Proj: geom. - 2. přednáška
7.10.2020

Hlavní:
afinní přímka: \(\mathbb{R} \)
- body: \(x \in \mathbb{R} \)
- vektory: \(x \in \mathbb{R} \)
projektivní přímka \(\mathbb{P}^1 \):
\(\mathbb{P}^1 = \{ [v] \mid v \in \mathbb{R}^2 \setminus \{(0,0)\} \} \)
Kanonické snožení \(\mathbb{R} \) do \(\mathbb{P}^1 \)
- body \(x \mapsto [1:x] \) vláknitá body
- vektory \(v \mapsto [0:1] \) nevlastní bod
ale \([0:x] = [0:1] \) pro \(x \neq 0 \)

Přímka kromě více míst maí s přímkou příkonk [1:x], více přímka maí s přímkou společný směr ... bod [0:1]

Uv: 1) existují i jiná množiny odpovídající snožení
- vekt. \(1 \mapsto [1:0] \)
2) Tento obrazec odpovídá
dvojím náhledům na \mathbb{P}^n:
A) \mathbb{P}^n je jen jako
přímka obsahující body
(vlastní + 1 nevu.)
B) \mathbb{P}^n je jen jako
svazek přímek
procházející bodem
(=šedým svazeč)

3) Očividně, to máme dualitu:

4) Rozlišen bodů můžeme
vlastní a nevlastní
svazek vlastnost proj. přímky
je jako takové; je to vlastnost
dvojího náhledu,

Výhoda svazku přímek s
vemá řádovou mno. přímek
Výhoda přímky s body:
je to blížším málem
pojmem „přímky“
Projektivní rovina $\mathbb{R}P^2$

Def.: $\mathbb{R}P^2 = \{ \langle \mathbf{v} \rangle; \mathbf{v} \in \mathbb{R}^3 \setminus \{0,0,0\} \}$

Homožené souřadnice:

$\mathbf{v} = (x_0, x_1, x_2) \in \mathbb{R}^3 \setminus \{0,0,0\}$

$\langle \mathbf{v} \rangle = [x_0 : x_1 : x_2] \quad \text{geom. bod} \quad \mathbf{v} \in \mathbb{R}P^2$

homož. souř.

Opeř.: $\langle \mathbf{v} \rangle = \langle \mathbf{w} \rangle \iff \exists a \in \mathbb{R}, a \neq 0$:

$\mathbf{v} = a \cdot \mathbf{w}$

Kanonické možné affine roviny \mathbb{R}^2

do $\mathbb{R}P^2$ je zobrazení $\mathbb{R}^2 \rightarrow \mathbb{R}P^2$

bod $[x_1, y] \rightarrow [1 : x : y]$;

vektor $(x_1, y) \rightarrow [0 : x : y]$.

Pozn.: 1) Průměr nemůže být s rovinnou p s nímeji průsečík.

Průměr rovinnost s Σ

tedy obrazem Σ souř. roviny

x_1, x_2 s p měj průsneský průsečík...

\Rightarrow Není bod je co mnoho.
2) Lze zavést pojem projektivního podprostoru v \mathbb{RP}^2.

Je-li W podprostor v \mathbb{R}^3 ($W \neq \emptyset$), množinou pak jeho projektivizace je $P(W) = \{ [w] \in \mathbb{RP}^2 \mid w \in W \}$.

Příklad též $P(W)$ je podprostor v \mathbb{RP}^2.

Přitom $\dim P(W) = \dim W - 1$ (to je vlastní definice $\dim P(W)$).

PE: $W=prímka v \mathbb{R}^3 \quad P(W)=\text{geometrická lž} \quad (\dim=1)$

$W=rovina v \mathbb{R}^3 \quad P(W)=\text{proj. prímka} \quad (\dim=2)$

$W=celé \mathbb{R}^3 \quad P(W)=\text{celé } \mathbb{RP}^2 \quad (\dim=3)$

3) Speciálně, většíme-li

$W = \text{rovina } (x_1,x_2) \rightarrow \text{rozměrná}$

$\Rightarrow P(W) = \text{neulostn. prímka}$

$\Rightarrow \text{proto je neulost. prímka opravdu prímkou}$

4) Tuto definici proj. rovina splňuje axiomy proj. geometrie a budeme se na ní pracovat.

5) V rámci \mathbb{RP}^2 musíme obě verze proj. prímky:
Dvojčlen
čtyř bodů na (proj.) přímce
\[(ABCD) = \frac{(ABC)}{(ABD)}\]

to je definice z afinní geometrie.
a ta se mění pro proj. geometrii:
• nemůže být def. dělí počet
• výlučně je to reál. bod.

⇒ Chceme definovat dvojčlen jinak
pomocí arit. zástupce.

Def: Dvojčlen 4 vektorů v rovině
měl by a, b, c, d být 4 vektorů
v \(\mathbb{R}^2\), každé dva jím LN2.

⇒ Žádné ale každé tři jsou LN2.
Tedy ex. čísla \(\alpha_1, \alpha_2, \beta_1, \beta_2 \in \mathbb{R}\)

\[c = \alpha_1 \cdot a + \beta_1 \cdot b\]
\[d = \alpha_2 \cdot a + \beta_2 \cdot b\]

Pak def. dvojčlen
\[(a, b, c, d) = \frac{\alpha_2 \cdot \beta_1}{\alpha_1 \cdot \beta_2}\]

Pozn.: 1) dvojčlen je dobře definován
čísla \(\alpha_i, \beta_i\) jsou jednoznacná
a nenabyvají hodnot (pro \(a, b, c, d\) nulové)

\[0 \ldots \langle a \rangle = \langle c \rangle \ldots \beta_n = 0\]
\[\langle b \rangle = \langle d \rangle \ldots \alpha_2 = 0\]
\[\infty \ldots \langle b \rangle = \langle c \rangle \ldots \alpha_1 = 0\]
\[\langle a \rangle = \langle d \rangle \ldots \beta_2 = 0\]
\[1 \ldots \langle c \rangle = \langle d \rangle \ldots \text{slučit je}
\[\langle a \rangle = \langle b \rangle\]
2) Hodnota dvojproměrné \((a \ b \ c \ d)\) nezávisí na volbě mřížky \(r\) čidelníku \(\beta\) nebo sektorů \(\alpha\):
\[
(r, c) = r \cdot \alpha \cdot a + r \cdot \beta \cdot b \\
\Rightarrow (a \ b \ c \ d) = \frac{a_2 \cdot p \cdot \beta_1}{r_1 \cdot \beta_2} = (a \ b \ c \ d)
\]

\(\Rightarrow\) dvojproměrné je tedy definováno i pro geom. body \(P\).

Tedy při označení \(A = \langle a \rangle\) ...

Def.: \((A \ B \ C \ D) = (a \ b \ c \ d)\)
(dvojproměr 4 body na projekčním přímcí)

3) Tato def. funguje bez ohledu na to, zda RP" můžeme "sestavatelně" nebo jako podprostor v RP², zda je simetrické jako přímka s neol. bodem \(O\) jako průsek.

Def.: pololod \(A_1, B, C, D \in \text{RP}^1\) splývají \((A \ B \ C \ D) = -1\), třeba přímcí, \textit{tj.}:
- body \(A, B, C, D\) tvorí harmonickou četnici
- body \(C, D\) jsou harm. směřky můžou \(A, B\)
- body \(C, D\) jsou harm. oddělovaný body \(A, B\)
- bod \(D\) je čtvrť harm. harmonicky bod k \(A, B, C\)
Věta o 4 determinantech:

1.-li 4 body A, B, C, D vypuštěný
v homog. souřadnicích $A = [a_0: a_1]$, ...

Plní platí:

$$(ABCD) = \begin{vmatrix} a_0 & c_0 & b_0 & d_0 \\ a_1 & c_1 & b_1 & d_1 \\ a_2 & c_2 & b_2 & d_2 \\ a_3 & c_3 & b_3 & d_3 \end{vmatrix}$$

Důkaz: rozepíšeme do souřadnic vektorů

Definice:

$c_0 = \alpha_1 a_0 + \beta_1 b_0$

$c_1 = \alpha_1 a_1 + \beta_1 b_1$

$d_0 = \alpha_2 a_0 + \beta_2 b_0$

$d_1 = \alpha_2 a_1 + \beta_2 b_1$

Cramerovo pravidlo:

$$\alpha_n = \frac{\begin{vmatrix} c_0 & b_0 \\ c_1 & b_1 \end{vmatrix}}{\begin{vmatrix} a_0 & b_0 \\ a_1 & b_1 \end{vmatrix}} \text{ a podobně pro } \alpha_2, \beta_2$$

Definice do def. dvojího poměru

$$(ABCD) = \frac{\alpha_2 \beta_1}{\alpha_1 \beta_2}$$

$a_0 b_0 b_2 c_1$

$a_0 b_0 b_2 c_1$

$\frac{\begin{vmatrix} d_0 & b_0 \\ d_1 & b_1 \end{vmatrix}}{\begin{vmatrix} c_0 & b_0 \\ c_1 & b_1 \end{vmatrix}}$ = to co jistě chcete
Důsledky:

\(B = [a:b] \)

2) \(A_1, B, C \) nesmí být
\(D = D_{oo} = [0:1] \)

\[
\begin{vmatrix}
1 & 1 & 1 & 1 \\
1 & a & 1 & 1 \\
1 & 1 & c & 1 \\
1 & a & 1 & b \\
\end{vmatrix}
= \frac{(c-a)(d-b)}{(d-a)(c-b)} = \frac{(c-a)(d-b)}{(d-a)(c-b)}
\]

\[
\begin{vmatrix}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
\end{vmatrix}
= \frac{(c-a)(d-b)}{(d-a)(c-b)}
\]

\[
\begin{vmatrix}
1 & 1 & 1 & 1 \\
1 & 1 & c & 1 \\
1 & a & 1 & 1 \\
1 & a & 1 & b \\
\end{vmatrix}
= \frac{(c-a)(d-b)}{(d-a)(c-b)}
\]

Tedy: pro \(D \) nemůže být \((A\ B\ C\ D_{oo}) = (ABC) \).

Pozn.: \(D \rightarrow D_{oo} \rightarrow (A\ B\ D) \rightarrow 1 \)

3) Případ \((A\ B\ C\ D_{oo}) = (ABC) = -1 \)

Znamená: \(\checkmark \)

\(\Delta \) horní čtverice

\(C \) je střed \(AB \)

\(\checkmark \)
Nový příklad harmonické čtverice:

4 body v \(\mathbb{R}^2 \): \(a, b, c, d \)

\(c = a + b, \ d = a - b \)

Definice:

\[\begin{align*}
\alpha_1 &= \beta_1 = \alpha_2 = 1 \\
\beta_2 &= -1 \\
\end{align*} \]

\[(a \ b \ c \ d) = \frac{1 \cdot 1}{1 \cdot (-1)} = -1 \]

Možné hodnoty dvojí poměru

při permutaci 4 bodů:

- \((A \ B \ C \ D) = (B \ A \ D \ C) \)
- \((C \ D \ B \ A) = (C \ D \ A \ B) \)

Simultánní prolomení dvojic

kleinova čtyřgrupa

= symetrie malace:

\[\begin{array}{cccc}
A & B & C & D \\
\end{array} \]

resp

\[\begin{array}{cccc}
1+i\sqrt{3} & 1-i\sqrt{3} & \frac{1+i\sqrt{3}}{2} & \frac{1-i\sqrt{3}}{2} \\
\end{array} \]

Někteří body splňují tuto čtvericu

a ty máme následující dělož poměry:

\((A \ B \ C \ D) = \frac{1}{i} \)

\((B \ A \ C \ D) = \frac{1}{d} \)

\((A \ C \ B \ D) = \frac{d}{1} \)

\((B \ C \ A \ D) = \frac{d-1}{d} \)

\((C \ B \ A \ D) = \frac{d}{d-1} \)

Toto tedy odpovídají čtverce, kdy některé hodnoty jsou rovně:

- harmonická čtverce \((-1, 2, 1, \frac{1}{2}) \) [MC]
- dvojí body splňující \((1, 0, 1, 0)\)
- ekviválová harmonická čtverce

\((\frac{1+i\sqrt{3}}{2}, \frac{1-i\sqrt{3}}{2}) \)
Důsledek: však pro harm. čtverce
by mělo být 7 variantních případů:

\[(ABCD) = (BADC) = (DCBA) = (CDAB) =
(BACD) = (ABDC) = (CDBA) = (DCAB) = -1\]

Tudíž: \(D\) je 4. harm. bod k \(A, B, C\) \(\Leftrightarrow\)
\(C \perp \parallel k A, B, D\)
(atd.) Potom, zcela v podobě - obecně

Potom v dalším případě platí:
\[(ABC) < 0 \Leftrightarrow C\text{ mimo } AB\]
\[(A\overline{BC}) > 0 \Leftrightarrow C\text{ mezi } AB\]

proto i pro dvojpoměr platí:
\[(ABCD) > 0 \Leftrightarrow C, D\text{ jsou ne stejné části přímky vyřazené } A, B\]
\[(ABCD) < 0 \Leftrightarrow C, D\text{ jsou v nížnějším části přímky}\]
Konstrukce 4. harmonického bodu

Dány A, B, C na přímce, musí se najít D, tak
\((ABC\overline{D}) = -1 \).

Pozn.: tato konstrukce

nezávisí na volbě

- bodu O
- bodu P \(\in OC \)

(GeoGebra!)

Příkaz: - vložit tuto konstrukce
- dualní konstrukce

O: 1) zkusit v němých polohách body
2) zkusit v GeoGebře