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ABSTRACT At an infinitesimal level, we will give a classification of 1st order
invariant differential operators acting on fields defined over contact projective
geometries and having values in higher symplectic spinors. These fields are sym-
plectic analogues of ordinary spinor fields in Riemannian geometry (the orthogo-
nal case). In particular, we shall present a symplectic analogues of Dirac, twistor
and Rarita-Schwinger operators and other higher spinor operators in the realm
of parabolic geometries of contact projective type.
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1 Introduction

In early 1970’s, a symplectic analogue of spinors was introduced by B.
Kostant [14] in the context of geometric quantization of Hamiltonian me-
chanics. About twenty years later, K. Habermann introduced a symplectic
analogue of the Dirac operator known from Riemannian geometry or clas-
sical Clifford analysis. This operator is now commonly called symplectic
Dirac operator. We will present her Dirac operator as a version of one
special invariant first order differential operator defined in the realm of
projective contact geometries. These geometries are certain Cartan geome-
tries closely related to the symplectic ones. In the projective contact and
symplectic cases, important operators which were studied are acting be-
tween fields with values in infinite dimensional representations, which are
analogous to (higher) orthogonal spinors. See, e.g., Habermann [8], Klein
[13] for the symplectic Dirac operator and Kadlčáková [11] for the symplec-
tic twistor operator. In this article, we will show that these representations
(although infinite dimensional) can be handled for the seeks of the theory
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of first order invariant differential operators in a similar way as the finite
dimensional ones. See, e.g., Slovák, Souček [19] for a treatment of theory
of invariant differential operators for finite dimensional irreducible repre-
sentations. We will introduce the so called higher symplectic spinor repre-
sentations, which are analogues of higher orthogonal spinors, and present
some of their properties.

In the second section, the basic definitions of symplectic Clifford and
Heisenberg algebras, Heisenberg group and the Segal-Shale-Weil represen-
tation of the symplectic Lie group are written. In the third section, higher
symplectic spinors are introduced using irreducible highest weight modules.
Basics on projective contact geometries are treated in the fourth section.
The fifth section is devoted to first order invariant differential operators
acting on fields over projective contact geometry with values in the higher
symplectic spinors and to the classification result at the infinitesimal level.
At the end of the fifth section, three specific examples of such operators
are briefly introduced, namely the analogues of Dirac, twistor and Rarita-
Schwinger operators.

The author of this article was supported by the grant GAČR 201/06/P223
of the Grant Agency of Czech Republic for young researchers. The work is
a part of the research project MSM 0021620839 financed by MŠMT ČR.
Also supported by the SPP 1096 of the DFG.

2 Symplectic Clifford algebras and
Segal-Shale-Weil representation

Let us begin with a definition of symplectic Clifford algebra.
Definition: Let (V, ω0) be a real symplectic vector space of dimension

2n, n ∈ N, 1 i.e., V is a 2n dimensional real vector space and ω0 : V ×
V → R is R -bilinear, antisymmetric and non-degenerate form. Symplectic
Clifford algebra sCℓ(V, ω0) is the following quotient algebra sCℓ(V, ω0) :=
T V/I(V, ω0), where I(V, ω0) is a non-homogeneous two-sided ideal in the
tensor algebra T V generated by v ⊗ w − w ⊗ v − ω0(v, w)1, v, w ∈ V.

Further, we shall choose two Lagrangian subspaces L,L′ ⊆ V of V, such
that V ≃ L ⊕ L′. Let us recall that a Lagrangian subspace L of V is an
n dimensional subspace of V such that ω0|L×L = 0.

In this article, we shall use a special symplectic basis adapted to the
decomposition V = L ⊕ L′. Because the definition of symplectic basis is
not unique in the literature, let us fix one which we will be using in this text.
We call a basis {ei}

2n
i=1 of V symplectic basis of (V, ω0), if ωij := ω(ei, ej)

satisfies ωij = 1 if and only if i ≤ l and j = i+n; ωij = −1 if and only if

1Throughout this article, the symbol N denotes the set of all non-negative integers,
i.e., N = {0, 1, 2, . . . } .
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i > l and j = i−n and finally, ωij = 0 in other cases. For the rest of this
article, we shall fix a specific symplectic basis which will be referred to as
{ei}

2n
i=1 and which satisfy the conditions {ei}

n
i=1 ⊆ L and {ei}

2n
i=n+1 ⊆ L′.

Having any symplectic basis, we can say that sCℓ(V, ω0) is generated
by {ei}

2n
i=1 and 1 obeying the relations

eiej − ejei = ωij1,

for 1 ≤ i, j ≤ 2n. The dimension of sCℓ(V, ω0) is always infinite if the
dimension of the vector space V is bigger then 0.

The associative algebra sCℓ(V, ω0) equipped by the bracket [, ] defined
by [x, y] := xy − yx becomes a Lie algebra. When stressing the Lie alge-
bra structure of sCℓ(V, ω0), we shall denote it by (sCℓ(V, ω0); [, ]). The
Lie subalgebra of (sCℓ(V, ω0); [, ]) consisting of elements of homogeneity
degree less or equal to 1 is called Heisenberg algebra. Let us denote it by
Hn. Thus Hn ≃ R ⊕ (L ⊕ L′) ≃ R ⊕ (Rn ⊕ Rn), if the vector space V is
of dimension 2n. There is also a group structure on Hn, namely

(t, v).(s, w) := (t+ s+
1

2
ω0(v, w), v + w),

(t, v), (s, w) ∈ Hn. The vector space Hn equipped by this group structure
is usually referred to as Heisenberg group. One can easily verify that

(s, v).(t.w).(−s,−v).(−t,−w) = [(s, v), (t, w)]

for (s, v), (t, w) ∈ Hn, i.e., that the commutator in the Heisenberg group
coincides with the Lie algebra bracket in the Heisenberg algebra.

Consider the representation

(π(t, (x, y))f)(z) := e−i(t+ω0(y,z− 1
2
x))f(z − x),

z ∈ L, (t, (x, y)) ∈ Hn and f ∈ L2(L) of the Heisenberg group Hn on the
Hilbert space L2(L) of complex valued Lebesgue square integrable func-
tions defined on the Lagrangian subspace L. This unitary representation
is usually called Schrödinger representation of Hn in the literature.

Theorem: (Stone-von Neumann) Up to a unitary equivalence, there is
exactly one unitary irreducible representation of Hn on L2(L)

π : Hn → Aut(L2(L))

satisfying the condition π(t, 0) = e−itid|L2(L) for all t ∈ R.
Proof. See Folland [5], chapter 1.5. ✷

Using the Schrödinger representation, one can define the following family
of unitary representation of the Heisenberg group Hn on L2(L)

πg(t, v) := π(t, gv),
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g ∈ Sp(V, ω0) and (t, v) ∈ Hn, where we have denoted the symplectic
group of (V, ω0) by Sp(V, ω0). Obviously, Sp(V, ω0) ≃ Sp(2n,R).

Due to the Stone-von Neumann theorem, we have:

πg(t, v) = U(g)π(t, v)U(g)−1

for each g ∈ Sp(V, ω0), (t, v) ∈ Hn and a unitary automorphism U(g) of
the Hilbert space L2(L). The unitary transformations U(g), g ∈ Sp(V, ω0),
satisfy

U(gh) = c(g, h)U(g)U(h)

for g, h ∈ Sp(V, ω0) and some c(g, h) ∈ C. Hence, one has a projective
unitary representation of Sp(V, ω0). It is known that one cannot choose
the operators U(g) in such a way that c(g, h) = 1 for all g, h ∈ Sp(V, ω0),
thus the representation cannot be considered as a true representation of
the symplectic group. But it is well known and not so easy to prove that
one can arrange the coefficients c(g, h) in order c(g, h) ∈ {−1, 1}, i.e.,
the projective representation U : Sp(V, ω0) ∋ g 7→ U(g) can be lifted
to a nontrivial double cover of the symplectic group. This double cover is
usually called metaplectic group and will be denoted by Mp(V, ω0) in this
text. We shall denote the resulting unitary representation by Λ. Thus

Λ : Mp(V0, ω0) → U(L2(L))

(where U(L) is the group of unitary endomorphisms on a Hilbert space L )
is a unitary representation of Mp(V, ω0). For further details, see Kashi-
wara, Vergne [12] or Folland [5]. The representation Λ is usually called
Segal-Shale-Weil representation.

3 Higher symplectic modules

Now, we would like to see the Segal-Shale-Weil representation Λ from the
point of view of highest weight representations of the complex symplectic
Lie algebra sp(V, ω0) of the chosen symplectic vector space (V, ω0) . More
precisely, we will introduce two irreducible representations of the Lie alge-
bra sp(V, ω0) ≃ sp(2n,C) such that their sum could be densely embedded
into the (underlying vector space of the) Segal-Shale-Weil representation.

Let g be a semisimple complex Lie algebra of rank n and h a Cartan
subalgebra of g. Choosing a system Φ+ of positive roots of the root sys-
tem Φ, the system of fundamental weights {̟i}

n
i=1 of g is then uniquely

defined. Thus we have a notion of dominant and integral weight. Recall
that λ ∈ h∗ is called dominant and integral if λ could be written as
λ =

∑n
i=1 λi̟i for λi ∈ N, i = 1, . . . , n. Further, we shall define a vector

δ :=
∑n

i=1̟i, the so called minimal regular weight. For λ ∈ h∗, we will
denote the irreducible highest weight module with highest weight λ by
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L(λ). It is well known that L(λ) is a finite dimensional irreducible module
if and only if λ is dominant and integral. Let Π(λ) be the set of all weights
of L(λ).

In general, for an arbitrary complex semisimple Lie algebra g, a g -
module L is called a weight module if it is an algebraic direct sum L =
⊕

λ Lλ of weight spaces

Lλ = {v ∈ V ; ∀H ∈ h, H.v = λ(H)v},

λ ∈ h∗. The g -module L is called module with bounded multiplicities
if there exists a non-negative integer k ∈ N0, such that for each weight
occurring in the decomposition L =

⊕

λ Lλ, we have dimLλ ≤ k. The
minimal such k is called the degree of L. The g -module L is called
completely pointed if the degree of L is 1.

In the case of g = sp(V, ω0) ≃ sp(2n,C), the Cartan algebra h of g is
isomorphic to Cn. For later use, we shall introduce a basis {ǫi}

n
i=1 of h∗

given by the prescription ̟j =
∑j

i=1 ǫi, j = 1, . . . , n.
Theorem 1: If L is an infinite dimensional completely pointed sp(V, ω0) -

module then L ≃ L(− 1
2̟n) or L ≃ L(̟n−1 −

3
2̟n).

Proof. See Britten, Hooper, Lemire [1]. ✷

It is interesting to realize that the modules L(− 1
2̟n) and L(̟n−1 −

3
2̟n) serve a direct analogy to the spinor modules over complex orthogonal
Lie algebras. Suppose that (W, B) is a 2n dimensional complex vector
space endowed with a bilinear non-degenerate symmetric form B on W,
and denote the complex orthogonal Lie algebra associated to (W, B) by
so(W, B), i.e., so(W, B) ≃ so(2n,C). Now, choose a maximal isotropic

subspace M of W. Then it is well known that for
⊕2n

i=0

∧i
M considered

as a module over the orthogonal group so(W, B) possesses a decomposition

n
⊕

i=0

i
∧

M ≃ S
so
+ ⊕ S

so
−

into two inequivalent irreducible modules Sso
+ and Sso

− which are called
spinor modules. That is one of the easiest ways how the spinor modules
could be defined.

Now, let us focus at the symplectic case. Let us denote the coordinates
on the Lagrangian subspace L wr. to the basis {ei}

n
i=1 by (x1, . . . , xn).

There is a so called Chevalley realization 2 ψ of sp(V, ω0) in the algebra
of differential operators acting on C[x1, . . . , xn] given by the following

2In modern terms, ψ is actually an injective homomorphism of sp(V, ω0) into
EndCC[x1, . . . , xn].
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prescription for the action of coroots Xα, α ∈ Φ, on f ∈ C[x1, . . . , xn]

ψ(Xǫi−ǫi+1
)f = xn−i∂n−i+1f,

ψ(X−(ǫi−ǫi+1))f = xn−i+1∂n−if, i = 1, . . . , n− 1

ψ(X2ǫn
)f = −

1

2
∂2
1f,

ψ(X−2ǫn
)f =

1

2
x2

1f,

where the vectors ǫi, i = 1, . . . , n, were introduced above.
With this realization, C[x1, . . . , xn] becomes a sp(V, ω0) -module as one

can easily realize. Now, consider the module generated by 1; it can be
checked that this is the module L(− 1

2̟n) =: S
sp
+ . The submodule gener-

ated by x1 is the module L(̟n−1 −
3
2̟n) =: S

sp
− . Thus we have obtained

a decomposition of C[x1, . . . , xn] into ”even” and ”odd” polynomials:

⊕∞
i=0 ⊙

i
L = S

sp
+ ⊕ S

sp
− ,

where ⊙iL (the i th symmetric power of L ) denotes the set of homoge-
neous polynomials in the symmetric algebra ⊕∞

i=0 ⊙
i L ≃ C[x1, . . . , xn] of

homogeneity degree i, i ∈ N. Thus the symplectic case is completely anal-
ogous to the orthogonal one: the word antisymmetric should be replaced
by symmetric. We shall call S

sp
+ and S

sp
− basic symplectic spinor modules.

Let us introduce the so called higher symplectic spinors. In the orthogonal
case, each finite dimensional irreducible representation could be obtained
as an irreducible direct summand in some tensor power of the defining
representation or in a tensor product of this summand with one of the
spinor representations. The latter are sometimes called higher spinors. We
would like to translate this fact into the symplectic case. First, let us define
the following set.

A = {

n
∑

i=1

λi̟i;λi ∈ N, i = 1, . . . , n− 1, λn ∈ Z +
1

2
, λn−1 + 2λn + 3 > 0}.

We would like to define higher symplectic spinor modules also as di-
rect summands of a tensor product of a finite dimensional module over
sp(V, ω0) and one of the basic symplectic spinor modules. It is well known
that a tensor product of an irreducible highest weight module and a finite
dimensional module decomposes into a finite direct sum of irreducible sub-
modules, see, e.g., Humphreys [9]. (In Kostant [15], one can find a more
general version of this theorem.) In Britten, Hooper, Lemire [1] the follow-
ing theorem characterizing the highest weight modules which can occur in
the mentioned tensor products is proved.

Theorem 2: Let L be an irreducible highest weight sp(V, ω0) -module,
then the following are equivalent
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1. L is a direct summand of L(− 1
2̟n) ⊗ L(ν) for some integral domi-

nant weight ν ∈ h∗;

2. L is an infinite dimensional module with bounded multiplicities;

3. The highest weight λ of L is in A.

Proof. See Britten, Hooper, Lemire [1] and Britten, Hooper [2].

Thus we may define a higher symplectic spinor module as a module of
the form L(λ) for λ ∈ A.

4 Projective contact geometry

This section is devoted to geometries for which we will define and clas-
sify the invariant differential operators. We start describing the so called
homogeneous model of these geometries. Let (Ṽ, ω̃0) be a 2n+ 2 dimen-
sional symplectic vector space. Consider the action of the symplectic group
G̃ = Sp(Ṽ, ω̃0) on the space Ṽ ≃ R

2n+2 by the defining representation.
This action restricts to a transitive action of G̃ on Ṽ−{0} and factors to
a transitive action on the projective space PṼ ≃ RP

2n+1. Let us denote
the stabilizer of a point in the PṼ by P̃ . It can be checked that P̃ is a
parabolic subgroup of G̃.

In order to gain some information about the group P̃ , let us pass to the
Lie algebra level. First, let us start with the notion of a |k| -grading. A |k| -
grading (k ∈ N ) of a simple real or complex Lie algebra g is a vector space
direct sum decomposition g = g−k ⊕ . . .⊕g−1⊕g0⊕g1⊕ . . .⊕gk such that
[gi, gj ] ⊆ gi+j for i, j ∈ {−k, . . . , k}. 3 It is well known that if g is a |k| -
graded simple Lie algebra, then p := g0⊕ . . .⊕gk is a parabolic subalgebra
of g, see, e.g., Čap, Schichl [4]. Moreover, it is known that for any |k| -
grading, there exists an element Gr ∈ g satisfying [Gr,X ] = jX for all
X ∈ gj and j ∈ {−k, . . . , k}, see again Čap, Schichl [4], for instance. This
element is usually called grading element and its existence follows from
the fact that each derivation in a simple Lie algebra is inner. Further, it is
known that g0 is a reductive Lie algebra.

Now, let us focus our attention at the specific case of the symplectic Lie
algebra g̃ := sp(Ṽ, ω̃0) . Suppose the following grading of g̃ is given:

g̃ = g̃−2 ⊕ g̃−1 ⊕ g̃0 ⊕ g̃1 ⊕ g̃2,

where the the summands g̃i, i ∈ {−2, . . . , 2}, satisfy: g̃2
∼= R , g̃1

∼= R
2n,

g̃0
∼= sp(2n,R) ⊕ RGr ∼= g̃ss

0 ⊕ z̃, where g̃ss
0 denotes the semisimple part

3For |j| > k, we set gj = {0}.
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of the reductive algebra g̃0 and z̃ the center of g̃0. This grading could be
also displayed as follows

sp(Ṽ, ω̃0) = g ∋ A =













g̃0 g̃1 g̃2

g̃−1 g̃0 g̃1

g̃−2 g̃−1 g̃0













with respect to a basis for which ω̃0((z
1, . . . , z2l+2), (w1, . . . , w2l+2)) =

w1z2l+2 + . . . + wl+1zl+2 − wl+2zl+1 − . . . − w2l+2z1. Using this matrix
realization, one can easily check that [g̃i, g̃j ] ⊆ g̃i+j for appropriate i, j.
One can also realize that the restricted Lie bracket [, ] : g̃−1 × g̃−1 → g̃−2

is nondegenerate. A |2| -graded simple Lie algebra f for which dim f−2 = 1
and [, ] : f−1 × f−1 → f−2 is non-degenerate is called contact. It could be
checked that the Lie algebra of the isotropy group P̃ is isomorphic to the
Lie algebra p̃ := g̃0 ⊕ g̃1 ⊕ g̃2 with g̃i, i = 0, 1, 2, introduced above using
the matrix description.

From the geometrical point of view, the groups G̃ and P̃ do not deter-
mine only the homogeneous space G̃/P̃ but also some further structures.
We have already seen one of them at the level of Lie algebras, namely the
so called contact structure. In differential geometry, a contact structure on
a manifold M2n+1 is defined to be a corank 1 subbundle of the tangent
bundle which is non integrable (in the Frobenius sense) in each point of the
underlying manifold. Besides the contact structure on G̃/P̃ ≃ RP

2n+1, one
can also canonically introduce a projective class of partial affine connection
on the contact structure, see Fox [6].

One of the canonical ways how to define a deformation of a homogeneous
space is to use the Cartan idea of espace généralisé. We shall do it for the
specific G̃ and P̃ chosen in the first paragraph of this section. Formally,
projective contact structure is defined to be a pair (G, ω), where G is
a principle fiber bundle over a manifold M2n+1 with a structure group
P̃ , and ω is the so called Cartan connection of type (G̃, P̃ ) , i.e., ω :
TG → g is a differential 1-form satisfying certain properties. (Here, TG
denotes the tangent bundle of the total space G. ) We shall not give a
precise definition of Cartan connection which differs from the definition of
the principal bundle connection, and refer the interested reader to, e.g.,
Sharpe [18] or Čap, Schichl [4].

In our article, we shall consider a general Cartan connection of type
(G̃, P̃ ) of a contact projective geometry.
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5 First order invariant differential operators

From now on, G̃ and P̃ will have the meaning introduced in the pre-
ceding section. Let (G, ω) be a projective contact geometry on a manifold
M2n+1 and suppose two irreducible highest weight representations ρ : P̃ →
Aut(E) and σ : P̃ → Aut(F ) of P̃ on vector spaces E,F are given. Form
the associated vector bundles EM := G ×ρ E and FM := G ×σ F. Let
us denote the vector space of sections of FM → M and EM → M by
Γ(M,EM) and Γ(M,FM), respectively. The process of classification of
first order invariant differential operators

D : Γ(M,EM) → Γ(M,FM)

leads to an investigation of the set

Hom(gss

0
)C(C2n ⊗ E,F),

where the space C2n is considered to be the defining representation of
(gss

0 )C ∼= sp(2n,C) and E and F are the underlying Harish-Chandra mod-
ules of E and F, respectively.

In the case of finite dimensional modules E and F, a connection between
the space of intertwining (gss

0 )C -homomorphisms and the space of 1st order
invariant differential operators is described in Slovák, Souček [19]. For the
case of infinite dimensions, see Krýsl [16] where more details about the
considered modules E and F are explained.

In order to describe the set Hom(gss

0
)C(C2n ⊗E,F), we need a decompo-

sition of the tensor product into (gss
0 )C -modules.

Theorem 3: Let λ ∈ A then

C
2n ⊗ L(λ) =

⊕

κ∈Aλ

L(κ),

where Aλ := A∩ {κ = λ+ ν; ν ∈ Π(̟1)} and Π(̟1) is the set of weights
of the defining representation C2n ≃ L(̟1).

Proof. See Krýsl [16]. ✷

Let us remark that the proof of this decomposition is based on the so
called Kac-Wakimoto formal character formula, see Kac, Wakimoto [10].

Using a Dixmier generalization of Schur lemma, we derive the following
theorem in which all 1st order invariant differential operators are classified
at least at the infinitesimal level. Using the so called minimal globalization
functor (an adjoint functor to the Harish-Chandra forgetful functor), one
is able to describe the set HomG0

(E ⊗ C2n, F ), 4 and thus to classify the
invariant differential operators of first order also at the global level.

4Here, we have denoted the Levi factor of the parabolic group P̃ by G0. In our case,
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Theorem 4: Let λ, µ ∈ A (see section 3) and let L resp. L′ be the
irreducible highest weight p̃C -modules on which the nilpotent part of p̃C

acts trivially, the grading element Gr acts by w ∈ C and w′ ∈ C, respec-
tively, and L and L′ are highest weight sp(2n,C) -modules with highest
weight λ and µ, respectively. Then

Homp̃C(C2n ⊗ L,L′) =

{

C µ ∈ Aλ w = cµλ̟1
= w′ − 1

{0} in other cases,

where

cµλ̟1
:=

1

2
((λ + 2δ, λ) + (̟1 + 2δ,̟1) − (µ+ 2δ, µ)),

element δ is the half-sum of positive roots in sp(V, ω0) (see section 3), and
(, ) is the rescaled Killing form, the normalization is chosen in such a way
that (Gr,Gr) = 1 for the unique grading element Gr.

Proof. See Krýsl [16]. ✷

For a brevity, let us introduce symbol L(λ,w) for the module L defined
in formulation of the the preceding theorem, i.e., the nilpotent part of p̃C

acts trivially on it, the grading element acts by w ∈ C and L(λ,w) is
the irreducible highest weight representation with highest weight λ when
restricted to sp(V, ω0) ≃ sp(2n,C). We shall denote the minimal global-
ization of this module by the same letter.

The last part of this section is devoted to some examples. One can use
theorem 3, to obtain the following decompositions C2n ⊗ S

sp
+

∼= S
sp
− ⊕ Tsp,

where Tsp = L(̟1−
1
2̟n) is the so called symplectic twistor space. Further

C2n ⊗Tsp ∼= L(2̟1 −
1
2̟n)⊕L(− 1

2̟n)⊕L(̟1 +̟n−1 −
3
2̟n)⊕L(̟2 −

1
2̟n).

Due to the previous theorem, there is up to a multiple, only one in-
variant differential operator between the section of bundles associated to
S+ := L(− 1

2̟n,
1+2n

2 ) and S− := L(̟n−1 −
3
2̟n,

3+2n
2 ). Let us say more

precisely how this operator is defined. Let (G, ω) be a contact projective
geometry over a manifold M2n+1. Form the associated bundles S+M and
S−M. Now the symplectic Dirac operator maps the sections of S+M into
the sections of S−M and is given as the composition of the absolute in-
variant derivative ∇ω canonically associated to the Cartan connection ω
followed by a P̃ -invariant homomorphism D from C2n⊗S

sp
+ to S

sp
− , which

is unique up to a constant multiple. For the definition of associated absolute
invariant derivative, see Slovák, Souček [19].

Now, let us briefly mention some other distinguished operators the analo-
gies of which are used in the orthogonal case. The twistor operator corre-
sponds to the projection operator T : C2n ⊗ S

sp
+ → Tsp, and finally the

G0 ≃ Sp(2n,R).
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Rarita-Schwinger operator corresponds to the projection R : C2n ⊗Tsp →
L(̟1 +̟n−1 −

3
2̟n).

In the future, we should investigate a coordinate description of the men-
tioned operators, their spectra and relations to the considered geometric
structure. Let us also remark, that the symplectic Dirac operators are also
used in physics, see Reuter [17] and Green, Hull [7].
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