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Abstra
t

We investigate the proof 
omplexity, in (extensions of) resolution and

in bounded arithmeti
, of the weak pigeonhole prin
iple and of Ramsey

theorem.

In parti
ular, we link the proof 
omplexity of these two prin
iples.

Further we give lower bounds to the width of resolution proofs and to the

size of (extensions of) tree-like resolution proofs of Ramsey theorem.

We establish a 
onne
tion between provability of WPHP in fragments

of bounded arithmeti
 and 
ryptographi
 assumptions (the existen
e of

one-way fun
tions).

In parti
ular, we show that fun
tions violating WPHP

2n

n

are one-way

and, on the other hand, that one-way permutations give rise to fun
tions

violating PHP

n+1

n

, and that strongly 
ollision-free families of hash fun
-

tions give rise to fun
tions violating WPHP

2n

n

(all in suitable models of

bounded arithmeti
).

Further we formulate few problems and 
onje
tures; in parti
ular, on

the stru
tured PHP (introdu
ed here) and on the unrelativised WPHP.

The symbol WPHP

m

n

(with any n < m � 1) will denote both propositional

and arithmeti
 formalizations of the weak pigeonhole prin
iple; in the latter 
ase

I write WPHP

m

n

(R), where R is a binary relation symbol. The quali�
ation weak

meansm � 2n and that is the 
ase studied here. The propositional formalization

is a set of 
lauses in atoms p

i;j

for i < m and j < n:

fp

i;0

; : : : ; p

i;n�1

g (1)

for ea
h i < m, and

f:p

i;k

;:p

j;k

g (2)

for ea
h i < j < m and k < n, and

f:p

i;`

;:p

i;k

g (3)

�
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for ea
h i < m and ` < k < n. If m = 1 we take in�nitely many su
h 
lauses

for i; j < !. The arithmeti
 version WPHP

m

n

(R) is the formula

(9i < j < m9k < n;R(i; k) ^ R(j; k)) _ (9i < m8j < n;:R(i; j))_

(9i < m9` < k < n;R(i; `) ^ R(i; k))

(The parameter m is omitted in the formula when m =1.)

Haken [7℄ proved that any resolution refutation of PHP

n+1

n

requires at least

exp(
(n)) steps. His method was adapted by Buss and Tur�an [3℄ to a lower

bound exp(
(

n

2

m

)) for WPHP

m

n

. When m � n

2

this yields no lower bound at

all, and it remains open what are the lengths of resolution proofs for these m.

Another line of resear
h 
on
erns systems of bounded arithmeti
 introdu
ed

by Buss [1℄. In parti
ular, it is known that the systems T

i

2

(�) are di�erent

and there are some non-
onservativity results (see Chiari and Kraj���
ek [4℄ for

an overview). The simplest open 
onservativity relation is whether T

2

(�) (or

T

3

2

(�), in parti
ular) is �

b

2

(�)-
onservative over T

2

2

(�), and various bounded

formulas that 
ould witness the 
onje
tured non-
onservativity were put forward

in Chiari and Kraj���
ek [4, 5℄, WPHP

2n

n

(R) and Ramsey theorem among them.

The proof of the weak pigeonhole prin
iple in theory T

2

(R) by Paris, Wilkie

and Woods [19℄ formalizes in T

3

2

(R) (see Kraj���
ek [10, Thm.11.2.4℄ for this


al
ulation

1

) while it is shown in [4℄ that WPHP

2n

n

(R) is not provable in T

1

2

(R).

Hen
e the provability of WPHP

2n

n

(R) in T

2

2

(R) is the only open question (see

footnote to L.6.4.). Moreover, the proof from [19℄ also shows that either all or

none of WPHP

2n

n

(R), WPHP

n

2

n

(R), WPHP

1

n

(R) are provable in T

2

2

(R).

It has been little noti
ed that these two open problems are, in fa
t, quite

related. This is be
ause in the well known 
orresponden
e between propositional

proof systems and bounded arithmeti
 theories (in the translation of Paris and

Wilkie [18℄, see [10, Se
.9.1℄ for details) the resolution proof system 
orresponds

to a theory stri
tly stronger than T

1

2

(R) but in
luded in T

2

2

(R), and T

2

2

(R) itself


orresponds to an extension R(log) of R (see Se
tion 1 for the de�nition).

The present paper gives several results on resolution and bounded arithmeti
,

on proof 
omplexity of the WPHP and of Ramsey theorem. In parti
ular, we

link the proof 
omplexity of these two prin
iples. Further we give lower bounds

to the width of resolution proofs and to the size of (extensions of) tree-like

resolution proofs of Ramsey theorem.

Although these results are new they are, in my view, in near vi
inity of results

and methods that are (or ought to be) known. To remedy this I also present

several known results and methods, spe
ialized to resolution and T

2

2

(�). For

example, I give an in�nitary 
riterion for R

�

(log) lower bounds - an extension

of tree-like R - that is an immediate 
orollary of a known statement about sear
h

trees from Kraj���
ek [10℄.

1

Note that PHP(R) is de�ned as the onto-version in that 
al
ulation.
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I also show that fun
tions violating WPHP

2n

n

are one-way and, on the other

hand, that one-way permutations give rise to fun
tions violating PHP

n+1

n

, and

that strongly 
ollision-free families of hash fun
tions give rise to fun
tions vio-

lating WPHP

2n

n

(all in suitable models of bounded arithmeti
). These results

are not diÆ
ult but they are perhaps a part of the paper pointing most towards

new dire
tions promising for further resear
h.

I also formulate few problems and 
onje
tures; in parti
ular, on the stru
-

tured PHP (introdu
ed here) and on the unrelativised WPHP.

For ba
kground I refer the reader to monograph [10℄; I often a

ompany

original referen
es by a referen
e to a pla
e in [10℄. The 
onservativity problem

was previously studied in Chiari - Kraj���
ek [4, 5℄, and I use few fa
ts from there.

A 
onvention: The phrase exponential size means size exp(n


(1)

).

1 Resolution and its extensions

Resolution R is naturally a subsystem of sequent 
al
ulus LK, allowing no


onne
tives ex
ept the negation. The following de�nition augments R so as to


orrespond to LK-proofs of the �-depth 0 (as de�ned in [8℄ or [10, Def. 12.2.3℄).

(We sometimes use the union and disjun
tion signs inter
hangeably.)

De�nition 1.1 (a) R

+

is a refutation proof system working with 
lauses C

formed by 
onjun
tions D

i

of literals `

i;j

:

C =

_

i

D

i

; D

i

=

^

j

`

i;j

The inferen
e rules are:

C

1

[ f

V

j

`

j

g C

2

[ f:`

0

1

; : : : ;:`

0

k

g

C

1

[ C

2

provided `

0

1

; : : : ; `

0

k

are among `

j

's and k � 1, and

C

1

[ f

V

j<u

`

j

g C

2

[ f

V

j<v

`

u+j

g

C

1

[ C

2

[ f

V

j<u+v

`

j

g

(b) Let f : N ! N be a fun
tion. The R(f)-size of an R

+

-proof is the

minimum S su
h that the proof has at most S 
lauses and ea
h 
onjun
tion

of literals o

urring in 
lauses has size at most f(S).

We shall abuse the terminology and use a phrase R(f)-proofs of size S rather

than R

+

-proofs of R(f)-size S.

Obviously, size of R(1)-proofs is just the size of R-proofs, while R(log) is the

�-depth 0 subsystem of LK.

As on various previous o

asions I shall denote by the supers
ript star the

tree-like versions of proof systems: R

�

, R(f)

�

.
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2 Bounded formulas and sets of 
lauses

The �rst-order formulation of WPHP

m

n

(R) is a

W

9

V

8 - formula. In general,

negations of formulas that are built from basi
 formulas (atomi
 or their nega-

tions) in a relational language L by �rst applying

V

's and 8's and then

W

's and

9's will translate, as :WPHP

m

n

(R) does, to a CNF-formula, a set of 
lauses.

Let us 
all su
h formulas shortly DNF

1

-formulas.

Other DNF-like formulas 
an be obtained from parti
ular se
ond order for-

malizations of 
ombinatorial properties. To illustrate this I re
all de�nitions of

two prin
iples, Ramsey theorem and Tournament prin
iple (
f. [10, p.233℄).

De�nition 2.1 (a) RAM

n

(�) is a �

b

1

(�) - formula

[9i < j < n; �(i; j) 6� �(j; i)℄ _ 9X � f0; : : : ; n� 1g; jX j = b

logn

2




^ [(8x; y 2 X ;x 6= y ! �(x; y)) _ (8x; y 2 X ;x 6= y ! :�(x; y))℄

formalizing Ramsey's statement n �! (b

log n

2


)

2

2

, i.e. that the undire
ted

graph with verti
es n = f0; 1; : : : ; n � 1g and edges ffi; jg j �(i; j)g has

a homogeneous subset X (a 
lique or an independent set) of size at least

b

logn

2


.

The propositional version RAM

n

has variables x

e

for all possible edges

e 2 [n℄

2

, and the 
lauses

_

e2[X℄

2

x

e

and

_

e2[X℄

2

:x

e

for all possible X � n of size b

logn

2


.

(b) TOUR

n

(�) is a �

b

1

(�) - formula

[8i < j < n; �(i; j) 6� �(j; i)℄ �!

9X � f0; : : : ; n� 1g; jX j = 2 logn ^ [(8x 2 n nX9y 2 X ;�(y; x))

formalizing Tournament prin
iple: a tournament of size n has a dominat-

ing set of size � 2 log(n).

The propositional version TOUR

n

has variables x

i;j

for all possible di-

re
ted (i; j), i 6= j, and the 
lauses

x

i;j

_ x

j;i

and :x

i;j

_ :x

j;i

for all i 6= j, and

_

i2nnX

^

j2X

:x

j;i

for all possible X � n of size 2 logn.
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The 2 logn bound in TOUR

n

is somewhat arbitrary and obviously not op-

timal. However, it is unknown even if TOUR

n

is provable in full bounded

arithmeti
 T

2

(�), even with logn repla
ed by (log n)

O(1)

(su
h a 
hange may be

important for provability).

Both these formulas have a form extending the DNF

1

-form by allowing

also se
ond order existential quanti�er 9

(2)

X(jX j � f(n)) ranging over subsets

X of the universe of size � f(n) (usually f(n) = (logn)

O(1)

), and universal

quanti�
ation 8i 2 X bounded to elements of X 's. We shall 
all them DNF

2

-

formulas for short.

The propositional versions 
onsist, in general (like for TOUR

n

), of R(log)-


lauses, i.e. 
lauses formed by 
onjun
tions of literals, the 
onjun
tions having

size � f(n). The size of the set of asso
iated 
lauses is n

O(f(n))

, if the se
ond

order quanti�er is restri
ted to sets of size � f(n). In 
ase of RAM

n

and

TOUR

n

this is O(log n). Note that the relation A j= �, for � a DNF

1

- or

a DNF

2

- formula in a general language L, is de�nable by a �

b

2

(L)-formula,

provided f(n) = log(n)

O(1)

.

3 Resolution and arithmeti


There are several relations between subsystems of bounded arithmeti
 and ex-

tensions of resolution. I shall formulate these fa
ts for theories with the smash

fun
tion #, relating them to quasi-polynomial size propositional proofs. This

is be
ause the theories with the smash fun
tion are the ones most 
ommonly

used. However, similar relations hold with theories without the smash fun
tion

and polynomial size propositional proofs.

Theorem 3.1 (Kraj���
ek [8, 1.2 and 2.2℄, [11, Cor.6.2℄) Let a DNF

1

- or

a DNF

2

- formula � in a relational language L disjoint from the language of T

2

be provable in (a) T

1

2

(L), or (b) T

2

2

(L), respe
tively.

Then the asso
iated sets of 
lauses �

n

have quasi-polynomial size refutations

in systems (a) in R

�

(log) and in R, or (b) in R(log), respe
tively.

Proof :

Case (b) was proved in [8, 1.2 and 2.2℄ (or see [10, L. 12.2.1℄). Case (a) is

a 
orollary of that proof and was given in [11, Cor.6.2℄. To explain this let me

re
all now the main steps of the proof of (b).

An arithmeti
 proof in T

2

2

(L) translates (after suitable 
ut-elimination) into

an LK-proof that is tree-like, the number of formulas per sequent is bounded by

a 
onstant, it has quasi-polynomial size, and every formula has depth � 3 with

the depth 3 formulas being 
onjun
tions of disjun
tions of poly-logarithmi
 size


onjun
tions.

First, the �rst two properties are used to eliminate the depth 3 
onne
tives;

the resulting proof is polynomially longer and still tree-like. The tree-likeness is

5



then used to redu
e the next level of 
onne
tives, again with a polynomial in-


rease only, resulting in an LK-proof in whi
h all formulas are poly-logarithmi


size 
onjun
tions. That is the required R(log) proof.

In 
ase (a), starting with a T

1

2

(L) proof, everything has one less depth. In

parti
ular, the �rst step yields a quasi-polynomial size R

�

(log) proof. Applying

the redu
tion of the depth via tree-likeness on
e more yields an R-proof (see

[11, Cor.6.2℄).

q.e.d.

The link between arithmeti
 and proof systems also allows to lift indepen-

den
e results to lower bounds and, more importantly, methods of independen
e

proofs to lower bound proofs. As an example, I shall state a 
riterion for lower

bounds for R

�

(log). The �rst one is a weaker version of [10, L.9.5.2℄ (that lemma

talks about sear
h trees

2

).

Theorem 3.2 (Kraj���
ek [10, L.9.5.2℄) Let � be a DNF

1

-formula in a rela-

tional language L that 
an be violated in an in�nite stru
ture.

Then the 
orresponding sets of 
lauses �

n

require exponential size R

�

(log)-

proofs.

Similarly as [10, L. 9.5.2℄ generalized (by a di�erent proof) Riis's indepen-

den
e 
riterion for S

2

2

(�) (
f. Riis [21℄ or [10, Se
.11.3℄) the following fa
t extends

analogously his [21, Thm.11℄ (or see [10, Thm.11.3.4℄

Theorem 3.3 Let � = 9X(jX j = log

k

(n)); �(X;n) be a DNF

2

-formula in a

relational language L. Assume that there is an in�nite stru
ture in whi
h 9X;�

is not witnessed by a �nite X.

Then �

n

require exponential size R

�

(log)-proofs.

While Theorem 3.2 is, in fa
t, a 
riterion valid in the i�-form (if :� has no

in�nite model then � is provable in the predi
ate logi
 alone from the assumption

that the universe has � 
 points some 
 � 1 - and use Theorem 3.1) Theorem 3.3

is not. An example is given by Ramsey theorem; Theorem 5.2 yields exponential

lower bound for R

�

(log)-proofs of RAM

n

while the hypothesis of the theorem

obviously fails.

Let us remark that another proof of Theorems 3.2 and 3.3 is possible: redu
e

the statements dire
tly to related statements about bounded arithmeti
 S

2

2

(�).

Namely, it is suÆ
ient to prove in the theory the soundness of R

�

(log)-proofs.

For this one needs to augment the data de�ning the proof by a log-depth tree

stru
ture simulating a Spira-type sear
h through the tree.

It would be very interesting if an in�nitary 
riterion like these existed also

for R. The only other proof system for whi
h something analogous is known is

2

S. Riis informed me that he is preparing a manus
ript on Theorem 3.2 and related issues.
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the 
onstant-degree polynomial 
al
ulus (or Nullstellensatz); the role of in�nite

stru
tures is played by Euler stru
tures (see Kraj���
ek [12℄).

Remark: A re
ent paper by Kullmann [16℄ 
ontains extensive information on

R

�

.

4 Non-standard models and lower bounds

Let M be an arbitrary 
ountable model of true arithmeti
 in the language of

T

2

, and n 2 M any non-standard element. Denote by M

n

the stru
ture with

the universe

\

�

fu 2M j u < 2

n

�

g =

[

�

fu 2M j u < 2

n

�

g

with �'s ranging over all positive standard rationals and �'s over in�nitesimal

rationals. The stru
ture of M

n


onsists of the redu
t of M to the universe,

together with a unary predi
ate symbol R

X

for every bounded subset X �M

n

that is 
oded in M . (Instead of R

X

(u) I write u 2 X .)

Let L

n

denotes the language of M

n

. Note that M

n

satis�es indu
tion for all

bounded L

n

-formulas.

Let 8

�b

1

V

denote the set of L

n

[L-formulas built from basi
 formulas by 
on-

jun
tions and bounded universal quanti�
ation. L� 8

�b

1

V

is the least number

prin
iple for su
h formulas.

Theorem 4.1 Let T , P be one of the following pairs of a theory and a proof

system: T

2

2

(L

n

; L) and R(log), T

1

2

(L

n

; L) + L� 8

�b

1

V

and R.

For arbitrary stru
tureM

n

of the form as above the following two statements

are equivalent:

1. There is an expansion of M

n

to a model (M

n

; L) of T in whi
h �

n

fails.

2. �

n

requires exponential-size P -proofs.

Proof :

This is a standard argument (going ba
k to Paris and Wilkie) that I repeat

here for reader's bene�t; the novel part is the exa
t 
orresponden
e for the pairs

T , P . We also use non-standard models in Se
tion 5.

Assume that the lower bound is not true. By 
ompa
tness there is a non-

standard model of true arithmeti
, non-standard n 2 M , and a P -proof repre-

sented by a bounded 
oded subset � of M

n

, su
h that � is a P -refutation of �

n

in M (and hen
e in M

n

).

Take some expansion (M

n

; L) provided by the �rst statement. This de�nes

an evaluation of atoms of �

n

that satis�es all initial 
lauses in �. However, �

is sound in M

n

as the soundness is provable in T . That is a 
ontradi
tion.
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The opposite impli
ation follows by a model theoreti
 argument. Let Cl be

the set of all 
lauses in M formed from literals o

urring in the set of 
lauses

�

n


orresponding to �. Let H := Cl [ f:C j C 2 Clg. We shall 
onstru
t set

G � H su
h that

1. All 
lauses of �

n

are in G.

2. C or :C is in G, for any C 2 Cl.

3. If C 2 G then f`g 2 G for some ` 2 C.

4. If :C 2 G, f:`g 2 G for all ` 2 C.

5. If the sequen
e of 
lauses hC

0

; : : : ; C

t

i from Cl is de�ned by an L

n

-relation

symbol, t 2 M

n

, then either there is minimal i

0

� t su
h that :C

i

0

2 G,

or fC

0

; : : : ; C

t

g � G.

6. There are no � and X in L

n

su
h that X � G and � is an P -refutation of

X .

(We use the name G as, in fa
t, it is a generi
 set in an appropriately de�ned

for
ing - see [9℄ or [10, Se
.12.7℄.)

G is built in 
ountable many steps, arranging in M 
onse
utively the 
ondi-

tions for all C and all sequen
es hC

0

; : : : ; C

t

i from M

n

. The indu
tive pro
ess


an start as the set of 
lauses of �

n

has no P -refutation in M

n

, by the hypoth-

esis. The details are as in the 
ase of V

1

1

and EF in [9℄; or see [10, Se
.9.4℄.

Note that we 
ould not arrange the last but one 
ondition with tree-like proofs.

G de�nes, by 
onditions 2. - 4., an interpretation of L in M

n

. �

n

fails by

the �rst 
ondition, while the last but one 
ondition implies that the expansion

is a model of the least number prin
iple for 8

�b

1

V

formulas.

This proves the statement for T

1

2

(L) + L� 8

�b

1

V

and R; the 
ase of T

2

2

(L)

and R(log) is analogous.

q.e.d.

Remark: The for
ing method used for 
onstru
tions of model of L9

1

and T

1

2


annot be used to 
onstru
t suitable expansions. Namely, let P be the set of

all inje
tive maps p : dom(p) �! n 
oded in M , partially ordered by in
lusion.

One uses as for
ing notions suitable sub
lasses Q � P. A generi
 set G � Q

then de�nes a generi
 map f :=

S

G.

If one for
es with the sub
lass 
onsisting of p's of standard size then the

generi
 map f is a bije
tion between M

n

and n, and (M

n

; f) satis�es the mini-

mization prin
iple for the existential L

n

(f)-formulas. This was proved by Paris

and Wilkie [18℄, or see [10, Thm.12.7.1℄. It is noti
ed in [10, Se
.12.7,pp.273-4℄

that taking instead maps p of size bounded above by some n

�

, � positive in-

�nitesimal rational, yields a bije
tion f :M

n

 ! n satisfying the minimization

8



prin
iple for �

b

1

(L

n

; f)-formulas (and hen
e T

1

2

(L

n

; f)). On the other hand,

su
h generi
 f will never satisfy T

2

2

(f) as, for example, the formula

9u

1

< u

2

< n;u

1

+ x = u

2

^ (8u

1

� v

1

< v

2

� u

2

; f(v

1

) � f(v

2

) (mod 2))

will be satis�ed in the generi
 extension by any x smaller than some n

�

, � positive

in�nitesimal rational, but not by any bigger one, and hen
e �

b

2

(f)- indu
tion

fails.

5 Ramsey theorem

Pudl�ak [20℄ showed that RAM

n

(�) is provable in T

2

(�) (in fa
t, in T

5

2

(�) as


omputed in [10, Thm. 12.1.3℄) by redu
ing it to the weak pigeonhole prin
iple

for a map de�nable from �. On the other hand, Chiari - Kraj���
ek [5℄ proved

that RAM

n

(�) is independent of T

1

2

(�) and they put it forward as a 
andidate

for a formula independent from T

2

2

(�) as well. We derive this 
onje
ture from

a hypothesis about the lengths of proofs of WPHP

n

4

n

.

Theorem 5.1 Let g : N ! N n f0g be a fun
tion. Assume that WPHP

n

4

n

requires exponential size R(2g)-proofs.

Then RAM

n

requires exponential size R(g)-proofs.

Proof :

First 
onsider the 
ase g = log(n), so that we 
an use Theorem 4.1; the

general 
ase is explained at the end of the proof.

LetM be, as before, a nonstandard model of true arithmeti
, and let n 2M

be a non-standard number of the form 2

s

. Take M

n

of the form as earlier, and

(M

n

; f) the expansion provided by Theorem 4.1, assuming the hypothesis of the

theorem. That is, (M

n

; f) is a model of T

2

2

(L

n

; f) in whi
h f maps inje
tively

n

4

into n.

By Erd�os [6℄ there is a graph G 2M , G = (n;E) 
ontaining no homogeneous

set of size 2s = 2 logn. We shall use E also as the name for the predi
ate for E

in L

n

.

De�ne in (M

n

; f) graph G

0

= (n

4

; E

0

) by

xE

0

y �

def

f(x)Ef(y)

E

0

is �

b

1

(R;E) - de�nable, so (M

n

; f) satis�es T

2

2

(E

0

). If RAM

n

(�) were prov-

able in T

2

2

(�), or even just RAM

n

had an R(log)-proof in M

n

, there would be

X

0

� n

4

, X

0

2M

n

, of size 2 logn and homogeneous in G

0

.

Clearly then X := f(X

0

) is homogeneous in G. Moreover, as X

0

as well as

f restri
ted to X

0

are 
oded in M

n

so is X and we have jX

0

j = jX j = 2 logn.

All sets of O(log n) size are 
oded in a model of S

1

2

(L

n

; f), so X is de�nable

without f . This 
ontradi
ts, in M , the 
hoi
e of G without a homogeneous set

so large.

9



Finally, note that the argument works equally well forR(g) in pla
e of R(log),

as the (non-)edge fx; yg in G

0

is de�ned as

W

(f(x) = i^ f(y) = j) with the dis-

jun
tion over all (non-)edges fi; jg in G, i.e. an R(g)-proof of RAM

n

translates

into R(2g)-proof of WPHP

n

4

n

.

q.e.d.

The proof of the following statement is a non-uniform version of the proof

that T

1

2

(R) does not prove RAM

n

(R) from Chiari-Kraj���
ek [5℄. I shall give it

expli
itly as we shall use a variant of the argument later on. (It also gives a

hint to a reader not familiar with [10℄ how Theorems 3.2 and 3.3 are proved

following [10, Se
. 11.3℄.)

Theorem 5.2 Any R

�

(log)-proof of RAM

n

requires exponential size.

Proof :

Let the R

�

(log)-proof has size 2

t

and all 
onjun
tions in it size � t. Turning

the proof upside down we 
an use it as a sear
h tree. Namely, given a graph H

we walk in the tree from the root (the empty 
lause) down to a leaf (an axiom)

on 
lauses false for H . This �nds a set of size at least

logn

2

homogeneous in

H . Moreover, we walk through the proof tree in the Spira-type fashion: from a

node determining a subtree T

0

we go to its node determining a subtree T

1

of T

0

of size

jT

0

j

3

� jT

1

j �

2jT

0

j

3

. Hen
e the resulting sear
h tree has depth O(t) only.

Let G be the Erd�os graph (as in the proof of Thm. 5.1) but on n

1=4

verti
es.

I.e., it has no homogeneous set of size �

logn

2

. Walking through the sear
h tree

we shall de�ne a part of graph H on n verti
es. After k steps we will have a

partial isomorphism  

k

between � k2t verti
es of H and G. In the (k + 1)st

step, querying an R(log)-
lause C =

W

i

D

i

, D

i

=

V

j

`

i;j

,
onsider two 
ases.

Either  

k


an be extended to make one of D

i

true, or not. In the former


ase answer the query YES and let  

k+1

be a minimal su
h extension of  

k

.

Note that j 

k+1

n  

k

j � 2jD

i

j � 2t.

In the latter 
ase answer NO and take  

k+1

:=  

k

.

We may 
ontinue with this strategy as long as there is a room for the exten-

sions, i.e. as long as j 

k

j � n

1=4

, for all k.

At the end (i.e. at the leaf) we have a partial isomorphism  in whose

domain is a homogeneous set X of size �

logn

2

. That is impossible as its image

in  would be a homogeneous set in G but G has no so large homogeneous sets.

Hen
e t > (1=2)n

1=4

.

q.e.d.

Theorem 5.2 demonstrates that Theorem 3.3 is not a 
riterion but only a

suÆ
ient 
ondition, as we 
annot use it to prove Theorem 5.2. On the other

hand, there obviously exists an in�nite tournament without a �nite dominating

set, hen
e Theorem 3.3 implies

10



Theorem 5.3 Any R

�

(log)-proof of TOUR

n

requires exponential size.

Perhaps I may remind the reader here of an

Open problem: Does TOUR

n

have polynomial-size (or even sub-exponential

size) 
onstant-depth Frege proofs?

The 
lauses of RAM

n

have size � (logn)

2

. The following result shows that

the width of any R-proof, i.e. the maximum size of a 
lause in a proof, must be

n

1=4

.

Theorem 5.4 Any R-proof of RAM

n

must have width at least (1=2)n

1=4

.

Proof :

The proof is similar to the proof of Theorem 5.2 but with some di�eren
es.

Let � be an R-refutation of RAM

n

. Assume that the width is w. Turning �

upside down determines a bran
hing program solving the same sear
h problem

as in the proof of Theorem 5.2.

As before, we 
onstru
t in steps partial isomorphisms  

k

from the n verti
es

of H into verti
es of Erd�os graph G on n

1=4

verti
es. They are 
onstru
ted

di�erently, however.

Let C

0

= ;; C

1

; : : : ; C

k

be the path in � that we walked through so far in k

steps. Let supp(C) be the set of all verti
es o

urring in edges 
orresponding

to literals in C. Put  

0

:= ;. It holds that dom( 

i

) = supp(C

i

).

Assume that C

k

= C

0

[ C

00

was inferred in � by the inferen
e:

C

0

[ fp

e

g C

00

[ f:p

e

g

C

k

with e = fi; jg. Put � :=  

k

# (supp(C

0

)). If � 
an be extended to i; j so

that p

e

is false in G, take for  

k+1

one su
h extension. Otherwise take for  

k+1

any extension of  

k

# (supp(C

00

)) to i; j making p

e

true. In the former 
ase

C

k+1

:= C

0

[ fp

e

g, in the latter C

k+1

:= C

00

[ f:p

e

g.

As j 

k

j � 2jC

0

[ C

00

j � 2w, this 
an be done as long as 2w � n

1=4

.

q.e.d.

Remark: Krishnamurthy and Moll [15℄ 
onsider 
riti
al Ramsey formulas: For

a given r � 3 take minimal m satisfying the Ramsey relation m ! (r)

2

2

, and

let �

r

be the Ramsey formula like RAM

m

but with X 's ranging over sets of

verti
es of size r. They proved ([15, Cor.4.1.9℄) that the width of R-proofs of

�

r

must be at least m=2� 1. They also proved an exponential lower bound for

Davis-Putnam Pro
edure (essentially R

�

) proofs of the formulas.

The minimal m satis�es 2

r=2

� m � 2

2r

and for r :=

logn

2

it may be that

m << n. Hen
e our lower bounds for RAM

n

are stronger statements.
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6 WPHP in T

2

2

(R)

Let us denote by ontoPHP the onto version of PHP speaking about bije
tions

rather than inje
tions. The following is well known.

Theorem 6.1 (Paris, Wilkie and Woods [19℄) Let m = 2n or n

2

or 1.

1. T

3

2

(R) proves any WPHP

m

n

(R).

2. T

2

2

(R) proves any ontoWPHP

m

n

(R).

3. There are g and h, �

b

1

(R)-de�nable in S

1

2

(R) su
h that S

1

2

(R) proves the

impli
ations

:WPHP

2n

n

(R) �! :WPHP

n

2

n

(g)

and

:WPHP

n

2

n

(R) �! :WPHP

1

n

(h)

Same statements hold for the onto version.

By Theorem 3.1 we get

Corollary 6.2 The ontoWPHP

m

n

, for m = 2n; n

2

;1, has quasi-polynomial

R(log)-proofs.

In fa
t, as the proof in [8℄ shows, the 
onjun
tions in the R(log)-proofs have

size only O(log n) rather than generi
 (logn)

O(1)

.

An immediate 
orollary of Theorems 6.1 and 3.1 points to a possible ap-

proa
h to proving resolution lower bounds for WPHP

n

2

n

and WPHP

1

n

. Namely,

instead of trying to improve the 
urrent methods to m = n

2

, improve the lower

bound for m = 2n from R to R(log).

Corollary 6.3 Assume that WPHP

2n

n

requires exponential size R(log)-proofs.

Then both WPHP

n

2

n

and WPHP

1

n

require exponential size R(log)-proofs as well.

By Chiari - Kraj���
ek [4℄ S

2

2

(f) does not prove ontoWPHP

m

n

(f). Thus the

remaining open problem is whether T

2

2

(f) proves (the non-onto) WPHP

m

n

(f).

In this 
onne
tion it is perhaps interesting to note that Buss - Pitassi [2℄ proved

that minimum sizes of R-proofs of WPHP

m

n

and ontoWPHP

m

n

are polynomially

related.

Analysing what makes the in
rease of quanti�er 
omplexity in the proofs of

the non-onto version we observe that a fun
tion in a model of T

2

2

(f) violating

the prin
iple WPHP

n

2

n

(f) must be one-way.

3

3

After this paper 
ir
ulated for some time, [17℄ showed that T

2

2

(f) proves WPHP

n

2

n

(f)

(see http://www.math.
as.
z/~kraji
ek/mpw.ps for a short presentation of their proof via

bounded arithmeti
). I keep L.6.4 as the same 
onstru
tion works for subtheories of T

2

2

(f)


orresponding to weaker subsystems of R(log n).
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Lemma 6.4 Let M be a model of T

2

2

(f) + :WPHP

m

n

(f), for m = 2n; n

2

;1.

Then f is one-way in the following sense: the inverse fun
tion f

(�1)

(de�ned

arbitrarily outside rng(f)) is not �

b

1

(f) de�nable in the model, i.e. it is not


omputable by a polynomial-time Turing ma
hine with ora
le f even with a

polynomial advi
e. In parti
ular, rng(f) is also not �

b

1

(f) de�nable.

To explain this I shall refer to the proof of Theorem 6.1 as given in [10,

Thm.11.2.3,pp.213-4℄.

The formula A

g

(r) is �

b

3

; however, if the map violating the WPHP were not

onto, then the same 
onstru
tion gives only �

b

4

-formula as the fun
tion `(i; x) is

not �

b

1

(f) anymore (be
ause one needs to 
ondition upon whether or not `(i; x)

is in the range of the map). But assuming that the inverse map f

(�1)

is �

b

1

(f)

de�nable, the fun
tion `(i; x) is also �

b

1

(f) de�nable as the numbers v; w in the

se
ond 
lause of the de�nition of `(i; x) (on [10, p.214℄) are just proje
tions of

f

(�1)

(u). Hen
e the assumption that f is not one-way implies that the proof

goes through in S

3

2

(f) and hen
e also in T

2

2

(f), 
ontradi
ting the hypothesis

that f violates WPHP

n

2

n

(f) in a model of T

2

2

(f).

A simple example of this situation (for a reader not familiar with [10℄) is

this: Let f : n � n ! n. Consider the property �(u) := 9j < n; f(0; j) = u.

Then � is �

b

1

(f) for all f , but when f is onto n it is, in fa
t, �

b

1

(f) as it is

equivalent also to 8i; j < n; f(i; j) = u! i = 0.

We 
an 
omplement Lemma 6.4 in a sense.

Theorem 6.5 Let f be a length preserving, inje
tive polynomial-time fun
tion.

Assume that f is one-way in the sense of Lemma 6.4, i.e. f

(�1)

is not 
om-

putable by polynomial size 
ir
uits.

Then there is a model M of S

1

2

and an in�nite n in it su
h that f is an

inje
tive map from n into a proper subset of n. In parti
ular, adding one value

to f , f violates PHP

n+1

n

.

In fa
t, if the hypothesis is satis�ed only in a model N of S

1

2

then M 
an be

a �

b

1

-elementary extension of N .

Proof :

If no su
h model exists S

1

2

proves for some k � 1:

a � k ! [(9x < a; jf(x)j 6= jxj) _ (9x < y < a; f(x) = f(y)) _

(8y < a9x < a; f(x) = y)℄

By Buss's witnessing theorem (see [1℄ or [10, Chpt.7℄) there is a polynomial-time

fun
tion g(a; y) that on input (a; y) 2 N �N, a � k and y < a, witnesses the

above impli
ation. As the �rst two disjun
tions in the su

edent are false in N,

it a
tually always �nds f

(�1)

(y). That is a 
ontradi
tion with the assumption

that f is one way.

The last part follows after applying the witnessing theorem to S

1

2

+Th

�

b

1

(N).
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q.e.d.

A family h

y

(x) of fun
tions from f0; 1g

`(jyj)

into f0; 1g

`(jyj)�1

is a strongly


ollision-free family of hash fun
tions if there is no polynomial-time fun
tion f

that on y 
omputes x

1

< x

2

2 f0; 1g

`(jyj)

with h

y

(x

1

) = h

y

(x

2

) (
f. [22℄).

Theorem 6.6 Let h

y

(x) be a strongly 
ollision-free family of hash fun
tions.

Then there is a model M of S

1

2

and an in�nite n = 2

`�1

in it su
h that for

some a 2M , h

a

: f0; 1g

`

! f0; 1g

`�1

violates WPHP

2n

n

.

In fa
t, if the hypothesis is satis�ed only in a model N of S

1

2

then M 
an be

a �

b

1

-elementary extension of N .

Proof :

The non-existen
e of su
hM implies that S

1

2

(or S

1

2

+Th

�

b

1

(N) respe
tively)

proves

8y9x

1

; x

2

;x

1

< x

2

^ h

y

(x

1

) = h

y

(x

2

)

Buss's witnessing theorem gives a fun
tion f �nding in polynomial time from y

a 
ollision x

1

< x

2

for h

y

.

q.e.d.

An example of a family of fun
tions 
onje
tured to be strongly 
ollision-free

(unless the dis
rete logarithm is tra
table) is the Cham - van Heijst - P�tzman

family, see [22, Chpt.7℄.

7 Open problems

Surely there are theorems analogous to Theorem 5.1 for other 
ombinatorial

prin
iples. For example, the ontoPHP similarly relates to Tournament prin-


iple: a small dominating set is pulled ba
k by the bije
tion from a smaller

tournament to a bigger one where no su
h small dominating set exists. One

may also turn the argument around and try to prove WPHP by proving (with-

out WPHP) a suitable 
ombinatorial prin
iple, or by redu
ing general WPHP

to the ontoWPHP in this way. I shall try now to formalize this type of potential

new proof of WPHP by the informal notion of stru
tured PHP.

For the rest of the dis
ussion let L be a relational language disjoint from the

language of T

2

. We shall need a suitable 
lass of formulas. Class A 
onsists of

all 2nd order formulas �(n) that have the form:

�(n) := 9X ; jX j � F (n) ^ �(X)

where � is a DNF

2

-formula (see Se
tion 2) with 2nd order quanti�ers ranging

over sets of size (logn)

O(1)

, with all 8 restri
ted to 2nd order variables, and su
h

that:

14



1. F (n) = (logn)

O(1)

and F (n) is de�nable in S

1

2

.

2. There is k � 1 su
h that for arbitrarily large n there is an L-stru
ture A

with n points su
h that A 6j= �(n

k

).

The proof of the following lemma is analogous to the proof of Theorem 5.1.

Lemma 7.1 Let a theory T : S

1

2

(L) � T � T

2

(L) and a proof system P be a

pair for whi
h Theorem 4.1 holds.

Assume that T proves that all L-stru
tures A satisfy �(jAj). Then P admits

subexponential size proofs of WPHP

n

k

n

.

If, moreover, T proves 
ondition 2. above, it proves also WPHP

n

k

n

(f).

In the version of the lemma for ontoWPHP

m

n

the formula � 
an be more

general: � 
an be any 2nd order formula (with 2nd order quanti�ers still ranging

over sets of size (logn)

O(1)

), subformula jX j � F (n) 
an be repla
ed by jX j �

F (n), and 
ondition 2. 
an be 
hanged to

2'. There is k � 1 su
h that for arbitrarily large n there is an L-stru
ture A

with n

k

points su
h that A 6j= �(n).

A more generally aimed question is: Is it easier to prove that f : m !

n 
annot be inje
tive assuming that n (or m) is equipped with a stru
ture

having some parti
ular property? Even more generally, let '(x; y) be a bounded

formula in the language of T

2

(L). Denote by S

'

PHP

m

n

(f) the stru
tured PHP:

If '(m;n) holds then f : m! n 
annot be inje
tive.

Problem 7.2 Is there '(x; y) su
h that

1. There are arbitrarily large n and m � 2n satisfying '(m;n).

2. S

'

PHP

m

n

(f) is provable in T

2

2

(L; f)?

Known methods give negative answer for m = n + 1 and T

2

(L; f), and for

S

2

2

(L; f).

There are few more problems that I �nd interesting and stimulating for

further work. The �rst one is aimed towards the remark before Corollary 6.3.

Problem 7.3 Prove an exponential lower bound on the size of R(2)-proofs of

WPHP

2n

n

.

Mentioning R(2) gives me an opportunity to state a 
onje
ture about the

system. For the de�nition of (monotone) e�e
tive interpolation see [11℄. The

only 
onstant-depth subsystem of LK for whi
h is the status of monotone e�e
-

tive interpolation unknown is the depth 1 subsystem (depth 0 is resolution that

admits monotone e�e
tive interpolation, while depth � 2 subsystems do not -

see [11, Thms. 6.1 and 9.3℄).
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Conje
ture 7.4 R(2) has no (monotone) e�e
tive interpolation.

This is related to our main theme by

Theorem 7.5 ([11, Thm.9.4℄) Either R(id) (i.e. depth 1 LK) does not admit

monotone e�e
tive interpolation or, for any k, WPHP

n

k

n

requires exponential

size R-proofs.

To 
on
lude the paper I turn for a moment to unrelativised WPHP. A very

important open problem (next to the �nite axiomatisability) about (unrela-

tivised) bounded arithmeti
, formulated by A. Ma
intyre some twenty years

ago, 
on
erns the provability of (various version of) PHP for fun
tions de�n-

able in the theory by bounded formulas. Few 
onditional results are known:

PHP

n+1

n

(f) is not provable in any one T

i

2

for all su
h f unless the polynomial-

time hierar
hy 
ollapses (by [14℄, as it would hold that T

i

2

= T

2

), and further

WPHP

2n

n

(f) is not provable in S

1

2

for some polynomial-time fun
tions (e.g. ex-

ponentiation in �nite �elds) unless the RSA 
ryptosystem is not se
ure (
f. [13℄).

However, no un
onditional results are known.

De�nition 7.6 Denote by WPHP

n

2n

the statement that f : n ! 2n 
annot be

onto.

BT is the theory S

1

2

extended by instan
es of WPHP

n

2n

for all polynomial-

time fun
tions f .

BT , a subtheory of T

2

, is a suitable theory in our 
ontext. For example,

T

2

2

(f) 
an be repla
ed by BT (f) in Lemma 6.4.

Problem 7.7 Is the theory BT 8�

b

1

-
onservative over S

1

2

?

By a theorem of A. Wilkie (proved in [10, Thm. 7.3.7℄

4

) the fun
tions

�

b

1

-de�nable in BT are 
omputable in random polynomial time . Thus, as-

suming the existen
e of strong pseudo-random number generators, they are all

polynomial-time. Hen
e witnessing will not distinguish the theories. So, in

e�e
t, the question asks if there are 8�

b

1

-
onsequen
es of BT unprovable in S

1

2

.

In this 
onne
tion it may be interesting to

Problem 7.8 Find a natural extension of EF that would 
orrespond to BT.

The witnessing theorem for BT also implies that a possible redu
tion of

general WPHP to ontoWPHP (looked for via stru
tured PHP) 
annot be en-

tirely trivial. This is an observation pointed out to me by N. Thapen. It was

proved in [13℄ that S

1

2

does not prove WPHP

2n

n

for a parti
ular polynomial-time

fun
tion (modular exponentiation) unless the 
ryptosystem RSA is not se
ure.

4

See http://www.math.
as.
z/~kraji
ek/upravy.html for a 
orre
tion relevant to this


itation.
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The same proof 
ombined with the witnessing theorem for BT shows that even

BT does not prove it, using the average 
ase 
omplexity de�nition of se
urity

of RSA. Hen
e, assuming su
h se
urity of RSA, one 
annot redu
e WPHP

2n

n

to

WPHP

n

2n

, and hen
e to ontoWPHP

2n

n

, in S

1

2

.

The following 
onje
ture suggests how a model not satisfying BT may o

ur.

Let G : f0; 1g

�

! f0; 1g

�

be a pseudo-random number generator that stret
hes

the inputs by one bit and has exponential hardness. Denote byG

`

the restri
tion

of G to inputs of length ` (and similarly f

`

for any fun
tion f).

Conje
ture 7.9 Any model M

n

of the form as earlier, n = 2

`

in M , has a �

b

1

-

elementary extension to a model N of S

1

2

in whi
h there is a map f : f0; 1g

`

!

f0; 1g

`+1

that is �

b

1

-de�nable from G

`

and that violates WPHP

n

2n

(f).

In parti
ular, if strong pseudo-random number generators exists then S

1

2

6=

BT .

As G is a polynomial-time fun
tion and hen
e itself �

b

1

-de�nable, the 
on-

dition on f just means that f is also �

b

1

-de�nable. A referen
e to G thus seems

redundant. However, I believe that there is a 
onstru
tion of f from G uniform

in G and that there are even G for whi
h one 
an take f := G.

Note that the 
onje
ture has also impli
ation for the Extended Frege system

EF. In parti
ular, none of the formulas ky =2 Rng(f)k

`+1

(b), b 2 f0; 1g

`+1

, has

an EF-proof in the model M

n

and hen
e a standard 
ompa
tness argument

yields the next 
orollary.

Corollary 7.10 Assume that G is a strong pseudo-random generator and f is

a fun
tion with properties guaranteed by the 
onje
ture.

Then tautologies ky =2 Rng(f

n

)k

n+1

(b) for b 2 f0; 1g

n+1

n Rng(f

n

), n =

1; 2; : : :, require superpolynomial EF-proofs.
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