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Abstract
For a class of co-chain complexes in the category of pre-Hilbert A-modules,

we prove that their cohomology groups equipped with the canonical quotient
topology are pre-Hilbert A-modules, and derive the Hodge theory and, in par-
ticular, the Hodge decomposition for them. As an application, we show that
A-elliptic complexes of pseudodifferential operators acting on sections of finitely
generated projective A-Hilbert bundles over compact manifolds belong to this
class if the images of the continuous extensions of their associated Laplace op-
erators are closed. Moreover, we prove that the cohomology groups of these
complexes share the structure of the fibers, in the sense that they are also
finitely generated projective Hilbert A-modules.
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systems of partial differential equations.

1 Introduction

The Hodge theory is known to hold for any co-chain complex in the category
of finite dimensional vector spaces and linear maps. This theory holds also for
elliptic complexes of pseudodifferential operators acting between smooth sec-
tions of finite rank vector bundles over compact manifolds. See, e.g., Wells [17]
or Palais [12] and the references therein. Let us notice that in this case, the
considered co-chain complexes consist of spaces of smooth sections of the bun-
dles, which are infinite dimensional if the manifold contains more than a finite
number of points.

Let us remark that in connection with renormalization and regularization
of certain quantum theories, Hilbert and Banach bundles of infinite rank enjoy
an increasing interest. See, e.g., the papers on stochastical quantum mechanics
and parallel transport of Prugovečki [13], Drechsler and Tuckey [3], and on spin
foams of Denicola, Marcolli and Zainy al-Yasri [1]. This list of references should
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not be considered as complete. The theory of indices and the K-theory are
well established for a class of the so-called A-Hilbert bundles, and especially
for the subclass consisting of the finitely generated projective ones. See, e.g.,
Mishchenko, Fomenko [6] and the monograph of Solovyov, Troitsky [15].

One of the reasons for writing of this paper is to separate features that are
important for proving the Hodge theory for an algebraically defined and fairly
general class of complexes (specified below) from the ones which are specific for
A-elliptic complexes appearing in differential geometry and analysis on mani-
folds. A further reason is to describe also the topological properties of the Hodge
isomorphism.

Recall that for a C∗-algebra A, a pre-Hilbert A-module U is a left module
over A that is equipped with a map (, )U : U ×U → A which is sesquilinear over
A and positive definite in the sense that firstly, for any u ∈ U , the inequality
(u, u)U ≥ 0 holds in A, and secondly, if (u, u)U = 0, then u = 0. Let us notice
that the product (, )U induces a norm | |U on U . A pre-Hilbert A-module is called
a Hilbert A-module, if it is complete with respect to the norm | |U . Hilbert spaces
are particular examples of Hilbert A-modules for A = C. An A-Hilbert bundle
is, roughly speaking, a Banach bundle whose fibers are Hilbert A-modules.

Let us consider a co-chain complex d• = (Ck, dk)k∈Z, where Ck are pre-
Hilbert A-modules and the differentials dk : Ck → Ck+1 are A-linear and contin-
uous maps with respect to the induced norms. We suppose that the differentials
are adjointable for to may speak about harmonic and co-exact elements. By a
Hodge theory for a given complex, we mean the Hodge decomposition and the
Hodge isomorphism for this complex. The Hodge decomposition is an orthogo-
nal sum decomposition (with respect to of (, )Ck) of each pre-Hilbert A-module
Ck in the complex into the module of harmonic, the module of exact, and the
module of co-exact elements. By a Hodge isomorphism, one usually means a lin-
ear isomorphism of the vector space of harmonic elements and the appropriate
cohomology group. Since the cohomology groups of a complex of pre-Hilbert
A-modules may not be finite dimensional, we demand the isomorphism to be a
homeomorphism. There is one reason more although connected, why we want
the isomorphism to have this additional topological feature. Namely, the coho-
mology groups are quotients by images of the differentials in the complex. Since
the images need not be closed, the cohomology groups need not be Hausdorff
spaces. Let us notice that the Hausdorff property is well known to be equivalent
to the uniqueness of limits of sequences in the considered space and therefore
in physical theories, it seems to be reasonable to demand the ”Hausdorffness”
on each space of measured quantities.

We prove the Hodge theory for the so-called self-adjoint parametrix possess-
ing complexes of pre-Hilbert A-modules. We start dealing with one operator
L : V → V only and prove that the image, ImL, is closed and that the decompo-
sition V = KerL⊕ImL (no closure) holds if L is self-adjoint parametrix possess-
ing. An endomorphism L : V → V is called self-adjoint parametrix possessing if
there exist maps g, p : V → V satisfying 1 = gL+p = Lg+p, Lp = 0 and p = p∗.
After that we handle the case of complexes. To each complex d• = (Ck, dk)k∈N0

of pre-Hilbert A-modules and adjointable differentials, we assign the sequence of
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self-adjoint endomorphisms Li = di−1d
∗
i−1 + d∗i di : Ci → Ci, i ∈ N0, called the

associated Laplace operators. The complexes with self-adjoint parametrix pos-
sessing Laplace operators are called self-adjoint parametrix possessing. Under
the condition that (Ck, dk)k∈N0

is self-adjoint parametrix possessing, we show
that Ci = KerLi ⊕ Im d∗i ⊕ Im di−1 (the Hodge decomposition) and that each
cohomology group Hi(d•, A) of d• is isomorphic to the space KerLi of harmonic
elements as a pre-Hilbert A-module (the Hodge isomorphism). In particular,
the cohomologies of a self-adjoint parametrix possessing complex are Hausdorff
spaces being homeomorphic to kernels of continuous maps. Using these ab-
stract considerations, we prove that the Hodge theory holds also for complexes
D• = (Γ(F k), Dk)k∈N0

of the so-called A-elliptic operators acting on smooth sec-
tions of finitely generated projective A-Hilbert bundles F k, under an assumption
on the image of extensions of the Laplacians 4k = Dk−1D

∗
k−1 +D∗kDk. Suppos-

ing that A is unital, we prove that the cohomology groups of these complexes are
finitely generated and projective. Let us notice that the theory of parametrix
possessing operators is more general then the theory of A-elliptic operators. We
demonstrate this fact by giving an explicit example.

Two properties of C∗-algebras, they share with the complex numbers, appear
to be important for proving the Hodge decomposition at the abstract level.
Namely, we use that for any non-negative hermitian elements a, b of A, the
inequality |a + b|A ≥ |a|A holds, as well as that a + b = 0 implies a = b =
0, where | |A denotes the norm in the C∗-algebra A. For these theorems see,
e.g., Dixmier [2]. In Krýsl [10], the existence of an A-module isomorphism
between the cohomology groups and the space of harmonic elements of the so-
called parametrix possessing complexes (Definition 2 in [10]) is proved. However,
conditions under which this A-module isomorphism is a homeomorphism are not
treated there. Without supposing the self-adjointness, the proof of the existence
of this isomorphism as given in [10] is rather intricate. On the contrary, in the
present paper, the existence of the isomorphism together with determining its
topological character are easy consequences of the Hodge decomposition. Let us
notice that A-elliptic complexes are treated also in Troitsky [16] in connection
with operator indices and K-theory. In the article of Schick [14], one can find
a more geometrically oriented approach to a related subject area (twisted de
Rham complexes, connections and curvature). The cohomology groups and
their topology are not investigated in the two papers mentioned last.

In the second section, we recall notions related to (pre-)Hilbert modules, and
derive several simple properties for projections, orthogonal complementability,
and norm topologies on quotients of these modules. Then we prove that for a
self-adjoint parametrix possessing endomorphism L : V → V, the decomposition
V = KerL⊕ ImL holds (Theorem 3). In the third section, we derive the Hodge
decomposition for self-adjoint parametrix possessing complexes (Theorem 5) and
the existence of the Hodge isomorphism (Corollary 7). In the fourth section, we
recall definitions of A-Hilbert bundles and A-elliptic complexes. In that section,
a theorem on the Hodge theory and a specification of the cohomology groups
for the mentioned class of A-elliptic complexes is proved (Theorem 8). At the
end, we give the example of a self-adjoint parametrix possessing map which is
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not A-elliptic.
Preamble: All manifolds and bundles (total spaces, base spaces, and bundle

projections) are smooth. Base spaces of all bundles are considered to be finite
dimensional. The A-pseudodifferential operators are supposed to be of finite
order. Further, if an index of a labeled object exceeds its allowed range, it is
set to be zero.

2 Parametrix possessing endomorphisms of pre-
Hilbert modules

Let A be a unital C∗-algebra. We denote the involution in A, the norm in A, and
the partial ordering on hermitian elements in A by ∗, | |A, and ≥, respectively.

A pre-Hilbert A-module is firstly a complex vector space U on which A acts.
We consider that A acts from the left, and denote the action by a dot. Secondly,
it has to be equipped with a map (, )U : U ×U → A such that for all a ∈ A and
u, v ∈ U, the following relations hold

1) (a · u, v)U = a∗(u, v)U

2) (u, v)U = (v, u)∗U

3) (u, u)U ≥ 0, and

4) (u, u)U = 0 if and only if u = 0.

Any map (, )U : U×U → A with properties 1–4 is called anA-product. IfA is the
standard normed algebra of complex numbers, properties 3 and 4 are equivalent
to the positive definiteness of (, )U . For a pre-Hilbert A-module (U, (, )U ), one
defines the norm | |U : U → [0,∞) induced by (, )U by the prescription U 3
u 7→ |u|U =

√
|(u, u)U |A. By a pre-Hilbert A-submodule U of a pre-Hilbert

module V, we mean an A-submodule of V which is also a pre-Hilbert module if
equipped with the restriction of the A-product in V to U . In particular, U has to
be closed in V with respect to | |V . By a pre-Hilbert A-module homomorphism
L between pre-Hilbert A-modules U and V, we mean an A-linear map, i.e.,
L(a·u) = a·L(u) for each a ∈ A and u ∈ U that is continuous with respect to the
norms | |U and | |V . We denote the set of pre-Hilbert A-module homomorphisms
of U into V by HomA(U, V ). As usual, EndA(U) denotes the space HomA(U,U).
An adjoint of a pre-Hilbert A-module homomorphism L : U → V is a map L∗

from V to U satisfying for each u ∈ U and v ∈ V the identity (Lu, v)V =
(u, L∗v)U . If the adjoint exists, it is unique, and it is a pre-Hilbert A-module
homomorphism as well. See, e.g., Lance [11]. We hope that denoting the adjoint
of a homomorphism by the same symbol as the involution in A does not cause a
confusion. Quite often in the literature, a pre-Hilbert A-module homomorphism
L : U → V is supposed to be adjointable. We don’t follow this convention. Let
us notice that when we speak of an A-module, we consider it with its algebraic
structure only. Finally, a pre-Hilbert A-module (U, (, )U ) is called a Hilbert
A-module if it is complete with respect to | |U .
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Elements u, v ∈ U are called orthogonal if (u, v)U = 0. When we write a
direct sum V = U ⊕ U ′ where U and U ′ are pre-Hilbert A-submodules of V,
we suppose that the summands are mutually orthogonal. For any pre-Hilbert
A-submodule U of V, we denote by U⊥ the orthogonal complement of U. It
is defined by U⊥ = {v ∈ V |(v, u)V = 0 for all u ∈ U} as one expects. We
call U orthogonally complementable if there exists a pre-Hilbert A-submodule
U ′ ⊆ V such that V = U ⊕ U ′. It is well known that Hilbert, and consequently
pre-Hilbert A-submodules need not be complementable. For it, see, e.g., Lance
[11]. It is easy to realize that for any pre-Hilbert A-submodules U ⊆ V of a
pre-Hilbert A-module W, the operation of taking the orthogonal complement
changes the inclusion sign, i.e.,

U⊥ ⊇ V ⊥. (1)

An element p in EndA(V ) is called a projection if p2 = p. Especially, we do not
require a projection to be self-adjoint.

2.1 Complementability and quotients

We start with the following simple observation. Let p be a projection and let
us denote the A-submodule Im p by U. For each z ∈ U, there exists x ∈ V such
that z = px. Thus, pz = p2x that implies pz = px = z. In other words, if p is a
projection onto an A-submodule U, then its restriction to U is the identity on
U . Further, if V = U ⊕ U ′ and if we set p(xU + xU ′) = xU , where xU ∈ U and
xU ′ ∈ U ′, then p is a projection. We call this map a projection onto U along
U ′. We prove the following simple technical lemma which we will need later.

Lemma 1: Let V be a pre-Hilbert A-module and U be an orthogonally
complementable pre-Hilbert A-submodule of V.

1) If V = U ⊕ U ′ holds for a pre-Hilbert A-module U ′, then U ′ = U⊥, and
the projection p onto U along U⊥ is self-adjoint.

2) If p is a projection in V which is self-adjoint, then Im p is orthogonally
complementable by (Im p)⊥ and p is a projection onto Im p along (Im p)⊥.
Further, 1− p is a self-adjoint projection onto (Im p)⊥ along Im p.

Proof. Because the sum U ⊕U ′ is orthogonal, U ′ ⊆ U⊥. Let x ∈ U⊥ and let
us write it according to the decomposition U ⊕ U ′ as x = xU + xU ′ . We have
(xU , xU )V = (x − xU ′ , xU )V = (x, xU )V − (xU ′ , xU )V = 0 since x ∈ U⊥ and
since U and U ′ are mutually orthogonal. Thus xU = 0 and consequently, x ∈ U ′
which proves the opposite inclusion. Further, for any x ∈ V and y = yU +yU ′ ∈
V, yU ∈ U, yU ′ ∈ U ′, we may write (px, y)V = (xU , yU + yU ′)V = (xU , yU )V =
(x, yU )V = (x, py)V , i.e., p is self-adjoint.

For the second statement, let us set U = p(V ) and U ′ = (1 − p)(V ). From
x = px+ (x− px), which holds for any x ∈ V, we have V = U + U ′. For x ∈ U
and y ∈ U ′, there are u, v ∈ V such that x = pu and y = (1 − p)v. We may
write (x, y)V = (pu, (1−p)v)V = (pu, v)V − (pu, pv)V = (pu, v)V − (p∗pu, v)V =
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(pu, v)V −(p2u, v)V = 0. Thus, the above written sum V = U+U ′ is orthogonal.
Due to Lemma 1 item 1, U ′ = (Im p)⊥. Since for any v ∈ V, p(1 − p)v =
pv− p2v = pv− pv = 0, the projection p kills elements from U ′. Summing up, p
is a projection onto Im p along (Im p)⊥. Since (1− p)2 = 1− p− p+ p2 = 1− p
and (1− p)∗ = 1− p∗ = 1− p, we see that 1− p is a self-adjoint projection. The
operator 1− p projects onto U ′ which equals to (Im p)⊥ as already mentioned.
Further, since (1 − p)pv = pv − p2v = pv − pv = 0 for any v ∈ V, 1 − p is a
projection onto (Im p)⊥ along Im p. �

Let us remark that item 1 of the previous lemma expresses the uniqueness
for the complements of orthogonally complementable pre-Hilbert A-modules.

Now, we focus our attention to quotients of pre-Hilbert A-modules. Let
U ⊆ V be an orthogonally complementable pre-Hilbert A-submodule of a pre-
Hilbert A-module V, and p be the projection onto U⊥ along U. When we speak of
a quotient V/U, we consider it with the quotient A-module structure, and with
the following A-product (, )V/U . We set ([u], [v])V/U = (pu, pv)V , u, v ∈ V. The
map (, )V/U is easily seen to be correctly defined. Firstly, it maps into the set of
non-negative elements of A. Secondly, let us suppose that ([u], [u])V/U = 0 for
an element u ∈ V. Then (pu, pu)V = 0 and consequently, pu = 0. Thus u ∈ U
and therefore [u] = 0 proving that (, )V/U is an A-product. Summing up, in
the case of an orthogonally complementable pre-Hilbert A-submodule U of a
pre-Hilbert A-module V, we obtain a pre-Hilbert A-module structure on V/U .
We shall call this structure the canonical quotient structure. However, let
notice that for a normed space (Y, | |Y ) and its closed subspace X, one usually
considers the quotient space Y/X equipped with the norm | |q : Y/X → [0,∞)
defined by

|[y]|q = inf{|y − x|Y |x ∈ X},

where y ∈ Y and [y] denotes the equivalence class of y in Y/X. We call | |q
the quotient norm. It is well known that if Y is a Banach space, the quotient
equipped with the quotient norm is a Banach space as well.

The following lemma is often formulated for complementable closed sub-
spaces of Banach spaces. Since we shall need it for pre-Hilbert spaces and in
order to stress that the completeness is inessential, we give a detailed proof.

Lemma 2: Let U be an orthogonally complementable pre-Hilbert A-sub-
module of a pre-Hilbert A-module (V, (, )V ). Then

1) the quotient norm | |q coincides with the norm induced by (, )V/U and

2) V/U and U⊥ are isomorphic as pre-Hilbert A-modules.
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Proof. Let p : V → V be the projection onto U⊥ along U. Then p′ = 1 − p
is the projection onto U along U⊥ (Lemma 1). For any v ∈ V, we have

|[v]|2q = infu∈U |v − u|2V
= infu∈U |(v − u, v − u)V |A
= infu∈U |(p′v + pv − u, p′v + pv − u)V |A
= infu∈U |(p′v − u, p′v + pv − u)V + (pv, p′v + pv − u)V |A
= infu∈U |(p′v − u, p′v − u)V + (pv, pv)V |A
= |(pv, pv)V |A = |[v]|2V/U ,

where in the second last step, we used the fact that |a + b|A ≥ |a|A holds for
any non-negative elements a, b ∈ A. This is a direct consequence of the well
known fact that ≥ is compatible with the vector space structure in A. (See, for
instance, Dixmier [2], pp. 18.) Thus, the first assertion is proved.

It is easy to check that Φ : V/U → U⊥, Φ([v]) = pv, is a well defined A-
module homomorphism of V/U into U⊥. Further, let us consider the A-module
homomorphism Ψ : U⊥ → V/U defined by Ψ(u) = [u], u ∈ U⊥. For any u ∈ U⊥,
we have Φ(Ψ(u)) = Φ([u]) = pu = u since p is a projection onto U⊥. For each
[v] ∈ V/U, we may write Ψ(Φ([v])) = Ψ(pv) = [pv]. Because the difference of v
and pv lies in U, we get Ψ ◦Φ = 1|V/U . Thus, Ψ and Φ are mutually inverse and

consequently, V/U and U⊥ are isomorphic as A-modules.
Since the topology generated by | |q and the one generated by | |V/U coincide,

and since Ψ is the quotient map, Ψ is continuous with respect to the induced
norm topologies on (U⊥, (, )V ) and (V/U, (, )V/U ). Further, let N ⊆ U⊥ be an

open subset of U⊥. Then p−1(N) is an open set because p is continuous with
respect to | |V and with respect to the restriction of | |V to U⊥, being a projection
of V onto U⊥ (along U). The set of all [x] ∈ V/U such that x ∈ p−1(N) is an
open subset of V/U as follows from the definition of the quotient topology and
the fact that | |q = | |V/U . Thus, Φ is continuous as well. Summing up, V/U and

U⊥ are isomorphic as pre-Hilbert A-modules. �
Remark 1: Let U be an orthogonally complementable pre-HilbertA-module

of a pre-Hilbert A-module V. Due to Lemma 2, if (V/U, | |q) is a Banach space,
then (V/U, (, )V/U ) is a Hilbert A-module. Further, if V is a Hilbert A-module,
then (V/U, (, )V/U ) is a Hilbert A-module as well.

2.2 Parametrix possessing endomorphisms

Now, we focus our attention to a relationship of the orthogonal complementabil-
ity of images of pre-Hilbert A-module endomorphisms and the property de-
scribed in the following definition.

Definition 1: Let L be an endomorphism of a pre-Hilbert module (V, (, ))V .
We call L parametrix possessing if there exist pre-Hilbert A-module endomor-
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phisms g, p : V → V such that

1 = gL+ p

1 = Lg + p and

Lp = 0,

where 1 denotes the identity on V. We call a parametrix possessing map L
self-adjoint parametrix possessing if L and p are self-adjoint.

Remark 2: The first two equations in Definition 1 will be referred to as
the parametrix equations (for L). Notice that there exist pre-Hilbert A-module
endomorphisms which are not parametrix possessing (see Example 1) and also
such for which the maps g and p are not uniquely determined. Homomorphisms
with the latter property exist already for finite dimensional Hilbert spaces (A =
C). The name ’parametrix’ is borrowed from the theory of partial differential
equations where the operator g is often called the Green function.

In the next theorem, we derive the following splitting property for the self-
adjoint parametrix possessing endomorphisms.

Theorem 3: Let L : V → V be a self-adjoint parametrix possessing en-
domorphism of a pre-Hilbert A-module (V, (, )V ) with the corresponding maps
denoted by g and p. Then

1) p is a projection onto KerL along (Im p)⊥ and

2) V = KerL⊕ ImL.

Proof.

1) Composing the first parametrix equation with p from the right and using
the third equation from the definition of a parametrix possessing endomor-
phism, we get that p2 = p, i.e., p is a projection. Restricting 1 = gL+p to
KerL, we get 1|KerL = p|KerL which implies that KerL ⊆ Im p. Further,

Lp = 0 forces Im p ⊆ KerL. Thus, Im p = KerL. Using Lemma 1 item 2,
p is a projection onto Im p = KerL along (Im p)⊥.

2) Since p is a projection onto Im p along (Im p)⊥, we have the orthogonal
decomposition V = Im p⊕ (Im p)⊥. Using the above derived result Im p =
KerL, we conclude that V = Im p⊕(Im p)⊥ = KerL⊕(KerL)⊥. It is thus
sufficient to prove the equality

(KerL)⊥ = ImL (2)

First, we prove that ImL ⊆ (KerL)⊥. Let y = Lx for an element x ∈ V.
For any z ∈ KerL, we may write (y, z)V = (Lx, z)V = (x, L∗z)V =
(x, Lz)V = 0. Thus, y ∈ (KerL)⊥. Now, we prove that (KerL)⊥ ⊆ ImL.
Let x ∈ (KerL)⊥. Using the second parametrix equation, we obtain Lgx =
(1 − p)x = x since 1 − p is a projection onto (KerL)⊥ (Lemma 1 item
2). Therefore x = Lgx ∈ ImL. Summing up, ImL = (KerL)⊥ and the
equation V = KerL⊕ ImL follows.
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Remark 3: Let us notice that due to Theorem 3, the image of a self-adjoint

parametrix possessing endomorphism is closed (see also Equation 2).
Example 1: We give an example of a self-adjoint Hilbert A-module endo-

morphism which is not self-adjoint parametrix possessing. See, e.g., Lance [11]
for this example in a bit different context. Let us consider the commutative
C∗-algebra A = C([0, 1]) equipped with the supremum norm and the complex
conjugation as the involution. Take V = A = C([0, 1]) with the action given by
the point-wise multiplication, i.e., (f · g)(x) = f(x)g(x), x ∈ [0, 1], f, g ∈ A = V
and the A-product (f, g) = fg ∈ A. The operator L : C([0, 1]) → C([0, 1]) is
given by (Lf)(x) = xf(x), x ∈ [0, 1], f ∈ C([0, 1]), It is obviously self-adjoint,
and thus adjointable. If L were self-adjoint parametrix possessing, we would get
that Im p = KerL according to item 1 in the proof of Theorem 3. The definition
Lf = xf implies that KerL = {f ∈ V |f = 0 on (0, 1]}. Since V consists of
continuous functions, we see that KerL = {f ∈ V |f = 0 on [0, 1]} = 0 ∈ V.
Consequently, Im p = 0 and therefore, p is zero. Now, the parametrix equations
imply that L is bijective. On the other hand, any non-zero constant function in
V is not in the image of L. This is a contradiction. See also Exel [5] for treating
a connected matter in the context of (generalized) pseudoinverses.

3 Hodge theory for self-adjoint parametrix pos-
sessing complexes

In this section, we focus our attention to co-chain complexes d• = (Ck, dk)k∈N0

of pre-HilbertA-modules and adjointable pre-HilbertA-module homomorphisms,
i.e., for each k ∈ N0, the morphism dk : Ck → Ck+1 is supposed to be an ad-
jointable pre-Hilbert A-module homomorphism, and dk+1dk = 0. Let us consider
the sequence of Laplace operators Lk = d∗kdk + dk−1d

∗
k−1, k ∈ N0, associated to

d•. Notice that in concordance with the preamble, L0 equals d∗0d0.
Lemma 4: Let d• = (Ck, dk)k∈N0

be a co-chain complex of pre-Hilbert
A-modules and adjointable pre-Hilbert A-module homomorphisms. Then

KerLk = Ker dk ∩Ker d∗k−1.

Proof. The inclusion KerLk ⊇ Ker dk ∩ Ker d∗k−1 follows directly from the
definition of the Laplace operator Lk. To prove the opposite one, let us con-
sider an element x ∈ KerLk, and let us write 0 = (x, Lkx)Ck = (x, d∗kdkx +
dk−1d

∗
k−1x)Ck = (dkx, dkx)Ck+1 + (d∗k−1x, d

∗
k−1x)Ck−1 . It is known that the in-

tersection of the cone of non-negative hermitian elements in A with the opposite
cone consists only of the zero element. See, e.g., Dixmier [2], Proposition 1.6.1.,
pp. 15 and 16. Thus, (dkx, dkx)Ck+1 = 0 and (d∗k−1x, d

∗
k−1x)Ck−1 = 0, and con-

sequently, dkx = d∗k−1x = 0 due to the positive definiteness of the A-products

in Ck+1 and Ck−1, respectively. �
As announced earlier, we prove the Hodge theory for complexes introduced

in the next definition.
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Definition 2: Let d• = (Ck, dk)k∈N0 be a co-chain complex of pre-Hilbert
A-modules and adjointable pre-Hilbert A-module homomorphisms. We call d•

a parametrix possessing complex if for each k ∈ N0, the associated Laplace
operator Lk is a parametrix possessing pre-Hilbert A-module endomorphism of
Ck. We call d• a self-adjoint parametrix possessing complex if the operators Lk
are self-adjoint parametrix possessing pre-Hilbert A-module endomorphisms for
all k ∈ N0.

Since we suppose that the differentials are pre-Hilbert A-module homomor-
phisms, the associated Laplace operators are pre-Hilbert A-module endomor-
phisms as well. Because the associated Laplace operators Lk are self-adjoint
by their definitions, we could have demanded the maps Lk to be parametrix
possessing and pk to be self-adjoint in the previous definition only.

In the next theorem, the “abstract” Hodge decomposition is formulated. We
use Theorem 3 in its proof.

Theorem 5: Let d• = (Ck, dk)k∈N0
be a self-adjoint parametrix possessing

complex. Then for any k ∈ N0, we have the decomposition

Ck = KerLk ⊕ Im d∗k ⊕ Im dk−1.

Proof.

1) Due to Lemma 4, we have KerLk ⊆ Ker d∗k−1. Therefore using the formu-

las (1) and (2), we get (Ker d∗k−1)⊥ ⊆ (KerLk)⊥ = ImLk. Further, due
to Lemma 4 again, we have KerLk ⊆ Ker dk. Using (1) and (2), we get
(Ker dk)⊥ ⊆ (KerLk)⊥ = ImLk. Summing up, (Ker d∗k−1)⊥+(Ker dk)⊥ ⊆
ImLk.

2) The inclusion Im dk−1 ⊆ (Ker d∗k−1)⊥ holds since for any x ∈ Ck−1 and y ∈
Ker d∗k−1, we have (dk−1x, y)Ck = (x, d∗k−1y)Ck−1 = 0. Similarly, Im d∗k ⊆
(Ker dk)⊥. Combining these two facts with the result of item 1 of this proof,
we get Im dk−1 +Im d∗k ⊆ (Ker d∗k−1)⊥+(Ker dk)⊥ ⊆ ImLk. Now, we show
that the sum Im d∗k + Im dk−1 is orthogonal. Let us take two elements
d∗kx and dk−1z (for x ∈ Ck+1 and z ∈ Ck−1) from Im d∗k and Im dk−1,
respectively. The computation (d∗kx, dk−1z)Ck = (x, dkdk−1z)Ck+1 = 0
shows that Im d∗k and Im d∗k−1 are mutually orthogonal. Summing up,
Im d∗k ⊕ Im dk−1 ⊆ ImLk.

3) It is easy to prove that ImLk ⊆ Im d∗k⊕Im dk−1. Indeed, for any y ∈ ImLk,
there exists x ∈ Ck such that y = Lkx = d∗kdkx+ dk−1d

∗
k−1x = d∗k(dkx) +

dk−1(d∗k−1x) ∈ Im d∗k + Im dk−1. This observation together with item 2
proves that ImLk = Im d∗k ⊕ Im dk−1.

4) Because Lk is a self-adjoint parametrix possessing pre-Hilbert A-module
endomorphism of Ck, we get the equality Ck = ImLk ⊕ KerLk due to
Theorem 3. Substituting for ImLk from item 3 of this proof, we obtain
the decomposition from the statement of the theorem.

�
Remark 4:
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1) In item 3 of the proof of the previous theorem, we obtained for a self-
adjoint parametrix possessing complex d• the decomposition

ImLk = Im d∗k ⊕ Im dk−1.

2) Notice that if d• = (Ck, dk)k∈N0 is a co-chain complex, then its adjoint
(Ck+1, d∗k)k∈N0 is a chain complex as follows from d∗kd

∗
k+1 = (dk+1dk)∗.

Theorem 6: Let d• = (Ck, dk)k∈N0
be a self-adjoint parametrix possessing

complex. Then for any k ∈ N0,

Ker dk = KerLk ⊕ Im dk−1 and

Ker d∗k = KerLk+1 ⊕ Im d∗k+1.

Proof. Due to Theorem 5, we know that the sums at the right hand side in
both rows are orthogonal.

The inclusion KerLk ⊕ Im dk−1 ⊆ Ker dk is an immediate consequence of
the definition of a co-chain complex and of Lemma 4. To prove the opposite
inclusion, let us consider an element y ∈ Ker dk. Due to Theorem 5, there exist
elements y1 ∈ KerLk, y2 ∈ Im dk−1, and y3 ∈ Im d∗k such that y = y1 + y2 + y3.
It is sufficient to prove that y3 = 0. Let z3 ∈ Ck+1 be such that y3 = d∗kz3. We
have 0 = (dky, z3) = (dky1 +dky2 +dky3, z3) = (dky3, z3) = (y3, d

∗
kz3) = (y3, y3)

which implies y3 = 0. Thus, the first equality follows.
The inclusion KerLk+1⊕ Im d∗k+1 ⊆ Ker d∗k follows from Lemma 4 and from

item 2 of Remark 4. To prove the inclusion Ker d∗k ⊆ KerLk+1 ⊕ Im d∗k+1, we
proceed similarly as in the previous paragraph. For y ∈ Ker d∗k, there exist
y1 ∈ KerLk+1, y2 ∈ Im dk, and y3 ∈ Im d∗k+1 such that y = y1 + y2 + y3

(Theorem 5). Let us consider an element z2 ∈ Ck for which y2 = dkz2. We have
0 = (d∗ky, z2) = (d∗ky1 + d∗ky2 + d∗ky3, z2) = (d∗ky2, z2) = (y2, y2). Thus y2 = 0
which proves the equation in the second row. �

Now, for a complex d• = (Ck, dk)k∈N0 of pre-Hilbert A-modules, we consider
the cohomology groups

Hi(d•, A) =
Ker (di : Ci → Ci+1)

Im (di−1 : Ci−1 → Ci)
,

i ∈ N0. Notice that in general, the A-module Zi(d•, A) = Im (di−1 : Ci−1 →
Ci) of co-boundaries need not be orthogonally complementable or even not a
closed subspace of the pre-Hilbert A-module of boundaries Bi(d•, A) = Ker di.
Consequently, the appropriate cohomology group need not be a Hausdorff space
(with respect to the quotient topology). Nevertheless, for self-adjoint parametrix
possessing complexes, we derive the following corollary.

Corollary 7: If d• = (Ck, dk)k∈N0
is a self-adjoint parametrix possess-

ing complex of pre-Hilbert A-modules, then for each i the cohomology group
Hi(d•, A) and the space KerLi ⊆ Ci are isomorphic as pre-Hilbert A-modules.
If d• is a self-adjoint parametrix possessing complex of Hilbert A-modules, then
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for each i, the cohomology group Hi(d•, A) is a Hilbert A-module and in par-
ticular, a Banach space.

Proof. Because of Theorem 6, U = Im di−1 is an orthogonally comple-
mentable submodule of V = Ker di. Thus we may use Lemma 2 item 2 to
conclude that the cohomology group Hi(d•, A) = Ker di/Im di−1 equipped with
the canonical quotient structure is a pre-Hilbert A-module isomorphic to the
orthogonal complement of Im di−1 in Ker di. This complement equals KerLi
thanks to Theorem 6 and the uniqueness for orthogonal complements (Lemma
1 item 1). The second statement follows in the same way using Remark 1. �

Remark 5: The isomorphism Hi(d•, A) ∼= KerLi is the Hodge isomorphism
mentioned in the Introduction.

4 Application to A-elliptic complexes

Let M be a finite dimensional manifold and p : F →M be a Banach bundle over
M with a differentiable bundle structure S. Recall that each Banach bundle has
to be equipped with a Banach structure || || : F → [0,+∞). As it is standard,
we denote the fiber p−1(m) in m by Fm and the restriction of || || to Fm by
|| ||m. A Banach structure is a smooth map from F to R+

0 such that for each
m ∈M, (Fm, || ||m) is a Banach space.

We call a Banach bundle p : F → M with a differentiable bundle structure
S an A-Hilbert bundle if there exists a Hilbert A-module (S, (, )S) and a bundle
atlas A in the differentiable bundle structure S such that

1) for each m ∈ M, the fiber Fm is equipped with a Hilbert A-product,
denoted by (, )m, such that the Banach spaces (Fm, | |m) and (Fm, || ||m)
are isomorphic as normed spaces,

2) for each m ∈ M and each chart (φU , U) ∈ A, M ⊃ U 3 m, the map
φU |Fm

: (Fm, (, )m)→ (S, (, )S) is a Hilbert A-module isomorphism, and

3) the transition maps between all charts in the bundle atlas A are maps into
the group AutA(S) of Hilbert A-module automorphisms of S.

The first condition is set in order the norm | |m varies smoothly with respect to
m ∈M as the Banach structure || || has to do due to its definition.

Let us recall that for two bundle charts φU : p−1(U) → U × S and φV :
p−1(V ) → V × S, their transition map φUV : U ∩ V → Aut(S) (the group
of homeomorphisms of (S, | |S)) is defined by the formula (φU ◦ φ−1

V )(m, v) =
(m,φUV (m)v), where m ∈ U ∩ V and v ∈ S. A homomorphism of A-Hilbert
bundles p1 : F1 →M and p2 : F2 →M is a map R : F1 → F2 between the total
spaces of p1 and p2, such that p2◦R = p1 and such that R is a Hilbert A-module
homomorphism in each fiber, i.e., for any m ∈ M, R|p−1

1 (m) : (F1)m → (F2)m
is a Hilbert A-module homomorphism. An A-Hilbert bundle is called finitely
generated projective if the typical fiber, the Hilbert A-module (S, (, )S), is a
finitely generated and projective Hilbert A-module. See, e.g., Solovyov, Troitsky
[15] for these notions.
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The space Γ(F ) of smooth sections of an A-Hilbert bundle p : F → M
carries a left A-module structure given by (a · s)(m) = a · (s(m)) for a ∈ A,
s ∈ Γ(F ) and m ∈ M. From now on, let us suppose that M is compact and
equipped with a Riemannian metric g. We choose a volume element |volg| on the
Riemannian manifold (M, g). For each t ∈ N0, one then defines an A-product
(, )t of Sobolev type on Γ(F ). The Sobolev completion W t(F ) is the completion
of the space of smooth sections Γ(F ) of F with respect to the norm induced
by (, )t. The Sobolev completion together with the continuous extension of (, )t
form a Hilbert A-module. See Solovyov, Troitsky [15] or Fomenko, Mishchenko
[6] for these constructions. For a different metric or a different choice of the
volume element, one may get different Sobolev completions. However, they are
isomorphic as Hilbert A-modules (see Schick [14]). By definition, the A-product
(, )Γ(F ) on Γ(F ) equals to the restriction of the Hilbert A-product (, )0 on W 0(F )
to Γ(F ).

For a definition of an A-pseudodifferential operator we refer to Solovyov,
Troitsky [15], pp. 79 and 80. For any A-pseudodifferential operator D : Γ(F1)→
Γ(F2), we have the order ord(D) ∈ Z of D, the adjoint D∗ : Γ(F2) → Γ(F1)
of D (Theorem 2.1.37 in [15]), and the continuous extension Dt : W t(F1) →
W t−ord(D)(F2) of D (Theorem 2.1.60, p. 89 in [15]) at our disposal. Only finite
order A-pseudodifferential operators are considered. Note that the adjoint is an
A-pseudodifferential operator and a pre-Hilbert A-module homomorphism, and
that the continuous extension Dt is a Hilbert A-module homomorphism.

Let us denote the cotangent bundle T ∗M → M by π. For an A-pseudo-
differential operator D, one defines the notion of its symbol σ(D) : π∗(F1)→ F2.
See Solovyov, Troitsky [15] pp. 79 and 80 for a definition which generalizes the
classical one. Notice that the cotangent bundle T ∗M is considered with the
trivial A-Hilbert bundle structure, i.e., we set a · αm = αm for each a ∈ A,
αm ∈ T ∗mM, and m ∈M. It is known that σ(D) : π∗(F1)→ F2 is an adjointable
A-Hilbert bundle homomorphism.

Let (pk : F k → M)k∈N0
be a sequence of A-Hilbert bundles over M and let

D• = (Γ(F k), Dk)k∈N0 be a complex of A-pseudodifferential operators in F k,
i.e., Dk : Γ(F k)→ Γ(F k+1) is an A-pseudodifferential operator and Dk+1Dk =
0, k ∈ N0. For each ξ ∈ T ∗M, the sequence σ•(ξ) = (F k, σ(Dk)(ξ,−))k∈N0

is
easily seen to be a complex in the category of A-Hilbert bundles.

Definition 3: A complex D• = (Γ(F k), Dk)k∈N0
of A-pseudodifferential

operators in A-Hilbert bundles is called A-elliptic if σ•(ξ) is an exact complex in
the category of A-Hilbert bundles for each ξ ∈ T ∗M \ {(m, 0) ∈ T ∗M |m ∈M},
i.e., outside the image of the zero section of T ∗M.

In accordance with classical conventions, we denote the Laplace operators Lk
associated to a complexD• = (Γ(F k), Dk)k∈N0

of A-pseudodifferential operators
by 4k. Their orders, ord(4k), will be denoted by rk for brevity.

Remark 6:

1) A single A-pseudodifferential operator D : Γ(E) → Γ(F ) may be consid-
ered as the complex

0→ Γ(E)
D→ Γ(F )→ 0.
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In this case, the definition of an A-elliptic complex coincides with the
definition of an A-elliptic operator as given, e.g., in Solovyov, Troitsky
[15].

2) If D• is an A-elliptic complex, then for each i ∈ N0, the Laplace operator
4i is an A-elliptic operator. See Corollary 10 in Krýsl [10] for a proof.

Next, we prove that certain specified A-elliptic complexes are self-adjoint
parametrix possessing and that, consequently, the Hodge theory holds for them.
We use results from Section 3 and Theorems 8 and 11 from [10] in the proof.

Theorem 8: Let A be a unital C∗-algebra and D• = (Γ(F k), Dk)k∈N0
be

an A-elliptic complex in finitely generated projective A-Hilbert bundles F k over
a compact manifold M. Let us suppose that for each k ∈ N0, the image of the
continuous extension (4k)rk : W rk(F k)→W 0(F k) of the Laplace operator 4k
is closed in W 0(F k). Then for any i ∈ N0

1) Hi(D•, A) is a finitely generated projective Hilbert A-module isomorphic
to Ker4i as a Hilbert A-module

2) Γ(F i) = Ker4i ⊕ ImDi ⊕ ImD∗i−1

3) KerDi = Ker4i ⊕ ImD∗i , and

4) KerD∗i = Ker4i+1 ⊕ ImDi.

Proof. For a self-adjoint A-elliptic operator K : Γ(F )→ Γ(F ) of order r such
that ImKr is closed in W 0(F ), two maps denoted by G and P are constructed
in the proof of Theorem 8 in Krýsl [10]. They satisfy the parametrix equations
(for K) and the equation KP = 0. In the terminology of the current paper,
K is a parametrix possessing pre-Hilbert A-module endomorphism of the pre-
Hilbert A-module (Γ(F ), (, )Γ(F )). The construction of P goes as follows. For
Kr : W r(F ) → W 0(F ), one considers the adjoint (Kr)

∗ : W 0(F ) → W r(F )
and the projection pKer (Kr)∗ of W 0(F ) onto the kernel Ker (Kr)

∗ along the

closed Hilbert A-module ImKr. Thus, according to Lemma 1 item 2, the pro-
jection pKer (Kr)∗ is self-adjoint. The operator P is defined as the restriction of

pKer (Kr)∗ to Γ(F ) ⊆ W 0(F ). Restricting pKer (Kr)∗ to Γ(F ) does not change

its property of being an idempotent and keeps the operator self-adjoint because
the A-product (, )Γ(F ) coincides with the restriction of (, )0 to Γ(F ). Summing
up, P is a projection and a self-adjoint pre-Hilbert A-module endomorphism.
Since K is supposed to be self-adjoint, it is a self-adjoint parametrix possessing
pre-Hilbert A-module endomorphism according to Definition 1.

Now, we prove the theorem. Since 4i = Di−1D
∗
i−1 + D∗iDi is self-adjoint

and A-elliptic (Remark 6 item 2) and since we suppose that Im(4i)ri is closed
in W 0(F i), we may use the conclusion of the previous paragraph for K = 4i,
F = F i and r = ri. Thus, 4i is a self-adjoint parametrix possessing pre-
Hilbert A-module endomorphism. Consequently, D• is a self-adjoint parametrix
possessing complex (Definition 2). Using Theorems 5 and 6, one obtains the
statements in parts 2, 3 and 4.
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Due to Corollary 7, the cohomology group Hi(D•, A) is a pre-Hilbert A-
module isomorphic to the kernel of the Laplace operator 4i. According to The-
orem 11 in [10], Hi(D•, A) is a finitely generated A-module and a Banach space
(with respect to the quotient norm | |q). Consequently (Remark 1), Hi(D•, A)
equipped with the canonical quotient structure is a Hilbert A-module. It is
known that a finitely generated Hilbert A-module over a unital C∗-algebra is
projective. For it see Theorem 5.9 in Frank, Larson [7]. Thus, also item 1 is
proved. �

Remark 7: Notice that the decompositions and the adjoints of the maps
contained in items 2, 3 and 4 of the previous theorem are meant with re-
spect to the A-product (, )Γ(F i) on the pre-Hilbert A-module Γ(F i). Instead
for pre-Hilbert modules we could have formulated Sections 2 and 3 for Hilbert
A-modules only and then derive a theorem parallel to Theorem 8 for the spaces
W 0(F k) and for the appropriate “L2-cohomology” groups.

Remark 8: Let us remark that there are holomorphic Banach bundles
whose Čech cohomology groups are known to be non-Hausdorff. See Erat [4]. We
should mention that the fact that the Čech cohomology groups are considered in
that text makes the situation different from the case of cohomology of complexes
which we study.

In the future, we would like to find a convenient class of Hilbert A-modules
and A-pseudodifferential operators for which the condition on the image of (the
extension of) 4k in Theorem 8 is automatically satisfied.

Remark 9: Non-elliptic and parametrix possessing operator
In this example we show that the notion of a self-adjoint parametrix pos-

sessing operator is more general than the one of an A-elliptic operator. (We will
not always indicate that we speak about homomorphisms or endomorphisms of
Hilbert A-modules and omit the expression ”Hilbert A-module”.) Let U be an
infinite dimensional separable Hilbert space considered as a Hilbert A-module
for A = C and let l : U → U be the orthogonal projection onto a finite di-
mensional subspace V of U. For a compact manifold M, we consider the trivial
A-Hilbert bundle q : U = M × U → M. The projection l can be lifted to the
operator L in the space of smooth sections Γ(U) : L(s)(m) = (m, l(s(m))),
where s ∈ Γ(U) and m ∈ M. It is of order zero, and thus it equals to its sym-
bol. More precisely, its symbol is the map π∗(U) 3 (ξ, τ) 7→ (q(τ), l(pr2τ)),
where pr2 : M × U → U is the projection onto the second component of
the product and ξ ∈ T ∗q(τ)M. This map is obviously not an isomorphism (in

any fiber) of U (out of the zero section of T ∗M). We set g = L on Γ(U) and
(ps)(m) = (m, (1− l)(s(m))). It is trivial to verify that 1 = Lg+ p, 1 = gL+ p,
and p = p∗.
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[13] Prugovečki, E., On quantum-geometric connections and propagators in
curved spacetime, Classical Quantum Gravity 13 (1996), No. 5, pp. 1007–
1021.

[14] Schick, T., L2-index theorems, KK-theory, and connections, New York J.
Math. 11 (2005), pp. 387–443.

[15] Solovyov, Y., Troitsky, E., C∗-algebras and elliptic operators in differential
topology. Transl. of Mathem. Monographs, 192. AMS, Providence, Rhode-
Island, 2001.

[16] Troitsky, E., The index of equivariant elliptic operators over C∗-algebras,
Ann. Global Anal. Geom. 5 (1987), No. 1, pp. 3–22.

[17] Wells, R., Differential analysis on complex manifolds. Graduate Texts in
Mathematics, Vol. 65, Springer, New York (2008).

16


