Projektivní geometrie 1+2, 2025/26

Podmínky zápočtu: Zápočet je za průběžnou aktivitu na cvičeních, s tím že nejsou striktně časově rozlišována cvičení a přednášky - máme je podle potřeby. Aktivita na cvičeních může být jak "z voleje", tak s domácí přípravou. Při nedostatečné aktivitě nebo větším počtu absencí budou zadány domácí úkoly jako kompenzace.

Literatura: V. Hlavatý, Projektivní geometrie I.

Přehled výuky -- zimní semestr:

Datum Téma
29.9. I. Úvod -- projektivní přímka a rovina. Úvod a motivace ke studiu projektivní geometrie. Základní pojmy a axiomy, princip duality. Vztahy mezi různými rovinnými geometriemi (euklidovská, afinní, projektivní). Afinní prostor -- definice, definice středu úsečky; afinní zobrazení, afinita; dělící poměr tří bodů na afinní přímce. Konstrukce zadaného dělícího poměru (na afinní přímce). Afinní zobrazení zachovává dělící poměr. Hodnoty dělícího poměru při permutacích tří bodů.
6.10. Případy trojic, kdy některé hodnoty dvojpoměrů splývají: se dvěma splývajícími body, harmonická, ekvianharmonická. Definice: projektivní přímka RP^1, geometrický bod a jeho aritmetický zástupce, homogenní souřadnice, kanonické vnoření afinní přímky do projektivní přímky, vlastní body a nevlastní bod. Definice: projektivní rovina RP2, kanonické vnoření afinní roviny do projektivní roviny, vlastní a nevlastní body, nevlastní přímka. Duální syntetické pojetí projektivní přímky: body na přímce vs. přímky ve svazku. Dvojpoměr (čtyř vektorů v rovině, čtyř bodů na proj. přímce). Věta o 4 determinantech. Vztah dvojpoměru čtyř vlastních bodů k dělícímu poměru: (ABCD)=(ABC)/(ABD). Je-li čtvrtý bod nevlastní, je dvojpoměr roven dělícímu poměru tří vlastních bodů: (ABCD)=(ABC). Důkaz věty o 4 determinantech. Hodnoty dvojpoměru při permutacích čtyř bodů. Harmonická čtveřice. Konstrukce čtvrtého harmonického bodu. DÚ: vyzkoušet si tuto konstrukci v GeoGebře a ručně při různých konfiguracích bodů.
13.10. Konstrukce čtvrtého harmonického bodu + 2 důkazy ((1) výpočtem dvojpoměrů z projekcí, (2) projektivním trikem přes afinní konstrukci). Duální konstrukce čtvrté harmonické přímky. Projektivní škála na přímce - (pro celočíselné body). Duální konstrukce projektivní škály na svazku přímek. II. Projektivita a perspektivita lineárních soustav. Soustavy bodové, přímkové, sourodé, nesourodé, soumístné, nesoumístné. Definice (syntetická): perspektivita = projekce + duální verze, projektivita = složení perspektivit. (Složení perspektivit (sourodých soustav) není obecně perspektivita, nýbrž projektivita.) Projektivity zachovávají dvojpoměr. Jsou zadané třemi body a jejich obrazy. Perspektivita soustav sourodých nesoumístných je projektivita se samodružným elementem. Projektivita soustav nesourodých; ilustrace na obrázku konstrukce projektivní škály. Věta: sourodé nesoumístné soustavy jsou perspektivní právě když jsou perspektivní s nějakou nesourodou soustavou. Střed perspektivity, přímka perspektivity. Doplňování perspektivit. Věta o direkční přímce.
20.10. Direkční přímka prochází vzorem/obrazem průsečíku daných přímek. U perspektivních bodových soustav prochází direkční přímka průsečíkem daných přímek. Konstrukce: doplňování bodových projektivních soustav nesoumístných a soumístných. Konstrukce: spojení bodu s nepřístupným průsečíkem přímek. Pappova věta o šestiúhelníku. Věta o direkčním bodu. Důsledky: direkčním bodem prochází obraz/vzor spojnice středů daných svazků. U perspektivních přímkových soustav leží direkční bod na spojnici daných bodů. Konstrukce: doplňování přímkových projektivních soustav nesoumístných a soumístných. Konstrukce: průsečík přímky s nenarýsovanou spojnicí bodů. Duální Pappova věta. Samodružné elementy S,T projektivity soumístných soustav. Věta o počtu samodružných elementů. Věta + Definice: Charakteristika projektivity w, w nezávísí na volbě bodu X. Souhlasné a nesouhlasné soustavy. Věta: pro S, T reálné je w>0 resp. <0 pro souhlasné resp. nesouhlasné soustavy. Konstrukce: doplňování projektivity dané dvěma samodr. body a jedním párem.
27.10. Přednáška se nekoná.
3.11. Konstrukce: sestrojení druhého samodr. bodu projektivity dané jedním samodr. bodem a dvěma páry. Případ S=T. Konstrukce*: doplňování projektivity dané dvěma samodr. přímkami a jedním párem - samostudium. Konstrukce*: sestrojení druhé samodr. přímky projektivity dané jednou samodr. přímkou a dvěma páry - samostudium. Definice involuce a věta o jejím ekvivalentním vyjádření. Involuce hyperbolická/eliptická, též degenerovaná parabolická. Hyperb. involuce = reálné samodr. body, nesouhlasné soustavy, eliptická involuce = imaginární samodr. body, souhlasné soustavy. Involuce je určena dvěma páry involuce. Tři různá párování čtyř bodů na přímce - 2x hyp. a 1x elipt. involuce. Konstrukce: sestrojit druhý samodružný bod involuce určené jedním samodr. bodem a jedním párem (je totožná s nalezením 4. harm. bodu). Konstrukce*: sestrojit druhou samodružnou přímku involuce určené jednou samodr. přímkou a jedním párem (je totožná s nalezením 4. harm. přímky) - samostudium. Věta (o bodu na direkční přímce): přímky z lib. bodu na direkční přímce projektivity nesoumístných soustav tvoří vždy páry involuce. Věta* (o přímce procházející direkčním bodem). Konstrukce: doplňování involuce dané dvěma páry involuce třemi způsoby (v bodové verzi, samostudium: v přímkové verzi). Úplný čtyřroh a čtyřstran, vrcholy, strany, diagonální vrcholy a strany. Věta: každá strana čtyřrohu je proťata ostatními stranami ve 4 bodech, které tvoří harm. čtveřici. Věta*: každý vrchol čtyřstranu je spojen s ostatními vrcholy 4 přímkami, které tvoří harm. čtveřici. Věta: na ostatních přímkách vytínají strany čtyřrohu tři páry téže involuce. Věta*: spojnice lib. bodu roviny s protějšími vrcholy čtyřstranu tvoří tři páry téže involuce. Konfigurace čtyřrohu je totožná s konstrukcí 4. harm. bodu; konfigurace čtyřstranu je totožná s konstrukcí 4. harm. přímky.
10.11.
17.11. Státní svátek
24.11.
1.12.
8.12.
15.12.
5.1.