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Abstract
On a symplectic manifold with a symplectic connection and a metaplectic

structure, we define two families of sequences of differential operators, the so
called symplectic twistor operators. We prove that if the connection is torsion-
free and Weyl-flat, the sequences in these families form complexes.

1 Introduction

Twistor operators on Riemannian spin manifolds are often used in mathemat-
ical General relativity and differential geometry (see [18], [3], [5]). They are
usually introduced using orthogonal local frames on the manifold and the Clif-
ford multiplication, or using a tensor product decompositions of appropriate
spin-modules into irreducible submodules.

Weil, who searched for symmetries of theta functions ([26]) and Shale, who
searched for symmetries of quantized Klein–Gordon fields ([19]), discovered a
unitary representation of the metaplectic group, a Lie group double cover of the
symplectic group. This started the development in the symplectic spin geometry.
In the seventies of the last century, Kostant [13] defined a metaplectic structure
and enabled a research of symplectic spinor fields, which are sections of bundles
that are associated to the representation found by Shale and Weil. Sommen [22]
studied these structures on Euclidean spaces from the point of view of super-
symmetry and Clifford algebras. In global analysis, the metaplectic structures
were investigated with the help of symplectic Dirac operators, defined in the
work of Habermann [6]. See also [7], [1], [17].

For a Fedosov connection (see Tondeur [23] or Gelfand, Retakh, Shubin [4]),
we consider exterior covariant derivatives (see e.g. Kolář, Michor, Slovák [12])
acting on symplectic spinor fields. We use a decomposition of a tensor prod-
uct into irreducible submodules over the metaplectic group ([14]) to define two
families of sequences of differential operators, which we call symplectic twistor
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operators. From the point of view of representation theory, these operators are
similar to the Riemannian twistor operators. They are compositions of appro-
priate exterior covariant derivatives with projections onto sections of bundles
induced by irreducible modules with a specific highest weight.

Note that Dolbeault operators on an almost complex manifold form com-
plexes if the almost complex structure is integrable. We prove that symplectic
twistor operators form complexes if the Fedosov connection is Weyl-flat. This
is already known for two sequences of symplectic twistor operators (see Krýsl
[16]). We generalize this result by proving that all of the introduced sequences
in the two families are complexes under the Weyl-flatness using a formula for
the symplectic spinor curvature.

2 Symplectic Spinors

Let (V, ω) be a finite dimensional symplectic vector space over the real numbers.
Let us recall that the symplectic group Sp(V ) of (V, ω) is the Lie subgroup of the
general linear group of V consisting of maps preserving ω. Let J be a complex
structure on V (linear map satisfying J2 = −IdV ) such that g(v, w) = ω(Jv,w),
v, w ∈ V, is positive definite. The complex structure determines the unitary
group U(V ) associated to the triple (V, J, g). From the structure theory of Lie
groups, it is known that U(V ) is a maximal compact subgroup of Sp(V ) (see
Knapp [11]). It well known that the homotopy type of U(V ) is that of the circle
S1, i.e., the fundamental group of Sp(V ) is isomorphic to Z. By the theory
of covering spaces, there is a connected two-fold covering of Sp(V ). Moreover,
for a fixed covering and a choice of an element in the preimage of the neutral
element in Sp(V ), there is a unique Lie group structure on the covering space
so that the covering map is a Lie group homomorphism and the chosen point is
the neutral element. The covering space is called the metaplectic group and it is
denoted by Mp(V ). We denote the covering map by λ. It is known that Mp(V )
is a non-matrix Lie group, i.e., there is no map of this group, that is a group
homomorphism and a topological embedding into the general linear group of a
finite dimensional vector space (see [17]).

Let L be a Lagrangian subspace of the symplectic space (V, ω). On L, we con-
sider the norm induced by g. Let us denote the Hilbert space of square Lebesgue
integrable complex valued functions on L modulo equal almost everywhere (ae.)
by E, and the unitary group of E by U(E). There is a unitary representation
(see e.g. Weil [26], Shale [19] or Wallach [25]) ρ : Mp(V ) → U(E) of Mp(V )
on E called the oscillator (Shale, Shale–Weil, Segal–Shale–Weil, metaplectic or
symplectic spinor) representation. We shall call it the oscillator representation,
following Howe [9]. The representation (ρ,E) is a Hilbert space direct sum of
two irreducible representations, that we denote by E+ and E−, where E± are
the spaces of even and odd elements in E (considered modulo ae.), respectively.

Remark: Let I be the two-sided ideal generated by elements v ⊗ w − w ⊗
v−ω(v, w)1, v, w ∈ V, as a two-sided ideal in the tensor algebra T (V ) of V. The
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quotient T (V )/I is called the symplectic Clifford algebra of (V, ω) and we denote
it by Cls(V ). Any associative algebra has a Lie algebra structure defined by the
commutator. As in the orthogonal case, we have a Lie algebra monomorphism of
the Lie algebra sp(V ) of Sp(V ) into Cls(V ). This monomorphism makes us able
to consider Cls(V ) as a left sp(V )-submodule of Cls(V ). It can be proved that
the so-called Harish-Chandra (g,K)-module of (ρ,E) is a left ideal in Cls(V ).
See Habermann, Habermann [8] and Kirillov [10].

Let λ∗ denote the representation on V ∗ which is dual to the representation λ.
Representations λ and λ∗ are equivalent as follows by considering the equivariant
map T : V → V ∗ defined by T (v)(w) = ω(v, w), where v, w ∈ V. We denote the
dual representation by λ as well, and we consider V with the norm induced by
g and

∧i
V with the norm induced by the so-called (real) Hodge scalar product.

The exterior powers of λ are denoted by λi, λi : Mp(V )→ GL(
∧i

V ). Further,

let us consider the vector spaces Ei± =
∧i

V ⊗ E±, i ∈ N0, with the Hilbert
tensor product topology. No completion is necessary since the exterior powers
are finite dimensional. Let GL(Ei) denote the set of all linear homeomorphisms
of Ei. The tensor product representations ρi± : Mp(V ) → GL(Ei±) are defined
by ρi±(g)(α⊗ w) = λi(g)α⊗ ρ(g)w for g ∈Mp(V ), α ∈ V and w ∈ E±, and by
the linear extension to other elements in the tensor product.

Let 2n be the dimension of V. For each i = 0, . . . , 2n, the irreducible decom-
position of ρi± on Ei± is described in [14].

Theorem 1: For i = 0, . . . , 2n, ji = 0, . . . , kn,i = n − |n − i|, there are

topological vector spaces Eiji± and irreducible representations ρiji± of Mp(V ) on

Eiji± such that ρi± is is equivalent to the orthogonal sum
⊕kn,i

ji=0 ρ
iji
± .

Notation: Let us set ρi = ρi+ ⊕ ρi− for a representation on Ei+ ⊕ Ei−.

Remark:

1. Spaces Eij are endowed with the topology inherited by the inclusion Eij ⊆
Ei.

2. Each ρi is multiplicity-free, i.e., when (ρ′, E′), (ρ′′, E′′) are different irre-
ducible subrepresentations of ρi, they are not equivalent (see [14]).

3. Representation ρij± is equivalent to ρi+l,j∓ , 0 ≤ i ≤ 2n, 0 ≤ i + l ≤ 2n
1 ≤ j ≤ min{kn,i, kn,i+l} (see [14]).

4. The highest weights of the Harish-Chandra (g,K)-modules of ρij± : Mp(V )→
GL(Eij± ) are discribed in Krýsl [14].

5. For j < 0 and for j > kn,i, we set ρij± = 0, ρij = 0, Eij± = 0 and Eij = 0.
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E0 E1 E2 E3 E4 E5 E6

E00 E10 E20 E30 E40 E50 E60

E11 E21 E31 E41 E51

E22 E32 E42

E33

Pic. 1. Decomposition for n = 3.

Notation: For each i = 0, . . . , n, and ji = 0, . . . , kn,i, let piji± denote the

unique Mp(V )-equivariant projection of Ei± onto Eiji± . The correctness of the
definition of the projections follows from the previous theorem (multiplicity free-
ness; see the item 2 of the Remark above), Schur lemma for weighted represen-
tations (Dixmier [2]) and a globalization theorem for Harish-Chandra modules
(see e.g. Schmid [20]).

3 Symplectic twistor operators and Complexes

Let (M,ω) be a symplectic manifold of dimension 2n, n ∈ N, and (V, ω0) be
a symplectic vector space over the real numbers of the same dimension. We
consider the set of symplectic frames Q = {A : V → TmM |ω(Av,Aw) =
ω0(v, w), v, w ∈ V,m ∈ M} and the map pQ : Q → M defined by pQ(A) = m
if and only if A : V → TmM. The topology on Q is given by considering the
so-called frame topology, which is the final topology for the set of the inverses of
canonical charts (see Sternberg [21]). It is well known that the canonical charts
define also a smooth bundle atlas. Let us consider the right action of Sp(V ) on
Q given by the map composition from the right. Then pQ : Q →M is a principal
Sp(V )-bundle on M. We call a principal Mp(V )-bundle pP : P →M on M and
a morphism of fibre bundles Λ : P → Q a metaplectic structure on (M,ω) if
and only if Λ(Ag) = Λ(A)λ(g) for any A ∈ P and g ∈Mp(V ). Thus those fibre
bundle morphisms Λ are allowed for which the next diagram commutes, where
the horizontal arrows represent actions of the appropriate groups.

P ×Mp(V )

Λ×λ

��

// P

Λ

��

πP

##H
HH

HH
H

M

Q× Sp(V ) // Q
πQ

;;vvvvvvv

Pic. 2. Metaplectic structure.

Definition: An affine connection ∇ is called a symplectic connection if
∇ω = 0. It is called a Fedosov connection if it is symplectic and torsion-free.
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Remark: Let us remark that in contrast to the Riemannian connection,
there are infinitely many Fedosov connections if n ≥ 1. Moreover, these connec-
tions form an infinite dimensional affine space if n ≥ 1 (see Gelfand, Retakh,
Shubin [4]).

We use ρij for defining the associated vector bundles E ij± = P ×ρij Eij± =

(P × Eij± )/ ', where (q, f) ' (q′, f ′) if and only if there exists an element

g ∈ Mp(V ) such that q′ = qg and f ′ = ρij±(g−1)f. We set E ij = E ij+ ⊕ E
ij
− .

Bundles E i± and E i are defined by the appropriate representations. We set also
E± = E00

± and E = E+⊕E−. Associated bundles are considered with the quotient
topology. Elements of Γ(⊕2n

i=0E i) are called symplectic spinors fields.
Any symplectic connection ∇ defines a principal bundle connection on the

principal Sp(V )−bundle Q. Let us assume that (M,ω) admits a metaplectic
structure (pP : P → M,Λ). The principal bundle connection lifts to the prin-
cipal Mp(V )-bundle P (Habermann, Habermann [8]), and induces a covariant
derivative on the associated bundle E . We denote the exterior covariant deriva-
tives, that maps Γ(E i) to Γ(E i+1), by ∇i. The restriction of ∇i to Γ(E ij) is
denoted by ∇ij . The operator Ri = ∇i+1∇i is the so called (ith) symplectic

spinor curvature and R =
∑2n
i=0R

i is the total symplectic spinor curvature. It
factorizes to a map of E i into E i+2. We denote its restriction to E ij by Rij .

The equivariant projections pij± : Ei± → Eij± induce projections E i± →
E ij± that are bundle morphisms, which further induce appropriate projections

Γ(E i±) → Γ(E ij± ) of the section spaces. We denote them by pij± and set pij =

pij+ + pij− for all instances of the meaning of the symbol pij±. The meaning of the
symbols for the projections depends on the objects on which they are used. (We
hope that this will not cause a confusion.)

Definition: The (i, j)-th symplectic twistor operators are are the maps

T ij+ = pi+1,j+1∇ij

and
T ij− = pi+1,j−1∇ij .

In Vaisman [24], symplectic Ricci and Weyl curvatures of a Fedosov con-
nections are defined and investigated. If the symplectic Weyl tensor is null, we
call the connection Weyl-flat. Let (M,ω) be a symplectic manifold admitting a
metaplectic structure and ∇ be a Weyl-flat Fedosov connection. The following
formula (see [17]) was derived in [16]

R =
1

n+ 1
(E+Θσ + 2F+Σσ),

where the maps E+,Θσ, F+, and Σσ are defined in [17]. For restrictions of these
maps to E ij the following is proved in Krýsl [16]: Θσ : E ij → E i,j−1⊕E i,j⊕E i,j+1,
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Σσ : E i+1,j → E i+1,j−1⊕E i+1j⊕E i,+1j+1. F+ : E i+1,j → E i+2,j and E+ : E ij →
E i+2,j . In particular, we obtain that Rij : E ij → E i+2,j−1 ⊕ E i+2,j ⊕ E i+2,j+1.

Theorem 2: Let (M,ω) be a symplectic manifold which admits a meta-
plectic structure and ∇ be a Weyl-flat Fedosov connection. For any integers i, j,
the sequences (Γ(E i+k,j±k), T i+k,j±k± )k∈Z are cochain complexes.

Proof. After a possible renumbering of i, j, it is sufficient to evaluate

T i+1,j±1
± T ij± = pi+2,j±2∇i+1,j±1pi+1,j±1∇ij

= pi+2,j±2∇ipi+1,j±1∇ij .

Since the image of ∇ij is a linear subspace of Γ(E i+1,j−1⊕E i+1,j⊕E i+1,j+1)
(Theorem 4, [15]), we may write IdEi+1 − pi+1,j − pi+1,j∓1 instead of pi+1,j±1 in
the above formula obtaining

pi+2,j±2∇i+1∇ij − pi+2,j±2∇pi+1,j∇ij − pi+2,j±2∇Epi+1,j∓1∇ij .

Using the fact about the image of the restrictions of the connections in the
case of ∇i+1,j and in the case ∇i+1,j±1, we get that the last two therms are
null, because the outer projections cancel the appropriate images. In the next
picture, we see the vanishing of the first term in the +-case. (Dotted arrows
point towards spaces which are not in the image.)

Ei+1,j−2 Ei+2,j−2

Ei+1,j−1 Ei+2,j−1

Ei+1,j

<<

55llll
//
))RRR

""

Ei+2,j

Ei+1,j+1 Ei+2,j+1

Ei+1,j+2 Ei+2,j+2

Pic. 3. Images of exterior covariant derivatives.

Summing-up, T i+1,j±1
± T ij± = pi+2,j±2Rij . By the paragraph in front of the

formulation of this theorem, the symplectic spinor curvature restricted to E ij is
a map into E i+2,j−1 ⊕ E i+2,j ⊕ E i+2,j+1. Consequently, the above composition
is null and T i+k,j±k± , k ∈ Z, form complexes.

�
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