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Abstract. Since the last two decades, several differential operators appeared
in connection with the so-called oscillatory geometry. These operators act on
sections of infinite rank vector bundles. Definitions of the oscillatory repre-
sentation, metaplectic structure, oscillatory Dirac operator, as well as some
fundamental results of the analysis in C∗-Hilbert bundles are recalled in this
paper. These results are used for a description of the kernel of a certain sec-
ond order differential operator arising from oscillatory geometry and of the
cohomology groups of the de Rham complex of exterior forms with values
in the oscillatory representation.

1. Introduction

In the 60’s, when quantizing solutions to the Klein-Gordon equation, Shale found
a non-trivial projective unitary representation of the symplectic group Sp(V, ω).
(See Shale [19].) Short after, Weil in [23] made it a true representation of the meta-
plectic group, the connected double cover of the appropriate symplectic group. In
this paper, this representation is called the oscillatory representation. The under-
lying vector space of this representation is the Hilbert space S = L2(L) of square
Lebesgue integrable functions on a Lagrangian subspace L of the symplectic space
(V, ω). For a suitable class of symplectic manifolds (M,ω), Kostant used this rep-
resentation to derive a quantization procedure for Hamiltonian mechanics by intro-
ducing the metaplectic structure on M and the oscillatory bundle S → M, often
called the symplectic spinor bundle. See Kostant [13]. The fibers of S are isometri-
cally isomorphic to the carrier S = L2(L) of the oscillatory representation. Using
the oscillatory connection ∇S on S, which is induced by a symplectic connection
∇ on the underlying manifold, Habermann defined a symplectic analogue of the
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classical Dirac operator. (See Habermann [8].) This operator, which we denote by
D and call it the oscillatory Dirac operator acts on sections s ∈ Γ(M,S) of the
oscillatory bundle S.

One can introduce a further operator by the prescription P = i(D̃D−DD̃), where
D̃ is an orthogonal version of D, defined using a compatible almost complex struc-
ture on (M,ω). This operator, acting on Γ(M,S) as well, is elliptic in the sense
that its symbol is an automorphism of S out of the zero-section of the cotangent
bundle. Already on the 2-sphere, the spectrum of P turns out to be unbounded
from both sides, and the kernel of P is infinite dimensional. (See Habermann,
Habermann [9].) This is an exact opposite to what holds for elliptic operators in
finite rank vector bundles over compact manifolds. Since the time of introducing
of P, further elliptic operators appearing in oscillatory geometry were studied and
also similar deflections in their behavior from the behavior of "the classical" ellip-
tic operators were found. By classical operators we mean the ones acting in finite
rank vector bundles. The base manifolds are supposed to be compact. See, e.g.,
Cahen et al. [2] and Korman [11], [12] for a study of Dolbeualt type operators
acting in sections of the (infinite rank) oscillatory bundle. They use the trick of
Habermann, based on a splitting of S into certain finite rank unitary bundles, and
study spectral properties of these "deflective" operators using the representation
theory of compact Lie groups.

We decided to explain the different behavior of these newly appeared operators as
a generalization of the behavior of the classical ones. The structures we use in
order to do this are C∗-algebras, Hilbert C∗-modules and C∗-Hilbert bundles. Our
reference forC∗-algebras is Arveson [1], and for HilbertC∗-modules the text-book
of Lance [17]. For the readers convenience, we recall their definitions in this paper
briefly. For the C∗-Hilbert bundles, we refer, e.g., to Solovyov, Troitsky [20]. A
Hilbert C∗-bundle is a smooth generalization of the notion of "champs continus de
C∗-algèbres" (see Dixmier [3]).

Differential operators acting between sections of C∗-Hilbert bundles and their el-
lipticity can be defined similarly as in the finite rank case, i.e., by partial deriva-
tives in local coordinates and by symbol maps, respectively. Let us mention, that
Fomenko and Mishchenko proved in [6], that the kernels of extensions of elliptic
operators to certain completions of the space of smooth sections are finitely gen-
erated projective Hilbert C∗-modules if the C∗-Hilbert bundles are finitely gener-
ated and projective. In Krýsl [15], these results were used in the case of elliptic
complexes and smooth sections to prove a generalization of the Hodge theory of
elliptic complexes of operators acting in finite rank vector bundles. In the men-
tioned article, the author proves that under a certain condition on the so-called
associated Laplacians, the cohomology groups of an elliptic complex in finitely
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generated projective A-Hilbert bundles over a compact manifold are finitely gen-
erated A-modules and Banach spaces.
As far as we know, the mentioned differently behaved operators were studied with-
out a use of the analysis over C∗-algebras, till yet, and this sort of analysis wasn’t
used in the case of examples of specific complexes for which classical methods
cannot be used. The purpose of this paper is to summarize basic facts on this topic,
and use them for the complex of exterior forms tensored by the oscillatory bundle
and for the operator P. We gain information on the cohomology groups of this
complex and on the kernel of P. Under conditions specified in the text, the kernel
as well as the cohomology groups appear to be finitely generated as C∗-modules
and Banach spaces. Let us notice that we are motivated by the idea of a quantum
theory for fields "displaced in the points of the phase space", and by deformation
and geometric quantization. See e.g. Kostant [13], Fedosov [4] and Habermann,
Habermann [9] for sources of these ideas.
In the second section, we recall notions from symplectic linear algebra, introduce
the oscillatory representation and show some of its applications within harmonic
analysis (eigenvalues of Fourier transform) and its connections with quantum me-
chanics (harmonic operator). The eigenvalues of the Fourier transform are com-
puted there using basic properties of the oscillatory representation (Theorem 2). In
the third section, we collect information on Fedosov and oscillatory geometry, in-
cluding a definition of the oscillatory Dirac operator. The fourth section is devoted
to a repetition of Hodge theory of elliptic complexes in finite rank bundles. The
fifth part of the text starts by a recollection of results of Habermann on the kernel
of P. In the second part of this chapter, we present some basic definitions from
the theory of Hilbert C∗-modules and formulate a theorem on elliptic complexes
in finitely generated projective C∗-Hilbert bundles (Theorem 8). In the last part
of the fifth section, we use this theorem to describe the cohomology groups of de
Rham complex with values in the oscillatory representation (Corollary 9) and the
kernel of P (Corollary 11).

2. Symplectic Linear Algebra and the Oscillatory Representation

Let (V, ω) be a real symplectic vector space of dimension 2n. In particular, ω :
V × V → R is a non-degenerate anti-symmetric bilinear form. We will need
the technical notion of a symplectic basis. This is a basis (ei)

2n
i=1 of V for which

ω(ei, ej) = 1 if and only if i = 1, . . . , n and j = i + n ; ω(ei, ej) = −1 if
and only if i = n + 1, . . . , 2n and j = i − n ; and ω(ei, ej) = 0 otherwise.
Using a process similar to the Gram-Schmidt orthogonalization (one just uses a
symplectic form instead of a scalar product), it is possible to prove the existence
of a symplectic basis. We fix such a basis for the rest of this paper and set ωij =
ω(ei, ej), i, j = 1, . . . , 2n. The numbers ωij are uniquely defined by the equations
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∑2n
k=1 ωikω

jk = δji , i, j = 1, . . . , 2n. With respect to a symplectic basis

(ωij)i,j=1,...,n =

(
0 1
−1 0

)
,

where 0 and 1 denote the n × n zero and unit matrix, respectively. In symplectic
linear algebra, the order of indices i, j in ωij and ωij by which we rise or lower
indices of tensors matters. We use the following convention. If Sab...c...drs...t...u

is a tensor, we denote by Sab...i...d
rs...u the tensor

∑2n
c=1 ω

icSab...c...d
rs...u, and by

Sab...d
rs...

i
...u the tensor

∑2n
t=1 Sab...c...d

rs...t...uωti.

It is well known that the symplectic group

G = Sp(V, ω) = {A : V → V ; ω(Av,Aw) = ω(v, w) for each v, w ∈ V }

is smoothly retractable onto the unitary group U(n), the homotopy group of which
is Z. Thus, Sp(V, ω) has a non-universal connected double covering, the so-called
metaplectic group G̃ = Mp(V, ω). Let us denote the appropriate covering homo-
morphism by λ : Mp(V, ω) −→ Sp(V, ω). Thanks to this 2 : 1 map, the relation-
ship of the group Mp(2n,R) to the group Sp(2n,R) is similar to the one of the
spin group Spin(m,R) to the special orthogonal group SO(m,R), m ∈ N.

2.1. The Segal-Shale-Weil or the Oscillatory Representation

Let us set L = L({ei ; i = 1, . . . , n}). In particular, L is a Lagrangian subspace of
(V, ω), i.e., a maximal isotropic subspace of (V, ω). There exists a distinguished
non-trivial unitary representation ρ of Mp(V, ω) which can be realized, for the
chosen Lagrangian space L, as a homomorphism

ρ : G̃→ U(L2(L)),

where U(L2(L)) denotes the group of unitary operators on the Hilbert space S =
L2(L). Due to its inventors, this representation is known as the Segal-Shale-Weil
representation. Sometimes, it is called metaplectic, symplectic spinor or oscilla-
tory. We use the name oscillatory representation in this text. It is known that this
representation splits into two irreducible submodules, the spaces of odd and even
complex valued square Lebesgue integrable functions on L (modulo the equiva-
lence of being equal almost everywhere). Declaring the chosen symplectic basis
(ei)

2n
i=1 to be orthonormal defines a scalar product g on V. Further, the equation

g(u, v) = ω(u, Jv) determines a linear map J : V → V due to the non-degeneracy
of ω. Its existence can be proved using the basis (ei)

2n
i=1 by defining the matrix of J

with respect to this basis to be equal to the matrix of ω given above and by check-
ing that the defining equation for J and the identity J2 = −1|V are satisfied. The
uniqueness of J (for the chosen g) follows from the non-degeneracy of ω.
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Lemma 1. Let (V, ω) be a symplectic vector space and J : V → V be an endo-
morphism of V such that J2 = −1|V , and such that g(u, v) = ω(u, Jv) (u, v ∈ V )
defines a non-degenerate bilinear form on V. Then

1) J = −J t

2) J ∈ O(V, g) ∩ Sp(V, ω)

Proof: Let us write g(J tu, v) = g(u, Jv) = g(Jv, u) = ω(Jv, Ju) = −ω(Ju, Jv) =
−g(Ju, v) from which, due to the non-degeneracy of g, we get J = −J t, i.e., J is
anti-symmetric.
Further, g(Ju, Jv) = g(u, J tJv) = −g(u, J2v) = g(u, v), thus J is orthog-
onal. Let us compute ω(Ju, Jv) = g(Ju, v) = g(u, J tv) = −g(u, Jv) =
−ω(u, JJv) = ω(u, v) from which J ∈ Sp(V, ω). �

(Note that the endomorphisms J satisfying the assumption of Lemma 1 are called
compatible almost complex structures.) The compatible almost complex structure
J described before Lemma 1 by its matrix representation will be fixed for the rest
of this section. It is known that there exists an element σ ∈ λ−1(J) for which
σ4 = 1 ∈ Mp(V, ω) and ρ(σ) = F−1, where F : L2(L) → L2(L) is the Fourier
transform on L2(L). For convenience of the reader, we present a prescription for ρ
on other elements of G̃. For any g ∈ Sp(V, ω), let g̃ ∈ Mp(V, ω) denote an element
from the two-point set λ−1(g). Further let A ∈ End(L) be symmetric (At = A)
and B ∈ GL(L). Then with respect to the symplectic basis (ei)

2n
i=1, we have

g1 =

(
1 A
0 1

)
, (ρ(g̃1)f)(x) = e−ig(Ax,x)/2f(x)

g2 =

(
B 0
0 (Bt)−1

)
, (ρ(g̃2)f)(x) =

√
detBf(Btx)

g3 =

(
0 1
−1 0

)
, (ρ(g̃3)f)(x) = ±einπ/4F−1f(x),

where f ∈ S and x ∈ L. The elements of type g1, g2 and g3 above generate
Sp(V, ω). (For it, see, e.g., Folland [5].) Item 2 should be understood in the sense
that there exists a branch of the square root, such that the prescription is valid for
all f ∈ S and x ∈ L. The sign in item 3 depends on the choice of g̃3 in λ−1(g3).
The existence of ρ is connected with the Stone-von Neumann theorem on unitary
representations of the Heisenberg group deeply. See, e.g., Habermann, Habermann
[9] and Kashiwara, Vergne [10] or Weil [23] for more information.
For i = 1, . . . , n, we define the following unbounded operator ei. : L2(L) �
L2(L) acting on a dense subspace of L2(L). We set

(ei.f)(x) = ixif(x), (ei+n.f)(x) =
∂f

∂xi
(x),
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where f ∈ L2(L) and x =
∑n

i=1 x
iei. These relations resemble the canonical

quantization prescription. For a general vector v ∈ V,we set v.s =
∑2n

i=1 v
i(ei.s),

where v =
∑2n

i=1 v
iei, i.e., we extend the canonical quantization prescription lin-

early. This so-called symplectic Clifford multiplication satisfies for all v, w ∈ V
and s ∈ S the relation

v.w.s− w.v.s = −iω(v, w)s

as one can check easily on the basis elements for instance. This relation differs
from the one for the orthonormal Clifford multiplication in anti-symmetry of the
left-hand side, a property forced by the anti-symmetry of ω. Moreover, this multi-
plication (of the oscillatory vectors by the phase space vectors) is also equivariant
with respect to G̃, i.e., ρ(g)(v.s) = (λ(g)v).(ρ(g)s) holds for each v ∈ V, s ∈ S
and g ∈ G̃. (See Lemma 1.4.4. in Habermann, Habermann [9], pp 13, for a proof
of this statement.) Note that the symplectic Clifford algebra sCliff(V, ω), defined
as the quotient of the tensor algebra T V =

⊕∞
i=0 V

⊗i by the ideal generated by
non-homogeneous elements of the form v⊗w−w⊗v+iω(v, w)1, is infinite dimen-
sional. We have a canonical isomorphism sCliff(V, ω) ∼=

⊕∞
i=0 S

i(V ) as vector
spaces, where Si(V ) denotes the i-th symmetric power of V. Thus, sCliff(V, ω)
is isomorphic to the space of polynomials on V. However, at the level of alge-
bras, these structures are different since the polynomials are commutative, whereas
sCliff(V, ω) is not.

2.2. Quantum Harmonic Oscillator

Let us form an unbounded operator H : S � S by setting

Hs = −1

2

2n∑
i,j=1

ωij(Jei).ej .s,

where s ∈ S ∩ C2(L). Operator H is independent on the choice of an orthogonal
basis. In coordinates, we have

Hs =
1

2

n∑
i=1

(
− ∂2

∂(xi)2
+ (xi)2

)
s =

1

2
(−4+ ||x||2)s, s ∈ S,

where 4 is the Laplace operator on L and || || is the norm on L, both induced by
the scalar product g restricted to L. The operator H is the quantum Hamiltonian
of the n-dimensional isotropic harmonic oscillator (~ = ω = m = 1). It is known
to be essentially self-adjoint. (See, e.g., Theorem 8.5 in Teschl [21], pp 179.) For
α = (α1, . . . , αn) ∈ Nn0 , the so-called generalized Hermite function hα : L → C
is defined by

hα(x) = hα1(x1) . . . hαn(xn),
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where x =
∑n

i=1 x
iei and hk(x) = ex

2/2 dk

dxk
(e−x

2
), x ∈ R, is the k-th Hermite

function (in variable x). Notice that usually, one chooses a specific normalization
and only the normalized hk(x) are called Hermite functions. It is known that for
each α ∈ Nn0 , the generalized Hermite function hα is an eigenfunction of H with
eigenvalue |α|+ n

2 , where |(α1, . . . , αn)| =
∑n

i=1 αi.

The next result goes back to Norbert Wiener at least. Using the properties of ρ, its
proof becomes almost trivial. (Of course, the analytic work was done in proving
that ρ as given above is a representation.)

Theorem 2. Each eigenvalue of the Fourier transform belongs to the set {±1,±i}
and the set of its eigenfunctions coincides with the set of generalized Hermite func-
tions.

Proof: We have F4 = ρ(σ)4 = ρ(σ4) = ρ(1) = 1|S . Thus, each eigenvalue of F
is an element of the set {1, i,−1,−i}. Further, for s ∈ L2(L) ∩ C2(L), we have

−2FHs = ρ(σ)
2n∑
i,j=1

ωij(Jei).ej .s =
2n∑
i,j=1

ωij(λ(σ)Jei).(ρ(σ)(ej .s))

=
2n∑
i,j=1

ωij(JJei).(λ(σ)ej).(ρ(σ)s) = −
2n∑
i,j=1

ωijei.(Jej).(Fs)

= −
2n∑
i,j=1

ωij(−iω(ei, Jej) + (Jej).ei.)(Fs)

= −
2n∑
i,j=1

ωij(−ig(ei, ej) + (Jej).ei.)(Fs) = −
2n∑
i,j=1

ωij(Jej).ei.(Fs)

=
2n∑
i,j=1

ωij(Jei).ej .(Fs) = −2HFs,

where we used the fact that J2 = −1|V . Thus, we see that the Fourier transform
and the Hamiltonian H commute. Now, let us consider n = 1. Denoting the
eigenvalue (k + 1

2 ) of H corresponding to hk by µk, we have FHhk = µkFhk =
H(Fhk). It is known, that any eigenvector of H is a complex multiple of some
hk with eigenvalue µk. According to the above computation, the vector Fhk is an
eigenfunction of H with eigenvalue µk. Hence, we get Fhk = ckhk for a complex
number ck. For a general n ∈ N and α ∈ Nn0 , we have

Fhα = F(hα1hα2 . . . hαn) = (Fx1hα1) . . . (Fxnhαn)

= cα1 . . . cαnhα1 . . . hαn = chα,
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where c = cα1 . . . cαn and Fxi denotes the Fourier transform in the variable xi,
i = 1, . . . , n. The above factorization of the multi-dimensional Fourier transform
is possible due to the shape of the generalized Hermite functions and the Fubini
theorem. Thus, hα are eigenfunctions of F for each α ∈ Nn0 . Since S equals the
completed (Hilbert) sum

⊕̂∞
k=0(

⊕
α∈Nn0 ,|α|=k

Chα), the theorem follows. �

3. Oscillatory Geometry

Let (M,ω) be a symplectic manifold, i.e., for eachm ∈M, the pair (T ∗mM,ωm) is
a symplectic vector space and dω = 0. Typical examples of symplectic manifolds
are Kähler manifolds or cotangent bundles. There exist compact symplectic man-
ifolds which are not Kähler. Recall, e.g., the Kodaira-Thurston manifold which is
historically the first known example of a compact non-Kähler symplectic manifold.
Due to a theorem of Darboux, for any point m ∈ M, there exists a neighbor-
hood U 3 m and coordinates (q1, . . . , qn, p1, . . . , pn) on U such that ω|U =∑n

i=1 dpi ∧ dqi. Notice, that in the case of a Riemannian manifold (N, g), a simi-
lar local normalization cannot be done in general. (Of course, due to the quadratic
forms inertia theorem, one can do an appropriate normalization point-wise.)

Definition 1. An affine connection ∇ on a symplectic manifold (M,ω) is called
symplectic if ∇ω = 0, and it is called a Fedosov connection if in addition, ∇ is
torsion-free, i.e., T∇(X,Y ) = ∇XY − ∇YX − [X,Y ] = 0 for all vector fields
X,Y ∈ X(M).

As of any covariant derivative, the curvature tensor R∇ of a symplectic or Fe-
dosov connection ∇ is also defined by the formula R∇(X,Y )Z = ∇X∇Y Z −
∇Y∇XZ −∇[X,Y ]Z, where X,Y, Z ∈ X(M). The curvature tensor R∇ of a Fe-
dosov connection possesses symmetries similar however not identical to the ones
of the curvature tensor of a Riemannian connection. Let us define the tensor coor-
dinates Rijkl by setting R(ei, ej)ek = Rijk

lel, where (ei)
2n
i=1 is a local symplectic

frame. We have (see, e.g., Habermann, Habermann [9])

Rijkl = −Rjikl
Rijkl = Rijlk
Rijkl +Rlijk +Rklij +Rjkli = 0.

Note that in Vaisman [22], where the symmetry relations for the curvature of a
Fedosov connection are investigated using the representation theory of symplectic
groups, a different convention for the indices ordering in the completely covariant
form of the tensor R∇ is used.
In the case of a Riemannian manifold (N, g) and its Riemann connection ∇g, the
equation R∇

g
= 0 holds if and only if N is locally isometric to a Euclidean space.
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Let us consider the 2-sphere with a fixed metric. Note that its Riemannian con-
nection is also a Fedosov connection for the volume form of the metric as the
symplectic form. (See also Example 4 below.) We know that the curvature of this
connection is non-zero. However, due to the Darboux theorem, the sphere is lo-
cally isomorphic (symplectomorphic) to the standard symplectic plane. Thus, we
cannot have the same interpretation of the Fedosov connection as of the Riemann-
ian one. Moreover, it is known that the space of Fedosov connections is isomorphic
to the infinite dimensional affine space modeled on the vector space of symmetric
tensor fields of type (3, 0) on M. (See Gelfand, Retakh, Shubin [7].)
Now, let us concentrate to the oscillatory structures. Let (M2n, ω) be a symplectic
manifold. For any point m ∈M, we define

Pm = {b = (e1, . . . , e2n) ; b is a symplectic basis of (T ∗mM,ωm)}
and set P =

⋃
m∈M Pm for the space of symplectic repères. Let p : P → M

denote the foot-point projection. The topology on P is, by definition, the coarsest
one for which p is continuous. Obviously, P is equipped with an appropriate action
of Sp(V, ω) from the right.

Definition 2. Let q : Q → M be a principal Mp(V, ω)-bundle over M and
Λ : Q → P be a surjective bundle homomorphism. A pair (Q,Λ) is called a
metaplectic structure if the following diagram commutes

Q×Mp(V, ω)

Λ×λ

��

// Q

Λ

��

q

��@
@@

@@
@@

M

P × Sp(V, ω) // P

p
??~~~~~~~~

The horizontal arrows in the diagram represent the actions of the appropriate
groups on the corresponding principal bundles.

It is known that for each symplectic manifold (M,ω), there exists a compatible
almost complex structure J : TM → TM, i.e., a map that satisfies J2 = −1|TM
and such that g(X,Y ) = ω(X, JY ), X, Y ∈ X(M), is a Riemannian metric on
M. Further, it is known that (M,ω) admits a metaplectic structure if and only if
the first Chern class c1(TM) of the hermitian bundle (TM, J) is an even element
in the Z-module H2(M,Z), i.e., there exists an element a ∈ H2(M,Z) such that
c1(TM) = 2a. Moreover, the Chern class does not depend on the choice of the
compatible almost complex structure J. If a metaplectic structure exists, the ele-
ments of the set of their equivalence classes are parametrized by the cohomology
group H1(M,Z2). Two metaplectic structures (Q,Λ) and (Q̃, Λ̃) are equivalent if
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there exists a principal bundle isomorphism φ : Q→ Q̃ of the principal Mp(V, ω)-
bundles Q → M and Q̃ → M such that Λ̃ ◦ φ = Λ. See Kostant [13] for results
mentioned in this paragraph.

Remark 3. One can define the so-called complex metaplectic (or Mpc) structure
which in known to exist on any symplectic manifold. See Robinson, Rawnsley [18].

Now, want to proceed from the principal bundles to vector bundles. At any point
m ∈M , we replace Qm = q−1({m}) by S = L2(L), and do it equivariantly with
respect to the representation ρ. Formally, one sets

S = Q×ρ S = (Q× L2(L))/ ∼,

where ∼ is an equivalence relation on Q×L2(L) defined by (r, f) ∼ (t, h) if and
only if r = tg and h = ρ(g)f for an element g ∈ Mp(V, ω), (r, h), (t, f) ∈ Q×S.
We call S →M the oscillatory bundle. The topology, we take on S is the quotient
one.
Because the symplectic Clifford multiplication is equivariant (see section 2.1, it
lifts to the oscillatory bundle. Thus we get a map TM × S → S. Let∇ be a sym-
plectic connection on (M,ω). This connection induces a principal connection on
the principal Sp(V, ω)-bundle P → M. If (M,ω) possesses a metaplectic struc-
ture, we can lift this connection to a principal connection on Q. Any connection
on a principal bundle induces a connection on its associated bundles. In the case
of the bundle Q → M and the associated bundle S → M, we denote the result-
ing connection by ∇S : Γ(M,S) → Γ(M,T ∗M ⊗ S) and call it the oscillatory
derivative. Its curvature is given by the formula

RS(X,Y )s = ∇SX∇SY s−∇SY∇SXs−∇S[X,Y ]s, X, Y ∈ X(M), s ∈ Γ(M,S).

See Habermann, Habermann [9] for more information on the facts in this para-
graph.
The curvature can be computed using the following

Theorem 4. If R∇ is the curvature tensor of a Fedosov connection ∇ of a sym-
plectic manifold (M,ω) admitting a metaplectic structure, then the curvature R

S

of the oscillatory derivative∇S fulfills locally, on a neighborhood U ⊆M,

RSs =
i

2

2n∑
i,j,k,l=1

Rij
klεi ∧ εj ⊗ ek.el.s,

where (εi)
2n
i=1 is the co-frame dual to a symplectic frame (ei)

2n
i=1 on U.

Proof: See Habermann, Habermann [9]. �
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3.1. Oscillatory Dirac Operator

For symplectic geometry, we would like to define a differential operator playing
a similar role as the Dirac operator in Riemannian geometry. Unfortunately, we
cannot expect this operator to have a similar simple interpretation as the Riemann-
ian Dirac operator which can be thought as a square root of the Laplacian, at least
on a plane. The scalar Laplacian in symplectic geometry would be of the local
form

∑2n
i,j=1 ω

ij∂i∂j (with respect to some local Darboux coordinates), which is
the zero map.
A symplectic analogue of the Riemannian Dirac operator was introduced by Haber-
mann in [8] using the oscillatory derivative ∇S . Let us sketch this construction
briefly. Let (M,ω) be a symplectic manifold, ∇ be a symplectic connection and
(Q,Λ), if it exists, be a metaplectic structure on (M,ω). Let S → M denote the
oscillatory bundle and∇S the oscillatory derivative. Then for s ∈ Γ(M,S), we de-
fine the symplectic spinor or oscillatory Dirac operator D : Γ(M,S)→ Γ(M,S)
by the formula D = Y ◦∇S , where Y : Γ(M,T ∗M ⊗S)→ Γ(M,S) is given by
Y (α⊗ s) =

∑2n
i,j=1 ω

ij(ιeiα)ej .s, where α⊗ s ∈ Γ(M,T ∗M ⊗S) and ι denotes
the insertion of a vector field into a differential form. Thus, locally, the oscillatory
Dirac operator is given by the formula

Ds =

2n∑
i,j=1

ωijei.∇Sejs,

where U ⊆ M is a neighborhood in M, s ∈ Γ(U,S) and (ei)
2n
i=1 is a local sym-

plectic frame on (U, ω|U ).

Example 1. For the canonical symplectic vector space (R2n, ω),we haveH2(R2n,Z) =
0. Thus necessarily, c1(TR2n) = 0 which is an even element. Due to the universal
coefficient theorem, we have the exact sequence

0→ Ext(H0(R2n,Z),Z2)→ H1(R2n,Z2)→ Hom(H1(R2n,Z),Z2)→ 0.

Evaluating the homology and cohomology groups, we get 0 → Ext(Z,Z2) →
H1(R2n,Z2) → Hom(0,Z2) → 0, i.e., 0 → 0 → H1(R2n,Z2) → 0 → 0, which
implies H1(R2n,Z2) = {0}. Thus up to an isomorphism, there is only one meta-
plectic structure, and consequently, it is the product one, i.e., Q = Mp(2n,R) ×
R2n → R2n. It follows that S ∼= S × R2n → R2n. Thus, any element s ∈
Γ(R2n,S) can be represented by a function s̃ : R2n × Rn → C by setting
s̃(v, x) = (s(v))(x) for v ∈ R2n and x ∈ Rn. For n = 1, the oscillatory Dirac
operator Ds = e1.∇e2s− e2.∇e1s thus gains the form

Ds̃(p, q, x) = ix
∂s̃

∂q
(p, q, x)− ∂2s̃

∂x∂p
(p, q, x)

See Habermann, Habermann [9], pp 51, for solutions of Ds = 0 in this case.
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4. Elliptic Operators in Finite Rank Bundles

In this section, we recall basic results of Hodge theory for elliptic complexes in
finite rank vector bundles.
Let p : E → M and F → M be two vector bundles over a manifold M. For any
pointm ∈M,we denote the fiber p−1({m}) of E atm by Em. For each differential
operator D : Γ(M, E) → Γ(M,F) of order k ∈ N0, m ∈ M and ξ ∈ T ∗mM , one
defines a symbol σ(D, ξ)(m) : Em → Fm of D in the following way. Let U be
an open neighborhood of m in M, v ∈ Em, e ∈ Γ(U, E) such that e(m) = v
and g : U → C be a function defined on U such that (dg)m = ξ. The symbol
is defined by [σ(D, ξ)(m)]v = [D( ik

k!(g − g(m))ke)](m) ∈ Fm. In particular,
σ(D, ξ)(m) : Em → Fm. One can easily show that the symbol σ(D, ξ) : E → F
is a vector bundle homomorphism. If D is a first order differential operator, its
symbol fulfills [σ(D, ξ)(m)]e(m) = i([D, g]e)(m) = i[D(ge) − gDe](m), e ∈
Γ(M, E), ξm = (dg)m.

Example 2. 1) Exterior differentiation. Let d : Ωi(M) → Ωi+1(M), i =
0, . . . , dimM, be the de Rham differential, α ∈ Ωi(M) and g ∈ C∞(M).
Then d(gα)−gd(α) = dg∧α+gdα−gdα = dg∧α. Therefore σ(d, ξ)α =
iξ ∧ α, i.e., the symbol of the de Rham derivative is basically the exterior
multiplication in direction ξ.

2) Laplace-Beltrami operator. Let (M, g) be a Riemannian manifold, and
4g : C∞(M) → C∞(M) be the Laplace-Beltrami operator associated to
it. Here, the bundle is the trivial line bundle M × R → M. It is known
that σ(4g, ξ)f = −g(ξ[, ξ[)f, f ∈ C∞(M), where ξ[ ∈ TM is defined
by g(ξ[, v) = ξ(v), v ∈ TM. This can be computed, e.g., using the for-
mula 4g = d∗d, where d∗ is the adjoint of d with respect to the scalar
products (f, g) =

∫
M fgvolM and (α, β) =

∫
M g(α[, β[)volM , where

f, g ∈ C∞(M), α, β ∈ Ω1(M) and volM is a volume element of (M, g).

3) Dolbeault operator. Let (M,J) be a complex manifold and ∂ : Ωp,q(M)→
Ωp,q+1(M) be the Dolbeault operator, p, q ∈ N0. Then the symbol σ(∂, ξ)

of ∂ is given by σ(∂, ξ)α = iξ(0,1) ∧ α, α ∈ Ωp,q(M). See Wells [24], pp
117, for details and notation.

We want to study a more general situation, namely that of complexes of differential
operators. We consider the following data

1) a compact manifold M,

2) a sequence (pi : E i →M)i∈N0 of finite rank vector bundles over M and
3) a co-chain complexD• = (Γ(M, E i), Di)i∈N0 of differential operatorsDi :

Γ(M, E i)→ Γ(M, E i+1), i ∈ N0.
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Recall that a sequence

0→ Γ(M, E0)
D0−→ Γ(M, E1)

D1−→ . . .
Dn−1−→ Γ(M, En)

Dn−→ . . .

is called a co-chain complex if Di+1Di = 0 for all i ∈ N0. Next we use the word
complex only.

Definition 3. A complex

0→ Γ(M, E0)
D0−→ Γ(M, E1)

D1−→ . . .
Dn−1−→ Γ(M, En)

Dn−→ . . .

of differential operators is called elliptic if for any m ∈ M and any non-zero
co-vector ξ ∈ T ∗mM \ {0}, the symbol sequence

0→ (E0)m
σ(D0,ξ)(m)−→ (E1)m

σ(D1,ξ)(m)−→ . . .
σ(Dn−1,ξ)(m)−→ (En)m

σ(Dn,ξ)(m)−→ . . .

is exact.

Recall that a complex is called exact if the kernel of each map in the complex
equals the image of the preceding map. Maps from 0 as well as maps into 0 are
zero homomorphisms.

Remark 5. A single differential operator D : Γ(M, E)→ Γ(M,F) is considered

as the complex 0→ Γ(M, E)
D−→ Γ(M,F)→ 0. Consequently, a differential op-

erator is elliptic iff its symbol is an isomorphism, which coincides with the classical
notion of an elliptic operator. Thus the definition of an elliptic complex extends the
classical one.

Example 3. 1) Using the result of item 2 in Example 2, one finds that the
Laplace-Beltrami operator 4g is elliptic since g is positive definite and
since multiplying by a non-zero function is a vector bundle isomorphism.

2) The de Rham complex is elliptic because of the following reasons. Since
σ(d, ξ)α = iξ ∧ α, we have σ(d|Ωi+1(M), ξ) ◦ σ(d|Ωi(M), ξ) = 0 proving
im σ(d|Ωi(M), ξ) ⊆ kerσ(d|Ωi+1(M), ξ). For the opposite inclusion, sup-
pose ξ ∧ β = 0, ξ ∈ T ∗mM and β ∈

∧i T ∗mM, m ∈ M. Applying the
insertion operator ιξ[ on this equation, we get g(ξ[, ξ[)β − ξ ∧ ιξ[β = 0,

i.e., β = (g(ξ[, ξ[))−1ξ ∧ ιξ[β since g(ξ[, ξ[) 6= 0 for ξ 6= 0. Thus,
β ∈ imσ(d, ξ), proving the ellipticity of the de Rham complex.

2) It can be proved that the Dolbeault complex is elliptic as well. See Example
2.6 in Wells [24], pp 117, for instance.

The cohomology group of a complexD• = (Γ(M, E i), Di)i∈N0 is the vector space

H i(D•,C) =
ker(Di : Γ(M, E i)→ Γ(M, E i+1))

im(Di−1 : Γ(M, E i−1)→ Γ(M, E i))
.
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Notice, that we do not know whether this vector space is a topological vector space
because the denominator is not closed a priori. In particular, H i(D•,C) need not
be a Hausdorff space.
Suppose now, that a compact manifold M equipped with a Riemannian metric g,
and a sequence (pi : E i → M)i∈N0 are given such that for any i ∈ N0, each
fiber of E i is equipped with a scalar product, which varies smoothly when go-
ing through the individual fibers. These metric structures enable us to make ad-
joints of differential operators acting in sections of E i. Therefore to any complex
D• = (Γ(M, E i), Di)i∈N0 of differential operators in vector bundles over M , we
may associate a sequence 4i = Di−1D

∗
i−1 + D∗iDi of the so-called associated

Laplacians.
Now, we recall the following result, the core of the Hodge theory, on elliptic com-
plexes of operators acting in sections of finite rank vector bundles over compact
manifolds. For a proof, see Theorem 4.12 in Wells [24], pp 141.

Theorem 6. Let M be a compact manifold, (pi : E i → M)i∈N0 be a sequence
of finite rank vector bundles over M and D• = (Γ(M, E i), Di)i∈N0 be an elliptic
complex of differential operators. Then for each i ∈ N0,

1) dim (Ker4i) < +∞ and
2) Hi(D•,C) ' Ker4i as vector spaces.

Remark 7. Notice that especially, H i(D•,C) is a Banach space. The property
of being finite dimensional and complete can be seen as inherited from the fibers,
which possess both of these properties.

5. Analysis over C∗-Algebras

We start by giving a definition of a certain second order elliptic operator acting
in the oscillatory bundle and present some quantitative information on its kernel
computed by Habermann. Despite its ellipticity, its kernel is infinite dimensional.
We follow the presentation in Habermann, Habermann [9].
Let J be a compatible almost complex structure on a symplectic manifold (M,ω)
and let g denotes the corresponding Riemannian metric on M, i.e., g(X,Y ) =
ω(X, JY ), X, Y ∈ X(M). Suppose that ∇ is a symplectic connection and that
(M,ω) admit a metaplectic structure. Then one can define an operator D̃ by the
following local formula

D̃s = gijei.∇Sejs,
where (ei)

2n
i=1, is a symplectic frame on (U, ω|U ), (gij) is the inverse of (gij) =

g(ei, ej), i, j = 1, . . . , 2n, and s ∈ Γ(M,S). We set P = i(D̃D − DD̃). This
operator turns out to be elliptic. Namely, its symbol σ(P, ξ)(m) is the multipli-
cation of elements in Sm by −g(ξ[, ξ[) which is an isomorphism of Sm for any
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0 6= ξ ∈ T ∗mM. For a computation of the symbol, see Corollary 5.1.4. in Haber-
mann, Habermann [9], pp 68.

Example 4. LetM = S2 be the two dimensional sphere considered as the complex
projective space CP1 equipped with the chordal metric h(z) = (1 + |z|2)−2dz2.
The volume form ω (of the chordal metric) is a symplectic form since it is non-
degenerate and a two-form. Thus, (S2, ω) is a symplectic manifold. Computing
the curvature of the Riemannian connection of the chordal metric and using the
Weil definition of Chern classes, we get

c1(TM) =

[
i

π(1 + |z|2)2
dz ∧ dz

]
∈ H2(M,R).

(See Wells [24], pp 95.) Using polar coordinates, one easily computes that
∫
S2 c1(TM) =

2 due to which c1(TM) is an even class. For a calculation of the isomorphism
classes of metaplectic structures on (S2, ω), we use the universal coefficient the-
orem as we did in the case of (R2n, ω), getting 0 → H1(S2,Z2) → 0 since
H0(S2,Z) = Z and H1(S2,Z) = 0. Thus there exists only one metaplectic struc-
ture Q on the sphere. For its (homogeneous) realization see Habermann, Haber-
mann [9]. Associating the oscillatory representation to the principal Mp(2,R)-
bundle of the metaplectic structure, we get S ∼= S × S2 → S2.

The Riemannian connection ∇ of the chordal metric is torsion-free and preserves
the symplectic form ω, since ω is a volume form for h. Therefore (S2, ω,∇) is
a Fedosov manifold. The construction of Habermann applies and we have the
oscillatory Dirac operator on D : Γ(S2,S) → Γ(S2,S) and also the operator
P : Γ(S2,S)→ Γ(S2,S) at our disposal.

The decomposition L2(R) = S =
⊕̂∞

k=0Chk (mentioned already in Section 2.2)
translates to the bundle level as S =

⊕̂∞
k=0Sk, where Sk denotes the line bundle

corresponding to the vector space Chk. When one restricts the oscillatory repre-
sentation ρ : Mp(2,R) → U(L2(R)) to the λ-preimage of U(1) ⊆ Sp(2,R), S
decomposes exactly into the spaces Chk, which are irreducible with respect to the
group λ−1(U(1)). Using harmonic analysis for compact groups, Habermann was
able to compute (see Habermann, Habermann [9]) eigenvalues of P. In particular,
she obtained a monotone sequence (li)

∞
i=0 such that ker P ∩ Γ(S2,Sli) 6= 0 and

dim(ker P∩ Γ(S2,Sli)) = 2(i+ li + 2). Consequently, the kernel of P is infinite
dimensional.

We might say that the infinite dimensionality of the kernel contradicts Theorem 6
if the fibers of S were finite dimensional. Since only the finite rank condition was
not satisfied in the studied example, it is natural to ask how one can modify this
assumption to still obtain an information on the cohomology groups. This will be
done in the next section.
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5.1. C∗-Algebras and Hilbert C∗-Modules

We generalize Theorem 6 to the case of finitely generated projective A-Hilbert
bundles, where A is a unital C∗-algebra. We keep the compactness assumption on
the underlying manifold. Let us start by a definition of a C∗-algebra.

Definition 4. An associative algebra A over C with a norm | | : A → R+
0 and a

vector space antihomomorphism ∗ : A→ A is called a C∗-algebra if

1) |ab| ≤ |a||b| for all a, b ∈ A,
2) ∗ : A→ A is an antiinvolution,
3) |a|2 = |aa∗| for all a ∈ A, and
4) (A, | |) is a Banach space.

Example 5. 1) Let A = C0
c (X) be the algebra of complex valued functions

vanishing at infinity, on a locally compact Hausdorff space X with the
point-wise multiplication. The involution ∗ : A→ A is defined by f∗(x) =

f(x), x ∈ X, and the norm |f | = sup{|f(x)| ; x ∈ X} is the supremum
norm, f ∈ A. Then A is a (commutative) C∗-algebra.

2) Let H be a Hilbert space and A = End(H) be the algebra of continuous
endomorphisms ofH with the product being the composition of maps. The
involution is A∗ = A† (the adjoint of A). In order ∗ is everywhere defined,
we suppose thatH is separable. Finally, the norm is given by

|A| = sup{|Af |H
|f |H

; f ∈ H, f 6= 0},

where | |H is the norm induced by the scalar product on H. The norm | | is
well defined since any continuous operator in a Hilbert space is bounded.

3) A = Mat(Cn), A∗ = A†, |A| = max{|λ| ; λ is an eigenvalue of A} is a
special case of the preceding example as one learns in courses of functional
analysis.

>From now on, we suppose that A contains a unit, 1a = a1 = a. Then for each
element a ∈ A, the spectrum spec(a) of a is defined by

spec(a) = {λ ∈ C ; a− λ1 does not possess an inverse} ⊆ C.

We set A+
0 = {a ∈ A ; a = a∗ and spec(a) ⊆ R+

0 } (for the set of non-negative
elements in A). Now, let us define a generalization of Hilbert spaces, the Hilbert
C∗-modules.

Definition 5. LetU be a vector space with a left action of aC∗-algebraA. Suppose
that there exists a map (, )U : U × U → A such that for each u, v, w ∈ U, a ∈ A
and r ∈ C,
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1) (u+ rv, w)U = (u,w)U + r(v, w)U ,

2) (a.u, v)U = a(u, v)U ,

3) (u, v)U = (v, u)∗U ,

4) (u, u)U ∈ A+
0 , and

5) if (u, u)U = 0, then u = 0.

Then the pair (U, (, )U ) equipped with the topology induced by the norm | |U : u ∈
U 7→ |(u, u)U |1/2A ∈ R+

0 is called a pre-Hilbert A-module. If this topology is
complete, (U, (, )U ) is called a Hilbert A-module.

Let us notice, that | |A denotes the norm on the C∗-algebra A. The map (, )U :
U ×U → A satisfying the conditions above is called an A-product. If (U, (, )U ) is
a Hilbert A-module, we call (, )U a Hilbert A-product.
Homomorphisms L : U → V between pre-Hilbert A-modules U, V are supposed
to be A-linear, i.e., for each a ∈ A and u ∈ U, L(a.u) = a.L(u), and con-
tinuous with respect to the topologies induced by | |U and | |V . An adjoint of a
pre-Hilbert A-module homomorphism L : U → V is a map L∗ : V → U satis-
fying (Lu, v)V = (u, L∗v)U for each u ∈ U, v ∈ V. The adjoint of a pre-Hilbert
A-module homomorphism need not exist. If it exists, it is unique and moreover, it
is a pre-Hilbert module homomorphism. For it, see, e.g., Lance [17], pp 8.
When we consider a pre-Hilbert A-submodule V of a pre-Hilbert A-module U, we
suppose that in particular, it is closed in U and the A-product in V is the restriction
of the A-product in U. For any pre-Hilbert A-submodule V ⊆ U, we set V ⊥ =
{u ∈ U | (u, v)U = 0 for all v ∈ V }. Unfortunately, it is not in general true that
V ⊕ V ⊥ = U. A Hilbert A-module U is called finitely generated projective, if
U ⊕ U⊥ ∼= An, where An is the direct sum of n copies of A. In more detail,
An = A⊕ . . .⊕A︸ ︷︷ ︸

n

as a vector space, the action is given by a.(a1, . . . , an) =

(aa1, . . . , aan) and the Hilbert A-product (, )An is defined by the formula

((a′1, . . . , a
′
n), (a1, . . . , an))An =

n∑
i=1

a′ia
∗
i ,

where a, ai, a′i ∈ A, i = 1, . . . , n.

5.2. Complexes of Differential Operators in C∗-Hilbert Bundles

In the preceding subsection, C∗-algebras and finitely generated projective C∗-
modules were introduced. In this chapter, these two types of objects shall play
a similar role as the field of scalars and finite dimensional vector spaces (over this
field) play in the theory of differential operators acting in finite rank vector bundles.
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Let E and F be Banach manifolds modeled on Banach spaces X and Y, respec-
tively. We call a continuous map A : E → F smooth if for each manifold charts
φ : U → X of E , U ⊆ E , and φ′ : V → Y of F , V ⊆ F , the composed mapping
φ ◦ A ◦ φ′−1 : φ′(A−1(V ) ∩ U) → X is smooth, i.e., possess infinitely many
Fréchet derivatives in each point.
Let Z be a Banach space and M be a manifold. We say that p : E → M is a
Banach bundle with typical fiber Z, if

1) E is Banach manifold and p is a smooth submersion of E onto M,

2) there exists an open covering (Uα)α∈I of M and for each α ∈ I, we have a
diffeomorphism φα : p−1(Uα)→ Uα × Z (called a bundle chart) such that
p1 ◦ φα = p, where p1 : M × Z →M denotes the projection onto the first
component, and

3) for each α, β ∈ I, the map ψαβ : φα(Uα ∩ Uβ) → φβ(Uα ∩ Uβ) (called a
transition map) defined by ψαβ = φβ ◦ φ−1

α |φα(Uα∩Uβ) is a smooth homeo-
morphism.

The transition maps induce mappings ψαβ : Z → Z defined by (m,ψα,β(v)) =
(φβ ◦ φ−1

α )(m, v), m ∈ φα(Uα ∩ Uβ), v ∈ Z.

Definition 6. Let (U, (, )U ) be a Hilbert A-module. A Banach bundle p : E → M
with a bundle atlas A is called an A-Hilbert bundle with typical fiber (U, (, )U ) if

1) for each m ∈ M, the fiber Em = p−1({m}) is equipped with a Hilbert
A-module structure and as such, it is isomorphic to (U, (, )U )

2) for each m ∈ M, the subset topology on Em ⊆ E is equivalent to the norm
topology on (U, | |U ) and

3) the transition maps between the bundle charts ofA are maps into the group
AutA(U) of Hilbert A-module automorphisms of U.

Let p : E → M be an A-Hilbert bundle. In the same way as for a smooth Banach
bundle, one defines the space of smooth sections Γ(M, E) for anA-Hilbert bundle.
The space of sections admits a left action A defined by (a.s)(m) = a.(s(m)),
where a ∈ A, s ∈ Γ(M, E) and m ∈ M. Suppose that M is compact. We choose
a Riemannian metric g on M and a volume element volM for this metric. An
A-product on Γ(M, E) is defined by

(s′, s)0 =

∫
m∈M

(s′(m), s(m))m(volM )m,

where s′, s ∈ Γ(M, E) and (, )m denotes the Hilbert A-product in fiber p−1({m}).
This makes Γ(M, E) a pre-Hilbert A-module. We denote the completion of the
normed space (Γ(M, E), | |0) by W 0(E) and call it the zeroth Sobolev type com-
pletion. Let us denote the Laplace-Beltrami operator for g by4g. For each r ∈ N0,



Analysis over C∗-Algebras 19

we define an A-product (, )r on Γ(M, E) by

(s′, s)r =

∫
m∈M

(s′(m), (1 +4g)
rs(m))m(volM )m,

where s′, s ∈ Γ(M, E). We denote the completion of Γ(M, E) with respect to the
norm | |r induced by (, )r by W r(E) and call it the Sobolev type completion (of
order r). Differential operators in A-Hilbert bundles are defined by local coordi-
nates and partial derivatives with respect to these coordinates in the same way as
in the finite rank bundles. They possess continuous extensions to the Sobolev type
completions, and they as well as their extensions to the Sobolev type completions
are adjointable. Ellipticity is defined as in the finite rank case and is called the
A-ellipticity in this case. See Solovyov, Troitsky [20] for more details on the facts
in this paragraph.
The announced generalization of the Hodge theory is presented in the next theo-
rem. The order of the Laplacian4k = Dk−1D

∗
k−1 +D∗kDk is denoted by rk. The

adjoints are taken with respect to (Γ(M, E i), (, )0).

Theorem 8. Let (pi : E i →M)i∈N0 be a sequence of finitely generated projective
A-Hilbert bundles over a compact manifold M. If D• = (Γ(M, E i), Di)i∈N0 is
an A-elliptic complex of differential operators and for each k ∈ N0, the image of
the rk-th extension of the associated Laplacian4k to the Sobolev type completion
W rk(Ek) is closed, then for any i ∈ N0,

1) H i(D•, A) ∼= ker 4i as A-modules,
2) H i(D•, A) is a Banach space with respect to | |0, and
3) H i(D•, A) is a finitely generated A-module.

Proof: See Krýsl [15]. �

5.3. De Rham Complex with Values in the Oscillatory Module

As in Section 2, we suppose that (V, ω) is a 2n dimensional symplectic vector
space, J ∈ Sp(V, ω) is a compatible almost complex structure on V, (ei)

2n
i=1 is an

orthonormal basis for the scalar product induced by ω and J, and L = L({ei ; i =
1, . . . , n}) is a Lagrangian space. (See Section 2 for details if necessary.) The
ordering of the basis (ei)

2n
i=1 induces volume forms volV and volL on V and L,

respectively.
For i ∈ N0, we set Ei =

∧iV ∗ ⊗ S and consider Ei with the canonical Hilbert
space topology (the space

∧i V ∗ is finite dimensional). Further, we consider the
tensor product representation of G̃ = Mp(V, ω) on Ei, i.e.,

ρ̃(g)(α⊗ s) = λ∗∧i(g)α⊗ ρ(g)s,
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where α ∈
∧i V ∗, g ∈ Mp(V, ω) and s ∈ S = L2(L), and extend it to non-

homogeneous elements by linearity. (The decomposition of ρ̃ into irreducible
Mp(V, ω)-modules was computed in Krýsl [14].)

Let A be the algebra of bounded operators on the Hilbert space S = L2(L). As
described in Example 5 item 2 above, A is a C∗-algebra. On spaces Ei, we define
a left A-module structure by setting

a.(α⊗ s) = α⊗ a(s)

for a ∈ A, s ∈ S, α ∈
∧i V ∗ and extend it linearly to non-homogeneous elements.

The volume form volV induces a scalar product on
∧• V ∗ =

⊕2n
i=0

∧i V ∗ which
we denote by g̃. (See, e.g., Krýsl [16] for more details.) Now, we can define an
A-product (, )Ei : Ei × Ei → A by setting

(α⊗ s, β ⊗ t)Ei = g̃(α, β)t⊗ s∗,

where t⊗ s∗ ∈ A is given by (t⊗ s∗)(h) = (s, h)t, s, t, h ∈ S. In the last formula,
(s, h) =

∫
L shvolL. It is easy to show that the resulting structure (Ei, (, )Ei) is a

pre-Hilbert A-module for each i ∈ N0. For a proof that (Ei, (, )Ei) is a finitely
generated projective Hilbert A-module, see Krýsl [16].

Now, let us proceed to the appropriate geometric version. Let (M2n, ω) be a sym-
plectic manifold admitting a metaplectic structure (Q,Λ) and let ∇ be a flat Fe-
dosov connection on (M,ω). We set E i = Q ×ρ̃ Ei (the bundle of exterior forms
with values in the oscillatory representation). Note that E0 = S = Q ×ρ S is
the oscillatory bundle. The connection ∇ induces the oscillatory derivative ∇S .
Extending ∇S according to the Leibniz rule, we get exterior covariant derivative
dSi : Γ(M, E i) → Γ(M, E i+1). (See Example 6 below.) Gluing these exterior
covariant derivatives together, we obtain

0→ Γ(M, E0)
dS0→ Γ(M, E1)

dS1→ . . .
dSn−1→ Γ(M, En)→ 0.

Since any Hilbert bundle (though not any A-Hilbert bundle) over a manifold is
trivial due to the Kuiper theorem, one can choose a bundle atlas for each E i →M
such that its transition maps equal the identity on S. Since 1|S ∈ AutA(S), the
oscillatory bundle is an A-Hilbert bundle.

Example 6. Let (U, x = (x1, . . . , x2n)) ⊆M be a Darboux coordinate chart, ei =
∂
∂xi

and εi = dxi, i = 1, . . . , 2n. Then, in particular, (ei)
2n
i=1 is a symplectic frame

and (εi)2n
i=1 is its dual co-frame. Because (ei)

2n
i=1 is a coordinate frame, [ei, ej ] = 0

for each i, j = 1, . . . , 2n. Consequently, R∇(ei, ej) = ∇ei∇ej − ∇ej∇ei . Since
εi = dxi, we have dεi = 0. Now, let α ∈ Ωr(U) and s ∈ Γ(U,S). Using the
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Einstein summation convention, we get

dSr+1dSr (α⊗ s) = dSr+1(dα⊗ s+ εi ∧ α⊗∇Seis)
= ddα⊗ s+ εi ∧ dα⊗∇Seis

+(−1)εi ∧ dα⊗∇Seis
+εj ∧ εi ∧ α⊗∇Sej∇

S
eis

=
1

2
εj ∧ εi ∧ α⊗ (∇Sej∇

S
ei −∇

S
ei∇

S
ej )s

=
i

4
Rij

klεi ∧ εj ∧ α⊗ ek.el.s,

where we used Theorem 4 in the last step. In particular, dS
•

= (E i,dSi )2n
i=0 is a

complex if the curvature R∇ of ∇ vanishes, i.e., if (M,ω,∇) is a flat Fedosov
manifold.

As a consequence of Theorem 8, we have the following

Corollary 9. Let (M2n, ω) be a symplectic manifold and ∇ be flat symplectic
connection. Suppose that M is compact, admits a metaplectic structure and the
extensions of the associated Laplacians 4k to the Sobolev completions W 2(Ek)
have closed images for all k = 0, . . . , 2n. Then for each i = 0, . . . , 2n, the coho-
mology group H i(dS

•
, A) is a finitely generated A-module and a Banach space.

Proof: The order of dSk is one and the order of 4k = (dSk )∗dSk + dSk−1(dSk−1)∗ is
two. Because each Ei is a finitely generated projective Hilbert A-module, dS

•
=

(Γ(M, E i), dSi )2n
i=0 is a sequence of finitely generated projectiveA-Hilbert bundles.

Since the Fedosov connection ∇ is supposed to be flat, this sequence is a complex
according to Example 6. Now, using Theorem 8 the result follows. �

Remark 10. The condition on the images of the Laplacians seems to be technically
difficult to verify and we would like to focus our attention to this phenomenon in
the future.

Corollary 11. Let (M2n, ω) be a compact symplectic manifold admitting a meta-
plectic structure and∇ be a Fedosov connection. Suppose that the extension of P2

to W 2(S) is closed. Then the kernel of P is a finitely generated A-module and a
Banach space.

Proof: Since P is self-adjoint and elliptic the corollary follows from Theorem
8. �
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