1. (5 bodů) Dokažte matematickou indukcí, že pro každé \(n \in \mathbb{N} \) platí
\[
1 \cdot 1! + 2 \cdot 2! + \ldots + n \cdot n! = (n+1)! - 1.
\]
První indukční krok \((n = 1)\): \(1 \cdot 1! = 2! - 1 \) platí.
Druhý indukční krok: Předpokládáme, že pro nějaké \(n \in \mathbb{N} \) platí
\[
1 \cdot 1! + 2 \cdot 2! + \ldots + n \cdot n! = (n+1)! - 1
\]
a chceme dokázat, že platí též
\[
1 \cdot 1! + 2 \cdot 2! + \ldots + n \cdot n! + (n + 1) \cdot (n + 1)! = (n + 2)! - 1. \quad (1)
\]
Podle indukčního předpokladu je levá strana (1) rovna
\[
(n + 1)! - 1 + (n + 1) \cdot (n + 1)! = (n + 1 + 1) \cdot (n + 1)! - 1 = (n + 2)! - 1
\]
a tvrzení je dokázáno.

2. (5 bodů) Spočtěte limitu
\[
L = \lim_{x \to 3} \frac{\sqrt{13 + x} - \sqrt{19 - x}}{\sqrt{x^2 - 4x + 4} - 1}
\]
Výraz vhodně rozšíříme (dvěma výrazy), čímž dostáváme
\[
L = \lim_{x \to 3} \frac{\sqrt{13 + x} + \sqrt{19 - x}}{\sqrt{13 + x} + \sqrt{19 - x}} \cdot \frac{\sqrt{13 + x} - \sqrt{19 - x}}{\sqrt{x^2 - 4x + 4} + 1} \cdot \frac{\sqrt{x^2 - 4x + 4} + 1}{\sqrt{x^2 - 4x + 4} - 1}
\]
Nyní využijeme věty o limitě součinu a toho, že v první z limit je spojitá funkce, takže do ní lze dosadit \(x = 3 \):
\[
\lim_{x \to 3} \frac{\sqrt{x^2 - 4x + 4} + 1}{\sqrt{13 + x} + \sqrt{19 - x}} = \frac{\sqrt{1 + 1}}{\sqrt{16 + 16}} = \frac{1}{4}.
\]
Druhou limitu v součinu musíme ještě upravit s cílem pokrátit člen \((x - 3)\), který se v čitateli i jmenovateli v bodě 3 nuluje:
\[
\lim_{x \to 3} \frac{2x - 6}{x^2 - 4x + 3} = \lim_{x \to 3} \frac{2(x - 3)}{(x - 1)(x - 3)} = \lim_{x \to 3} \frac{2}{x - 1} = 1.
\]
Celkově tedy

\[L = \frac{1}{4} \cdot 1 = \frac{1}{4}. \]

Trochu jiný postup: někteří z vás si všimli, že výraz \(x^2 - 4x + 4 = (x - 2)^2 \), takže můžeme rovnou pracovat s jeho odmocninou. Zde je ovšem malý chytkák: \(\sqrt{x^2 - 4x + 4} = |x - 2| \) a abychom místo toho mohli psát \(x - 2 \) (bez absolutní hodnoty), musíme vědět, že \(x - 2 \) je nezáporné. Tato podmínka je jistě splněná na nějakém dostatečně malém okolí bodu \(x = 3 \), ale pokud jste tam toto nepoznamenali, nebo bez vysvětlení psali \(\sqrt{x^2 - 4x + 4} = x - 2 \), strhával jsem bod.