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Abstract. On a symplectic manifold equipped with a symplectic connec-
tion and a metaplectic structure, we define two families of sequences of
differential operators, called the symplectic twistor operators. We prove
that if the connection is torsion-free and Weyl-flat, the sequences in
these families form complexes.
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1. Introduction

Twistor operators on Riemannian spin manifolds are often used in mathe-
matical General relativity and Differential geometry (see [3, 5, 18]). They are
usually introduced using local orthogonal frames on the manifold and the
Clifford multiplication, or using a tensor product decomposition of appropri-
ate spin-modules into irreducible submodules.

Weil, who searched for symmetries of theta functions (see [26]), and
Shale, who searched for symmetries of quantized Klein–Gordon fields (see
[20]), discovered a unitary representation of the metaplectic group, a Lie
group double cover of the symplectic group. This started a development of
the symplectic spin geometry. In the seventies of the last century, Kostant
[13] defined a metaplectic structure over a symplectic manifold and enabled
a research of symplectic spinor fields, which are sections of bundles that are
associated to the representation found by Shale and Weil. Sommen in [21]
studied these structures on Euclidean spaces from the point of view of super-
symmetry and Clifford algebras. In global analysis, the metaplectic structures
were investigated with the help of symplectic Dirac operators, defined in the
work of Habermann [6]. See also [1, 8, 17].
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For a Fedosov connection (see Gelfand, Retakh, Shubin [4] and Tondeur
[23]), we consider exterior covariant derivatives acting on symplectic spinor
fields. We use a decomposition of a tensor product into irreducible submod-
ules over the metaplectic group (Theorem 2.2) to define two families of se-
quences of differential operators, which we call symplectic twistor operators.
From the point of view of representation theory, these operators are similar
to the Riemannian or Lorentzian twistor operators. They are compositions
of appropriate exterior covariant derivatives with projections onto sections of
bundles induced by irreducible modules with specific highest weights.

Note that Dolbeault operators on an almost complex manifold form
complexes if the almost complex structure is integrable. We prove that sym-
plectic twistor operators form complexes if the Fedosov connection is Weyl-
flat. This is already known for two sequences of symplectic twistor operators
(see Krýsl [15]). In Theorem 3.4 this result is generalized. We prove that
all of the introduced sequences in the two families are complexes under the
Weyl-flatness condition. We use the tensor product decomposition of the ap-
propriate Lie group representations into irreducible subrepresentations.

2. Symplectic Spinors

Let (V, ω) be a finite dimensional symplectic vector space over the real num-
bers. Let us recall that the symplectic group Sp(V ) of (V, ω) is the Lie sub-
group of the general linear group of V consisting of maps preserving ω. Let
J be a complex structure on V (linear map satisfying J2 = −IdV ) such that
g(v, w) = ω(Jv,w), v, w ∈ V, is positive definite. The complex structure de-
termines the unitary group U(V ) associated to the triple (V, J, g). From the
structure theory of Lie groups, it is known that U(V ) is a maximal compact
subgroup of Sp(V ) (see Knapp [11]). It is well known that the homotopy
type of U(V ) is that of the circle S1, i.e., the fundamental group of Sp(V )
is isomorphic to Z. By the theory of covering spaces, there is a connected
two-fold covering of Sp(V ). Moreover, for a fixed covering and a choice of
a point in the preimage of the neutral element in Sp(V ), there is a unique
Lie group structure on the covering space so that the covering map is a Lie
group homomorphism and such that the chosen point is the neutral element
of the Lie group. The covering space is called the metaplectic group and it
is denoted by Mp(V ). We denote the covering map by λ. It is known that
Mp(V ) is a non-matrix Lie group, i.e., there is no topological embedding of
this group which is a group homomorphism into the general linear group of
a finite dimensional vector space (see [17]).

Let L be a Lagrangian subspace of the symplectic space (V, ω). On L,
we consider the norm induced by g. Let us denote the Hilbert space of square
Lebesgue integrable complex valued functions on L modulo equal almost
everywhere (ae.) by E, and the unitary group of E by U(E). There is a
unitary representation (see, e.g., Weil [26], Shale [20] or Wallach [25]) ρ :
Mp(V ) → U(E) of Mp(V ) on E called the oscillator (Shale, Shale–Weil,
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Segal–Shale–Weil, metaplectic or symplectic spinor) representation. We shall
call it the oscillator representation following Howe [9]. The representation
(ρ,E) is the orthogonal direct sum of two irreducible representations, that
we denote by E+ and E−, where E± are the spaces of even and odd elements
in E (considered modulo ae.), respectively.

Remark 2.1. Let I be the two-sided ideal generated by elements v ⊗ w −
w ⊗ v − ω(v, w)1, v, w ∈ V, as a two-sided ideal in the tensor algebra T (V )
of V. The quotient T (V )/I is called the symplectic Clifford algebra of (V, ω)
and we denote it by Cls(V ). Any associative algebra has a Lie algebra struc-
ture defined by the commutator. As in the orthogonal case, we have a Lie
algebra monomorphism of the Lie algebra sp(V ) of Sp(V ) into Cls(V ). This
monomorphism makes us able to consider Cls(V ) as a left sp(V )-submodule
of Cls(V ). It can be proved that the so-called Harish-Chandra (g,K)-module
of (ρ,E) is a left ideal in Cls(V ). See Habermann, Habermann [7] and
Kirillov [10]. In the considered case, g is the Lie algebra of Mp(V ) and
K = λ−1(U(V )).

Let λ∗ be the representation on V ∗ which is dual to the representa-
tion λ. Representations λ and λ∗ are equivalent as follows by considering the
equivariant map T : V → V ∗ defined by T (v)(w) = ω(v, w), where v, w ∈ V.
We denote the dual representation by λ as well. Let us consider V equipped

with the norm induced by the scalar product g, and
∧i

V with the norm
induced by a Hodge scalar product. The exterior powers of λ are denoted by

λi, λi : Mp(V ) → GL(
∧i

V ), where GL(
∧i

V ) denotes the set of all linear
automorphisms of the appropriate wedge power. Further, let us consider the

vector spaces Ei
± =

∧i
V ⊗ E±, i ∈ N0, with the Hilbert tensor product

topology. No completion is necessary since the exterior powers are finite di-
mensional. Let GL(Ei

±) denote the set of all linear homeomorphisms of Ei
±.

The tensor product representations ρi± : Mp(V ) → GL(Ei
±) are defined by

ρi±(g)(α ⊗ w) = λi(g)α⊗ ρ(g)w for g ∈ Mp(V ), α ∈
∧i

V and w ∈ E±, and
by the linear extension to all elements in the tensor product.

Let 2n be the dimension of V and let gC denote the complexification
of the Lie algebra of the metaplectic group Mp(V ). For a choice of a Car-
tan subalgebra h ⊆ gC and a choice of positive roots Φ+, the set of fun-
damental weights {̟i}

n
i=1 is uniquely determined. For λ1, . . . , λn ∈ C and

λ =
∑n

i=1 λi̟i ∈ h∗, we denote the irreducible highest weight gC-module
L(λ) by L(λ1, . . . , λn).

We define the map sgn : {+,−} → {0, 1} by sgn(+) = 0 and sgn(−) = 1.
For i = 0, . . . , 2n, we set kn,i = n− |n− i| and

E
ij
± = L(

1

2
, . . . ,

1

2
︸ ︷︷ ︸

i

,−
1

2
, . . . ,−

1

2
︸ ︷︷ ︸

n−i−1

,−1 +
1

2
(−1)sgn(±)+i+j)
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E0 E1 E2 E3 E4 E5 E6

E00 E10 E20 E30 E40 E50 E60

E11 E21 E31 E41 E51

E22 E32 E42

E33

Figure 1. Decomposition for n = 3

for i = 0, . . . , n − 1, ji = 0, . . . , kn,i, and for i = n and ji = 0 . . . , n − 1. For
i = n and j = n, we set E

nn
+ = L( 12 , . . . ,

1
2 ), E

nn
− = L( 12 , . . . ,

1
2 ,−

5
2 ); and

E
n+i,j
± = E

n−i,j
± , where i = 1, . . . , n and j = 0, . . . , kn,i.

For each i = 0, . . . , 2n, a decomposition of the representation ρi± on Ei
±

into irreducible Mp(V )-subrepresentation is described in [16].

Theorem 2.2. For i = 0, . . . , 2n, ji = 0, . . . , kn,i, there are topological vector

spaces Eiji
± and irreducible representations ρiji± of Mp(V ) on Eiji

± such that

the gC-structure of the Harish-Chandra (gC,K)-module of Eiji
± is isomorphic

to the gC-module E
iji
± . The representation ρi± on Ei

± is equivalent to the direct

sum
⊕kn,i

ji=0 ρ
iji
± .

Let us set Eij = Eij
+ ⊕ Eij

− , Ei = Ei
+ ⊕ Ei

−, ρij = ρij+ ⊕ ρij− and

ρi = ρi+ ⊕ ρi− for the representations on Eij and Ei, respectively, where
i = 0, . . . , 2n and j = 0 . . . , kn,i. The decompositions of the representations
Ei into irreducible subrepresentations can be seen at Figure 1 for n = 3.

Remark 2.3. 1. Spaces Eij are endowed with the topology inherited by
the inclusion Eij ⊆ Ei.

2. Each (ρi, Ei) is multiplicity-free, i.e., when (ρ′, E′), (ρ′′, E′′) are different
irreducible subrepresentations of ρi, they are not equivalent. (See [16].)

3. Representation ρij± is equivalent to ρi+1,j
∓ for each i and j satisfying

0 ≤ i ≤ 2n, 0 ≤ i+ 1 ≤ 2n, 1 ≤ j ≤ min{kn,i, kn,i+1} (see [16]).

4. For j < 0 and for j > kn,i, we set ρ
ij
± = 0, ρij = 0, Eij

± = 0 and Eij = 0.

For each i = 0, . . . , n, and ji = 0, . . . , kn,i, let piji± denote the unique

Mp(V )-equivariant projections of Ei
± onto Eiji

± . The correctness of the defi-
nition of the projections, regarding their uniqueness, follows from an appro-
priate version of the Schur lemma (Dixmier [2], p. 87), from the fact that
Ei are Hilbert space globalizations (see, e.g., the overview article of Schmid
[19]), and from the multiplicity freeness of each Ei (item 2 of Remark 2.3
above).
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Figure 2. Diagram - metaplectic structure

3. Symplectic twistor operators and complexes

Let (M,ω) be a symplectic manifold of dimension 2n, n ∈ N, and (V, ω0) be
a symplectic vector space over the real numbers of the same dimension. We
consider the set of symplectic frames Q = {A : V → TmM |ω(Av,Aw) =
ω0(v, w), v, w ∈ V,m ∈ M} and the map pQ : Q → M defined by setting
pQ(A) = m if and only if A : V → TmM. The topology on Q is given by
considering the so-called frame topology, which is the final topology for the
set of the inverses of canonical charts (see Sternberg [22]). It is well known
that the canonical charts define also a smooth bundle atlas. Let us consider
the right action of Sp(V ) on Q given by the map composition from the right.
Then pQ : Q → M is a principal Sp(V )-bundle on M. We call a principal
Mp(V )-bundle pP : P → M on M and a morphism of principal fibre bundles
Λ : P → Q a metaplectic structure on (M,ω) if and only if Λ(Ag) = Λ(A)λ(g)
for any A ∈ P and g ∈ Mp(V ). Thus those fibre bundle morphisms Λ are
allowed for which the diagram at Figure 2 commutes (the horizontal arrows
represent actions of the appropriate groups).

Definition 3.1. An affine connection ∇ is called a symplectic connection if
∇ω = 0. It is called a Fedosov connection if it is symplectic and torsion-free.

Remark 3.2. In contrast to Riemannian connections, there are infinitely many
Fedosov connections if n ≥ 1. Moreover, these connections form an infinite
dimensional affine space in this case (see Gelfand, Retakh, Shubin [4]).

We use ρij± for defining the associated vector bundles E ij
± = P×ρij Eij

± =

(P×Eij
± )/ ≃, where (q, f) ≃ (q′, f ′) if and only if there exists an element g ∈

Mp(V ) such that q′ = qg and f ′ = ρij±(g
−1)f. We set E ij = E ij

+ ⊕E ij
− . Bundles

E i
± and E i are defined by the appropriate representations ρi± and ρi. We also

set E± = E00
± and E = E+ ⊕ E−. Associated bundles are considered with the

quotient topology. Elements of Γ(⊕2n
i=0E

i) are called symplectic spinors fields.
Any symplectic connection ∇ defines a principal bundle connection on

the principal Sp(V )-bundle Q. Let us assume that (M,ω) admits a meta-
plectic structure (pP : P → M,Λ). The principal bundle connection lifts to
the principal Mp(V )-bundle P (Habermann, Habermann [7]), and induces
a covariant derivative on the associated bundle E . We denote the exterior
covariant derivatives (see, e.g., [12]) by ∇i. They map Γ(E i) to Γ(E i+1). The
restriction of ∇i to Γ(E ij) is denoted by ∇ij . The operator Ri = ∇i+1∇i
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is the so called (ith) symplectic spinor curvature, and R =
∑2n−2

i=0 Ri is the
total symplectic spinor curvature. It factorizes to a map of E i into E i+2. We
denote its restriction to E ij by Rij .

The Mp(V )-equivariant projections pij± : Ei
± → Eij

± induce projections

E i
± → E ij

± that are bundle morphisms, which further induce appropriate pro-

jections Γ(E i
±) → Γ(E ij

± ) of the section spaces. We denote them by pij± and set

pij = pij++pij− for all meanings of the symbols pij±. The meaning of the symbol
for a projection (on the modules, bundles and section spaces) depends on the
objects on which they are used. We hope that this causes no confusion.

Definition 3.3. The (i, j)-th symplectic twistor operators are the maps

T ij
+ = pi+1,j+1∇ij and T ij

− = pi+1,j−1∇ij ,

where i, j ∈ Z.

Symplectic Ricci and Weyl curvatures of a Fedosov connection are de-
fined in Vaisman [24]. If the symplectic Weyl tensor is null, we call the con-
nection Weyl-flat.

Let (M,ω) be a symplectic manifold admitting a metaplectic structure
and let ∇ be a Weyl-flat Fedosov connection. In [17], p. 19, linear maps
E+,Θσ, F+, and Σσ are defined. The following formula

R =
1

n+ 1
(E+Θσ + 2F+Σσ) (3.1)

is derived in [15]. The operators F+, E+ used here and in [17] differ from
that ones in [15] by a multiplicative constant only.

In Krýsl [15], the next properties are proved for the restrictions of the
mentioned linear maps to E ij in the case of a Weyl-flat connection

Θσ : E ij → E i,j−1 ⊕ E i,j ⊕ E i,j+1,

Σσ : E i+1,j → E i+1,j−1 ⊕ E i+1,j ⊕ E i+1,j+1,

F+ : E i+1,j → E i+2,j and E+ : E ij → E i+2,j .

Using these properties and Eq. 3.1, we have for the curvature of a Weyl-flat
connection

Rij : E ij → E i+2,j−1 ⊕ E i+2,j ⊕ E i+2,j+1. (3.2)

Theorem 3.4. Let (M,ω) be a symplectic manifold which admits a metaplectic

structure and ∇ be a Weyl-flat Fedosov connection. For any integers i, j, the

two sequences (Γ(E i+k,j±k), T i+k,j±k
± )k∈Z are cochain complexes.

Proof. After a possible renumbering of i and j, it is sufficient to compute the
composition

T i+1,j±1
± T ij

± = pi+2,j±2∇i+1,j±1pi+1,j±1∇ij

= pi+2,j±2∇i+1pi+1,j±1∇ij .
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Ei+1,j−2 Ei+2,j−2

Ei+1,j−1 Ei+2,j−1

Ei+1,j

<<

55❧❧❧❧
//

))❘❘
❘

""

Ei+2,j

Ei+1,j+1 Ei+2,j+1

Ei+1,j+2 Ei+2,j+2

Figure 3. Image of the restricted exterior covariant derivative

Since the image of ∇ij is a linear subspace of Γ(E i+1,j−1 ⊕ E i+1,j ⊕
E i+1,j+1) (Theorem 4 in Krýsl [14]), we may write IdΓ(Ei+1)−pi+1,j−pi+1,j∓1

instead of pi+1,j±1 in the above formula, obtaining

pi+2,j±2∇i+1∇ij − pi+2,j±2∇i+1pi+1,j∇ij − pi+2,j±2∇i+1pi+1,j∓1∇ij (3.3)

Using the mentioned fact about the image of the exterior covariant
derivatives for ∇i+1,j (see also Figure 3), we have that ∇i+1,j maps into
Γ(E i+2,j−1 ⊕E i+2,j ⊕E i+2,j+1). Consequently, the second term in expression
3.3 is null. Similarly, one proves that the last term (+ and − case) is null,

too. Summing-up, T i+1,j±1
± T ij

± = pi+2,j±2∇i+1∇ij = pi+2,j±2Rij . By 3.2, the

ith symplectic spinor curvature restricted to Γ(E ij) is a map into the vector
space Γ(E i+2,j−1 ⊕ E i+2,j ⊕ E i+2,j+1) since ∇ is Weyl-flat. Consequently,

T i+1,j±1
± T ij

± = pi+2,j±2Rij = 0, proving that (Γ(E i+k,j±k), T i+k,j±k
± )k∈Z are

complexes. �

At Figure 3, the conclusion of Theorem 4 in [14] for ∇i+1,j is depicted.
The full arrows point to bundles in whose sections’ spaces the image of ∇i+1,j

is contained and the dotted arrows point to bundles whose sections have null
intersection with the image of ∇i+1,j .
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