X] → k[X] is a derivation on k[X], and it extends the
derivation ∂ on k if X 6= ∅. We let k[X, s] be the differential ring (k[X], ∂s).

Lemma 7.6. Let a ∈ X be such that s(a) = (a, ∂a). Then mX,a is a
differential ideal of k[X], and so is every power me

X,a.

Proof. Let f ∈ k[X]. Then f(a)′ = (τaf)(∂a) = (∂sf)(a). �

Let (X, s) and (Y, t) be algebraic ∂-sets in km and kn. A regular map
(X, s) → (Y, t) is a regular map φ : X → Y such that

t ◦ φ = τφ ◦ s.
It is easy to check that then φ∗ : k[Y, t] → k[X, s] is a differential ring
morphism.

The identity map on X is a regular map (X, s) → (X, s). If (Z, u) is a
third algebraic ∂-set in kp and φ : (X, s) → (Y, t) and ψ : (Y, t) → (Z, u) are
regular maps, so is ψ ◦ φ : (X, s) → (Z, u).

Types of finite order. In this subsection U is a big differentially closed
field and K and k are small differential subfields of U (with k algebraically
closed). Given an algebraic ∂-set (X, s) in Um we put

(X, s)∂ := {x ∈ X : s(x) = (x, ∂x)},
a definable subset of Um, and (X, s) is said to be defined over K if X and
s are defined over K in the algebraically closed field U (forgetting ∂). Also,
“generic point” in this subsection is with respect to U as a big algebraically
closed field.

Lemma 7.7. Let (X, s) be an algebraic ∂-set in Um. Suppose that X is
irreducible, and (X, s) is defined over K. Then

(1) (X, s)∂ is dense in X;
(2) (X, s)∂ contains a generic point a of X over K;
(3) for a as in (2) we have K(a) = K〈a〉, and dimX = trdegK K〈a〉;
(4) tp(a|K) (in U) is independent of the choice of a as in (2).
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Proof. Let U be a nonempty open subset of X; for (1) we need to show that
there is an x ∈ U such that s(x) = (x, ∂x). Let Y be the closure in τ(X)
of the constructible set s(X) ⊆ τ(X). Then Y is a closed irreducible set
in τ(X), and dim(Y \ s(X)) < dimY = dimX. Thus the constructible set
π(Y \ s(X)) ⊆ X has dimension < dimX. Hence by shrinking U we can
arrange that U is disjoint from π(Y \ s(X)). By the previous lemma we get
x ∈ U with (x, ∂x) ∈ Y , and then (x, ∂x) ∈ s(X), that is s(x) = (x, ∂x).

For (2), we note that by (1) we can take a ∈ (X, s)∂ outside all proper
closed subsets of X defined over K. Then a is a generic point of X over K.
For (3) and (4), let a, b ∈ (X, s)∂ be generic points of X over K. Then we
have a field isomorphism i : K(a) → K(b) over K that sends a to b, and
since s(a) = (a, ∂a) and s(b) = (b, ∂b), we have K(a) = K〈a〉, K(b) = K〈b〉,
and i a differential field isomorphism. In particular, tp(a|K) = tp(b|K), and
dimX = trdegK K〈a〉. �

For a ∈ Um we say that a has finite order over K if trdegK K〈a〉 is finite,
and then we define ord(a|K) to be this transcendence degree. Note that if
a ∈ Um and b ∈ Un are interdefinable in U over K and a is of finite order
over K, then b is too, and ord(a|K) = ord(b|K).

Lemma 7.8. Suppose a ∈ Um has finite order over K, and K is algebraically
closed. Then there is an algebraic ∂-set (X, s) in some Un such that

(1) X is irreducible, and (X, s) is defined over K;
(2) there is a generic point b ∈ (X, s)∂ of X over K such that a and b

are interdefinable in U over K.

Proof. Take e such that K〈a〉 is algebraic over K(a, ∂a, . . . , ∂ea). Increasing
e by 1 we get K〈a〉 = K(a, ∂a, . . . , ∂ea). Replacing a by (a, ∂a, . . . , ∂ea) and
m by (e + 1)m (and renaming) yields K〈a〉 = K(a). Let a = (a1, . . . , am),
and take polynomials f1, . . . , fm, g ∈ K[T1, . . . , Tm] such that g(a) 6= 0 and
∂ai = fi(a)/g(a). Put b := (a1, . . . , am, 1/g(a)) ∈ Un where n := m + 1.
Then a and b are interdefinable over K, and we have polynomials s1, . . . , sn ∈
K[T1, . . . , Tn] such that ∂bi = si(b) for i = 1, . . . , n. Let

I := {f ∈ K[T1, . . . , Tn] : f(b) = 0},
a prime ideal of K[T1, . . . , Tn], and put X := Z(I) ⊆ Un, a K-irreducible
K-algebraic set. Since K is algebraically closed, X is not just K-irreducible,
but even irreducible, and b is a generic point of X over K. Define s : X →
U2n by s(x) = (x, s1(x), . . . , sn(x)). Then s(b) = (b, ∂b) ∈ τ(X), and thus
s(X) ⊆ τ(X) since τ(X) is defined over K and b is a generic point of X over
K. Thus s : X → τ(X) is a regular map with π ◦ s = idX , and (X, s) and b
have the desired properties. �

Note that by part (3) of Lemma 7.7 we have dimX = ord(b|K) = ord(a|K)
for (X, s) and b as in the above lemma.

Corollary 7.9. Let K be algebraically closed and a ∈ Um. Then
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(1) a has finite order over K iff MR(a|K) is finite.
(2) if a has finite order over K, then MR(a|K) ≤ ord(a|K).

Proof. Suppose MR(a|K) < ω. Then MR(ai|K) < ω for all i, so ai has finite
order over K for all i, by the results at the end of Section 4 on differential
prime ideals of K[Y ]d where Y is a single variable. Hence a has finite order
over K.

For the converse and for (2), assume a has finite order over K. By
Lemma 7.8 we reduce to the case that a ∈ (X, s)∂ with (X, s) an algebraic
∂-set in Um defined over K such that X is irreducible and a is a generic
point of X over K. For y ∈ (X, s)∂, let Y be the algebraic locus of y over
K, that is

Y := {x ∈ Um : f(x) = 0 for all f ∈ K[T1, . . . , Tm] with f(y) = 0}.
Then Y ⊆ X, y is a generic point of Y over K, and s(y) = (y, ∂y) ∈ τY ,
so s(Y ) ⊆ τY , and thus (Y, s|Y ) is an algebraic ∂-set defined over K with
y ∈ (Y, s|Y )∂, so dimY = ord(y|K) ≤ ord(a|K). Thus we can assume
inductively that for all y ∈ (X, s)∂,

ord(y|K) < ord(a|K) =⇒ MR(y|K) ≤ ord(y|K) < ord(a|K) = dimX.

But all y ∈ (X, s)∂ with ord(y|K) = ord(a|K) realize the same type as a in
U over K, by (4) of lemma 7.7, so MR(y|K) = MR(a|K) ≤ dimX for all
such y. �

Linear differential equations. A ∂-module over K is a pair (V, d) where
V is a K-vector space and d : V → V is an additive map such that

d(λv) = ∂(λ)v + λd(v) for all λ ∈ K, v ∈ V.
Note that then d is CK -linear. The dimension of a ∂-module over K is the
dimension of its underlying K-vector space. All ∂-modules below are over
K, unless specified otherwise.

Lemma 7.10. Given any K-linear map A : Kn → Kn we have the ∂-
module (Kn, ∂ −A) where ∂ acts coordinatewise. Conversely, if (Kn, d) is a
∂-module, then d = ∂ −A for some K-linear map A : Kn → Kn.

Proof. This is straightforward. For the second part, check that A := ∂ − d
is K-linear. �

Let (Kn, ∂ −A) be as in this lemma. Identify A with its n× n-matrix with
respect to the standard basis, and think of x ∈ Kn as a column vector
x = (x1, . . . , xn)t with components xi ∈ K. Then the ∂-module (Kn, ∂ −A)
corresponds to the equation ∂x = Ax, the matrix form of a system of n linear
differential equations. Its solutions are the x ∈ Kn satisfying this equation.

More generally, given a ∂-module (V, d), put

V (d) := {v ∈ V : d(v) = 0},
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so V (d) is a CK-linear subspace of V . A submodule of a ∂-module (V, d) is
a K-linear subspace W of V such that d(W ) ⊆ W , and is viewed as the
∂-module (W,d|W ). Given ∂-modules (V, d) and (V ′, d′), a ∂-morphism

φ : (V, d) → (V ′, d′)

is aK-linear map φ : V → V ′ such that φ(d(v)) = d′(φ(v)) for all v ∈ V ; note
that then the kernel and image of φ are submodules of (V, d) and (V ′, d′),
respectively.

For a submoduleW of a ∂-module (V, d), the quotient module (V/W, d/W ),
or just (V/W, d) for simplicity, is the ∂-module with V/W as its underlying
K-vector space, with d(v +W ) := d(v) +W . Note that then the canonical
map V → V/W is a ∂-morphism (V, d) → (V/W, d).

The next result says that, up to isomorphism, there is just one ∂-module
of dimension n over a differentially closed field. As always, U denotes a
differentially closed field.

Lemma 7.11. Let (V, d) be a ∂-module over U of finite dimension.

(1) V has a basis b1, . . . , bn with b1, . . . , bn ∈ V (d);
(2) let b1, . . . , bn be as in (1) and let e1, . . . , en be the standard basis of

the U-vector space Un. Then the U-linear map φ : V → Un with
φ(bi) = ei for i = 1, . . . , n is a ∂-isomorphism (V, d) → (Un, ∂);

(3) with b1, . . . , bn as in (1) we have V (d) = Cb1 + · · · + Cbn.

Proof. We can assume V = Un and d = ∂−A where A : Un → Un is U-linear.

Take X = An2

= Un2

, the set of n× n-matrices over U. Then

τX = TX = U2n2

,

and we have the algebraic ∂-set (X, s) defined over Q, where

s : X → τ(X), s(B) = (B,AB).

Part (1) of Lemma 7.7 gives B ∈ (X, s)∂ with det(B) 6= 0. Then AB = ∂B,
and so the columns b1, . . . , bn of B are linearly independent and satisfy

Abi = ∂bi, i = 1, . . . , n.

This proves (1). For (2) and (3), let b1, . . . , bn be as in (1), and let v ∈ V .
With v = a1b1 + · · · + anbn (all ai ∈ U), this gives

d(v) = ∂(a1)b1 + · · · + ∂(an)bn.

�

Corollary 7.12. Let W be a submodule of the ∂-module (Un, ∂) over U.
Then the definable set W ⊆ Un is defined over C.

Proof. By the previous lemma the U-vector space W has a basis b1, . . . , bm
with ∂(bi) = 0 for all i, that is, bi ∈ Cn for all i. �
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Consider an algebraic ∂-set (X, s) in km. Then (k[X], ∂s) is a ∂-module over
k. Consider a point a ∈ X such that s(a) = (a, ∂a), and an integer e ≥ 1.
Then we have a differential ideal me

X,a of k[X, s]. This ideal is a ∂-submodule

of (k[X], ∂s), and thus yields a finite-dimensional quotient ∂-module over k,
namely

k[X, s]a,e :=
(

k[X]/me
X,a, ∂s).

Let (Y, t) be a second algebraic ∂-set in kn, let φ : (X, s) → (Y, t) be a
regular map, and let φ(a) = b. Then t(b) = (b, ∂b), and so we have the
∂-module k[Y, t]b,e over k, and φ∗ : k[Y ] → k[X] induces a ∂-morphism

φ∗a,e : k[Y, t]b,e → k[X, s]a,e, φ∗a,e(g + m
e
Y,b) := φ∗(g) + m

e
X,a for g ∈ k[Y ].

Theorem 7.13. Let a ∈ Um and suppose MR(a|K) is finite where K is a
small algebraically closed differential subfield of U. Let L also be a small
algebraically closed differential subfield of U with K ⊆ L, and let the finite
tuple b in U be a canonical base of tp(a|L). Then there are finite tuples c in
C and d in U such that

b |⌣
Ka

d,

b is definable over Kacd.

Proof. By Lemma 7.8 we can reduce to the case that a ∈ (X, s)∂ where
(X, s) is an algebraic ∂-set in Um defined over K such that X is irreducible
and a is a generic point of X over K. Let

p := {F ∈ L[T1, . . . , Tm] : F (a) = 0},
a prime ideal of L[T1, . . . , Tm], and put

Y := Z(p) = {x ∈ Um : F (x) = 0 for all F ∈ p},
an irreducible algebraic set in Um defined over L, with a as generic point
over L. Then Y ⊆ X and s(a) = (a, ∂a), so s(a) ∈ τY , hence s(Y ) ⊆ τY .
This gives a ∂-set (Y, s|Y ) in Um and the inclusion map Y →֒ X is a regular
map (Y, s|Y ) → (X, s). By Lemma 7.8 we have

dimX = ord(a|K), dimY = ord(a|L).

Claim. Let σ ∈ Aut(U|K). Then

σ(tp(a|L)) = tp(a|L) ⇐⇒ σ(Y ) = Y.

To prove this claim, note first that (Y, s|Y )∂ ∈ tp(a|L). If σ(Y ) = Y , then
(Y, s|Y )∂ ∈ σ(tp(a|L)), so σ(tp(a|L)) = tp(a|L)

Next, assume σ(tp(a|L)) = tp(a|L). Then Y ∩ σ(Y ) ∈ tp(a|L), and
Y ∩ σ(Y ) is an algebraic set in Um, so σ(Y ) = Y .

It follows from this claim that b codes Y in U over K.

Let e take positive integer values. For each e, put

Ve := U[X, s]a,e, We := U[Y, s|Y ]a,e,
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finite-dimensional ∂-modules over U, and let pe : Ve → We be the natural
∂-module morphism given by

pe(f + m
e
X,a) = (f |Y ) + m

e
Y,a (f ∈ U[X]).

Let Ve and We have dimension k(e) and l(e) as vector spaces over U. Pick
fe1, . . . , fek(e) ∈ U[X] such that their images in Ve form a basis of Ve as
vector space over U, and fe1, . . . , fek(e) : X → U are defined over Ka in the
algebraically closed field U. (The reader should check this is possible.) Like-
wise, pick ge1, . . . , gel(e) ∈ U[Y ] such that ge1, . . . , gel(e) : Y → U are defined
over L(a) in the algebraically closed field U and the images of ge1, . . . , gel(e)

in We form a basis of We as vector space over U. Note that then the matrix
of pe with respect to these bases has entries in L(a).

By Krull’s Intersection Theorem, Y is determined by the sequence

ker(pe), e = 1, 2, . . . .

As it stands, this is vague, but here is a way to make this precise. Let
Aut(U|Ka) act on Ve in the natural way; then we have for all σ ∈ Aut(U|Ka),

σ(Y ) = Y ⇐⇒ σ(ker pe) = ker pe for all e.

Let Ie : Ve → Uk(e) be the U-linear isomorphism that maps the basis
fe1, . . . , fek(e) onto the standard basis of the U-vector space Uk(e). Note
that for all σ ∈ Aut(U|Ka) and all e we have

σ(ker pe) = ker pe ⇐⇒ σ(Ie(ker pe)) = Ie(ker pe),

and thus for all σ ∈ Aut(U|Ka),
σ(b) = b ⇐⇒ σ(Ie(ker pe)) = Ie(ker pe) for all e,

This gives a single e such that for all σ ∈ Aut(U|Ka),
σ(b) = b ⇐⇒ σ(Ie(ker pe)) = Ie(ker pe).

We fix such an e in what follows, and put

V := Ve, k := k(e), E := Ie(ker(pe)),

so the definable set E ⊆ Uk is coded by b over Ka. Up till this point we only
used the vectorspace structure of V , but we are now going to use that it is a
∂-module over U. Let d1, . . . , dk be the standard basis of the C-vectorspace
Ck ⊆ Uk. Lemma 7.11 yields a basis h1, . . . , hk of the U-vector space V such
that all hi ∈ V (∂s) and the U-linear map

J : V → Uk, J(hi) = di for i = 1, . . . , k

is an isomorphism (V, ∂s) → (Uk, ∂) of ∂-modules over U. Then we have the
submodule J(ker(pe)) of the ∂-module (Uk, ∂), so this submodule is defined
over C by Corollary 7.12. Using also Ie it follows that E ⊆ Uk is defined
over Kac. Thus b is defined over Kac. �
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Recall that if X ⊆ Cn ⊆ Un is definable in U, then X is definable in the
algebraically closed field C. It follows that if G ⊆ Cn ⊆ Un is a definable
group in U, then G is a constructible group in the sense of the algebraically
closed field C, and thus constructibly isomorphic to an algebraic group in
C. In the next result and its proof “constructible” is in the sense of the
algebraically closed field C, and A denotes a small parameter set in U.

Proposition 7.14. Let G ⊆ Um be a definable group in U such that MR(G)
is finite. Suppose the small parameter set A in U and g ∈ G are such that

(i) G and its group operation are A-definable;
(ii) p := tp(g|A) ∈ St(G|A) is stationary, and stabG(p) = {1};

Then the subgroup G(p, g) of G generated by g−1p(G) is a connected definable
subgroup of G, and is definably isomorphic in U to a constructible group
H ⊆ Cn.

Proof. With A, g, and p = tp(g|A) as in the hypothesis, the set g−1p(G)
is indecomposable (with respect to G), so by the Zilber indecomposability
theorem the group G(p, g) is a connected definable subgroup of G and we
have N ∈ N such that every element of G(p, g) has the form g−1h1 · · · g−1hN

with h1, . . . , hN ∈ p(G). By results related to the previous theorem we
obtain a small parameter set B ⊇ A in U such that g is B-definable and every
h ∈ p(G) is B-definable over C. It follows that all elements of G(p, g) are
B-definable over C; then each element of G(p, g) has the form f(c) for some
partial B-definable map f : Ce ⇀ Um and some e ∈ N with c ∈ domain(f).
Hence, by saturation there is a single A-definable map f : Y → Um with
definable Y ⊆ Ce (e ∈ N) such that G(p, g) = f(Y ). Then the equivalence
relation on Y given by f(y1) = f(y2) is a constructible set in C2e, so by
EI there is a constructible map h : Y → Cn for some n such that for all
y1, y2 ∈ Y we have f(y1) = f(y2) ⇔ h(y1) = h(y2). This gives a definable
bijection

G(p, g) → H := h(Y ) ⊆ Cn, f(y) 7→ h(y) for y ∈ G.

We now make H into a definable group in U such that this bijection be-
comes a group isomorphism. By the remark preceding the theorem H is a
constructible group in the algebraically closed field C. �

Lemma 7.15. Let G be a definable subgroup of Gn
a (U) (which is just Un

with componentwise addition). Then G is a C-linear subspace of Un.

Proof. The set {c ∈ C : cG ⊆ G} is a definable subgroup of Ga(C) and
contains Z, so is infinite. Since C is strongly minimal, it follows that this
set is all of C. �

Consider the logarithmic derivative map ℓ : (U×)n → Un given by

ℓ(x1, . . . , xn) =
(x′1
x1
, . . . ,

x′n
xn

)

.
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It is a definable group morphism Gn
m(U) → Gn

a (U) whose kernel is

(C×)n = Gn
m(C),

which has Morley rank n in U. More generally, we have the following result
due to Buium. In stating this and later results we shall violate our con-
vention that A and B denote small parameter sets in our monster model
U. Instead they will denote semiabelian varieties, and we shall use additive
notation for the group operations of a semiabelian variety.

Lemma 7.16. Let A be a semiabelian variety in U. Then there is a group
morphism µ : A → Gn

a (U), definable in U, such that ker(µ) is a connected
definable subgroup of A of finite Morley rank.

An abelian (additively written) group Γ is said to be of finite rank if Γ has
a finitely generated subgroup Γ′ such that for all γ ∈ Γ there is n > 0 with
nγ ∈ Γ′. (This notion of finite rank has nothing to do with Morley rank.)
In particular, every finitely generated abelian group has finite rank, but the
(additive) group Qn has also finite rank, as well as the (multiplicative) group
of roots of unity in any field.

Corollary 7.17. Let A be a semiabelian variety in U and let Γ be a subgroup
of A of finite rank. Then there is a connected definable subgroup H of A
such that Γ ⊆ H and H has finite Morley rank.

Proof. Take µ as in Lemma 7.16. Then µ(A) is a C-linear subspace of Un by
Lemma 7.15, so µ(Γ) generates a finite-dimensional C-linear subspace V of
µ(A). Then V is definable in U of finite Morley rank, and also a connected
definable subgroup of Gn

a (U). Put H := µ−1(V ), a definable subgroup of A
containing Γ. Since µ(H) is a C-linear subspace of Un and contains Γ we
have µ(H) = V . This gives an exact sequence

0 −→ ker(µ) −→ H −→ V −→ 0

of definable groups and definable group morphisms. It follows easily that H
is of finite Morley rank and connected as a definable group in U. �

We can now state the main Mordell-Lang type result for function fields of
characteristic 0. In what follows we fix algebraically closed fields K and L
of characteristic 0 with K ⊆ L.

Theorem 7.18. Let A = A(L) be a semiabelian variety in L, let Γ be a
subgroup of A of finite rank, and X an irreducible closed set in A such that
Γ ∩X is dense in X.

Then X comes from K as follows: there is a closed subgroup A′ of A, a
semiabelian variety B in K, a closed irreducible Y ⊆ B, and a surjective
algebraic group morphism φ : A′ → B(L) such that X = a+ φ−1

(

Y (L)
)

for
some a ∈ A. If X has trivial stabilizer in A, then we can arrange that φ is
an algebraic group isomorphism.
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Before we begin the proof, note that the theorem holds trivially for K = L
with A = A′ = B, X = Y , φ = idA and a = 0 ∈ A. Also, the strongest
version of the theorem is when K is as small as possible, that is, when K is
the algebraic closure of Q in L.

Proof. Let S := {a ∈ A : a + X = X} be the stabilizer of X in A. It
is a constructible and therefore closed subgroup of A, and X is a union of
cosets of S. Then A/S is also a semiabelian variety. Let Γ/S and X/S be
the images of Γ and X under the canonical map A → A/S. Then X/S is
a closed irreducible set in A/S, (Γ/S) ∩ (X/S) is dense in X/S, and X/S
has trivial stabilizer in A/S. By replacing A, Γ and X by their images A/S,
Γ/S, and X/S we reduce to the case that X has trivial stabilizer in A. (The
reader should verify the details of this reduction.)

As noted before the proof, we can assume K 6= L. Then (L,K) is a model
of the theory of algebraically closed fields of characteristic 0 with a predicate
for a proper algebraically closed subfield. This theory is complete, and (U, C)
is also a model of it (where we forget ∂). So by taking U sufficiently big we
can arrange that (L,K) is an elementary submodel of the model (U, C) of
this theory. Replacing A(L) by A(U) and X by X(U) we reduce to the
case that L = U and K = C. (The reader should check the details of this
reduction.)

By Corollary 7.17 we can take a connected definable subgroup G of A of
finite Morley rank such that Γ ⊆ G. Then G ∩ X is dense in X. Among
the definable subsets of G ∩ X that are dense in X, let P be one of least
Morley rank. Then P = P1∪· · ·∪Pd, d = MD(P ), where all Pi are definable
with the same Morley rank as P and with Morley degree 1. Then some Pi

is dense in X, so by replacing P by a suitable Pi we can assume that P has
Morley degree 1. Let m := MR(P ), and let G and P be defined over the
small algebraically closed differential subfield k of U.

Take the unique p ∈ St(G|k) such that MR(p) = m and P ∈ p. Then p is
stationary and p(G) ⊆ P ⊆ G ∩X.

Claim 1. stabG(p) = {0}.
To prove this claim, let g ∈ stabG(p). Then MR

(

(g + P ) ∩ P
)

= m, hence

P =
(

(g + P ) ∩ P
)

∪Q with definable Q ⊆ P and MR(Q) < m, so Q is not
dense in X. Hence (g+P )∩P is dense in X, so g+X = X, and thus g = 0.

Claim 2. The set p(G) is dense in X.

Suppose otherwise. Then p(G) ⊆ Z where Z is a proper closed subset of X.
Then P ∩ Z is not dense in X, so MR(P ∩ Z) < m. Since p(G) ⊆ P ∩ Z,
this yields MR(p) < m, a contradiction.

Take any g ∈ p(G), and let G(p, g) be the subgroup of G generated by
p(G) − g. It follows from Claim 1 and Proposition 7.14 that G(p, g) is a
connected definable subgroup of G and that we have a connected definable
group H ⊆ Cm in the algebraically closed field C and a group isomorphism
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h : H → G(p, g) that is definable in U. Let B := Ha, an algebraic group in
C. Then B(U) is the corresponding algebraic group in U.

By Lemmas 4.15 and 6.19 we have an algebraic group morphism B(U) →
A extending h : H → G(p, g); we denote this extension also by h. Since
B(U) is connected, its image A′ := h(B(U)) is a connected closed subgroup
of A, and thus a semiabelian variety.

Claim 3. h : B(U) → A′ is an algebraic group isomorphism.

We first show that B is a semiabelian variety. Let N be an algebraic vector
group with respect to C and a closed subgroup of B. Then N(U) is an
algebraic vector group with respect to U and a closed subgroup of B(U), so
h|N(U) is trivial. Since h is injective on B it follows that N is trivial. This
argument shows that B is a semiabelian variety. Then by Corollary 6.24 the
connected component ker(h)0 of ker(h) is defined over C, so is trivial, since
h is injective on B. Hence ker(h) is finite, so ker(h) ⊆ t(B(U)) = t(B), and
thus ker(h) is trivial.

Since p(G) − g is dense in X − g and p(G) − g ⊆ G(p, g) ⊆ A′ we have
X − g ⊆ A′. The set h−1(p(G) − g) ⊆ B is dense in the closed irreducible
subset h−1(X − g) of B(U), so h−1(X − g) is defined over C, that is,

h−1(X − g) = Y (U)

where Y is a closed irreducible subset of B. Then X − g = h(Y (U), and we
have established the desired result with φ = h−1 : A′ → B(U). �

For abelian varieties we turn this into a more attractive result as follows.
Let A = A(L) be an abelian variety in L. We say that A has no K-trace
if A has no nontrivial abelian subvariety isomorphic (as algebraic group) to
B(L) for any abelian variety B in K. It can be shown that then there is no
surjective algebraic group morphism A′ → B(L) for any closed subgroup A′

of A and any nontrivial abelian variety B in K.

Corollary 7.19. Let A = A(L) be an abelian variety in L with no K-trace,
let Γ be a finitely generated subgroup of A, and let X be a closed subset of
A. Then Γ ∩X is a finite union of cosets in A of subgroups of A.

Proof. Let X1, . . . ,Xm be the irreducible components of the closure of Γ∩X
in X. Then Γ∩Xi is dense in Xi for all i, so by replacing X by each of the
Xi we reduce to the case that X is irreducible and Γ ∩X is dense in X.

Then Theorem 7.18 and the K-trace assumption yield a closed subgroup
A′ of A such that X = a + A′ with a ∈ A. If Γ ∩ X 6= ∅, we can take
a ∈ Γ ∩X, and then Γ ∩X = a+ (A′ ∩ Γ). �


