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Symplectic linear algebra

Symplectic vector space
(V , ω0) - real 2n dimensional vector space, ω0 : V × V → R
non-degenerate antisymmetric
Symplectic group
Sp(V , ω0) = {A : V → V |ω0(Av ,Aw) =
ω0(v ,w) for each v ,w ∈ V }
Retractable onto U(n), of homotopy type of S1,
π1(Sp(V , ω0)) = Z.
Possesses a non-universal connected 2-fold covering, the so called

Metaplectic group Mp(V , ω0), λ : Mp(V , ω0)
2:1→ Sp(V , ω0)

Universal covering would be infinitely many folded over Sp(V , ω0).



Properties of the SSW representation

Segal-Shale-Weil representation of the metaplectic group.
Inventors:
David Shale - quantization of solutions to the Klein-Gordon
equation, dissertation by I. Segal
André Weil - short after, true rep of Mp(V , ω0)
Vladimir Berezin - used it at the infinitesimal level

- Underlying vector space L2(Rn)
- ρ0 : Mp(V , ω0)→ U(L2(Rn)) (continuous homomorphism)
- Non-trivial faithful unitary representation of Mp(V , ω0)
- Splits into 2 irreducible representations, odd and even L2

functions on Rn.
- There exists g0 ∈ Mp(V , ω0) such that
ρ0(g0) = F−1 : L2(Rn)→ L2(Rn) (continuous on L2(Rn))



Properties of the SSW-representation

- Similar to the spinor representation of Spin groups - it is not a
representation of the underlying Sp(V , ω0).

Mp(V , ω0)

λ
��

ρ0 // U(L2(Rn))

Sp(V , ω0)

@
77

- Highest weights ( 1
2 , . . . ,

1
2 ,−

1
2 ), ( 1

2 , . . . ,
1
2 ,−

3
2 )



Symplectic manifolds

Symplectic manifolds
(M, ω) - M manifold, ω non-degenerate differential 2-form and
dω = 0.
Examples:

1) T ∗M, where M is any manifold, ωU =
∑n

i=1 dpi ∧dqi , qi local
coordinates on the manifold, pi coordinates at T(q1,...,qn)M

2) S2 with ω = vol = r2 sinϑdφ ∧ dϑ

3) even dimensional tori ω = dφ1 ∧ dϑ1 + . . .+ dφn ∧ dϑn (in
mechanics: action-angle variables)

4) Kähler manifolds, ω(−,−) = h(−, J−)

5) Kodaira-Thurtson manifold - compact non-Kähler symplectic
manifold



Symplectic connections

Darboux theorem: In a neighborhood of any point, one can
choose coordinates in which ω =

∑n
i=1 dq

i ∧ dpi . In Riemannian,
geometry the metric can be transformed into the ”canonical”form
only point-wise - curvature obstruction. Measured by the curvature
tensor. In s.g., due to Darboux theorem, the connection cannot
have such meaning.

Definition: A connection on a symplectic manifold (M, ω)
equipped with a symplectic form ω is called symplectic if ∇ω = 0,
and it is called Fedosov if in addition, it is torsion-free.



Metaplectic structure

Symplectic structure
(M, ω) symplectic manifold. At any point m ∈ M, consider the set
Pm = {b = (e1, . . . , e2n)|b is a symplectic basis of (T ∗mM, ωm)}.
P =

⋃
m∈M Pm the space of symplectic repères, p : P → M

(”foot-point”projection).
Metaplectic structure Q
- Formally: (Q,Λ), q : Q → M is Mp(V , ω0)-bundle over M
Λ : Q → P bundle morphism
- Compatibility with the symplectic structure:

Q ×Mp(V , ω0)
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Exterior forms with valued in the oscillatory bundles

Associated bundles
S = (Q ×ρ0 L

2(Rn))
Introduced by Bertram Kostant: oscillatory bundle
Associated connections
For a symplectic connection ∇ ⇒
∇S : Γ(M,TM)⊗ Γ(M,S)→ Γ(M,S)

Ωi (M,S) = Γ(M,
∧i T ∗M ⊗ S)

d∇
S

i : Ωi (M,S)→ Ωi+1(M,S) exterior oscillatory derivative



Associated operator of Kath. Habermann

Operators generated by symplectic connections
Symplectic Dirac operators
(M, ω,∇) with a metaplectic structure
(ei .s)(x) = ıx i s(x), (ei+n.s)(x) = ∂s

∂x i
(x) (quantization).

[ei .ej ., ej .ei .] = −ıω(ei , ej), densely defined
a) D : Γ(M,S)→ Γ(M,S) is the oscillatory or Dirac operator of
Habermann
Ds =

∑2n
i ,j=1 ω

ijei .∇S
ej
s

b) D : Γ(M,S)→ Γ(M,S)
D̃s =

∑n
i ,j=1 g

ijei .∇ej s for a metric g of a compatible almost
complex structure J
Associated second order operator P = ı[DD̃− D̃D]



Kernel of P on S2

Operator P on S2

Self-adjoint and elliptic; elliptic = its symbol is a vector bundle
isomorphism

L2(R) =
⊕̂∞

k=0Chk , hk = ex
2/2 dk

dxk
e−x

2

at bundle level as S =
⊕̂∞

k=0Sk ,
where Sk = the line bundle corresponding to the vector space Chk
irreducible with respect to the group λ−1(U(1)) ⊆ Mp(2,R).
∃ monotone sequence (li )

∞
i=0 such that KerP ∩ Γ(S2,Sli ) 6= 0 and

dim(KerP ∩ Γ(S2,Sli )) = 2(i + li + 2).
In particular, the kernel of P is infinite dimensional.



Symbols of operators

For a first order differential operator D : Γ(M, E)→ Γ(M,F)
[σ(D, ξ)s](m) = ı[D(fs)− fDs](m), where f ∈ C∞(M),
(df )m = ξ ∈ T ∗mM, s ∈ Γ(M, E)
Examples:

1) exterior differentiation d , symbol σ(di , ξ)α = ıξ ∧ α
2) Laplace-Beltrami operator 4, symbol

σ(4, ξ)f = −(
∑n

i=1(ξi )
2)f

3) Dolbeault operator, symbol σ(∂, ξ)α = ıξ(0,1) ∧ α



Hodge theory for elliptic complexes

Definition: For any m ∈ M and any nonzero co-vector
ξ ∈ T ∗mM \ {0}, the complex

0→ Γ(E0,M)
D0→ Γ(E1,M)

D1→ . . .
Dn−1→ Γ(En,M)

is called elliptic, iff the symbol sequence

0→ E0 σξ
0→ E1 σξ

1→ . . .
σξ
n−1→ En

is exact.
σξi = σ(Di , ξ), i ∈ N0

Elliptic operator D : Γ(M, E)→ Γ(M,F)
def⇔

0→ Γ(M, E)
D→ Γ(M,F)→ 0 is an elliptic complex.



Examples of elliptic complexes

1) de Rham complex is elliptic

2) Dolbeault complex is elliptic

3) 0→ C(M)
4→ C(M)→ 0 is elliptic

Theorem (quadratic algebra):
D• = (Di , Γ(M, E i ))i∈N0 elliptic complex ⇒ each associated
Laplacian 4i = Di−1D

∗
i−1 + D∗i Di is elliptic



The order of 4i denoted by ri .



C ∗-algebras

A associative algebra over C with a norm | | : A→ R+
0 , i.e.,

1) ∗ : A→ A is an antiinvolution,

2) |a|2 = |aa∗| for all a ∈ A and

3) (A, | |) is a Banach space.

Examples:

1) C0
c (X ) = {f : X → C; limx→∞f (x) = 0}, where X is a

Hausdorff topological space

2) H a Hilbert space, A = {a : X → X ; a is bounded },
∗A := A∗, |A| = sup{ |Ax ||x | , x 6= 0}.

3) Mat(Cn), ∗A = A†, |A| = max{|λ|, λ ∈ spec(A)} (the norms
2) and 3) are equal)



Pre-Hilbert C ∗-modules

A a unital C ∗-algebra, 1 unit
spec(a) = {λ ∈ C|a− λ1 does not possesses inverse (in A)}
a = a∗ =⇒ spec(a) ⊆ R
A+

0 = {a ∈ A|a = a∗ and spec(a) ⊆ R+
0 } - positive elements.

U a vector space with a left action on A equipped with
(, ) : U × U → A (mimics the Hilbert product) such that for each
u, v ,w ∈ U, r ∈ C, a ∈ A

1) (u + rv ,w) = (u,w) + r(u,w)

2) (a.u, v) = a(u, v)

3) (u, v) = (v , u)∗

4) (u, u) ∈ A+
0 and (u, u) = 0⇒ u = 0

is called pre-Hilbert module. If U 3 u 7→ |(u, u)|1/2 makes U a
complete normed space is called an A-Hilbert module.



Pre-Hilbert C ∗-modules

Homomorphisms
L : U → V , pre-Hilbert A-modules U,V - a ∈ A
u ∈ U, L(a.u) = a.L(u)
and continuous with respect to the topologies induced by | |U and
| |V .
adjoint of L : U → V is a map L∗ : V → U satisfying
(Lu, v)V = (u, L∗v)U for each u ∈ U, v ∈ V
Adjoint need not exist. If it exists, it is unique and moreover, a
pre-Hilbert module homomorphism



Properties of Hilbert C ∗-modules

For any pre-Hilbert A-submodule V ⊆ U, we set
V⊥ = {u ∈ U| (u, v)U = 0 for all v ∈ V }.
Not in general true that V ⊕ V⊥ = U
U is finitely generated projective, if U ⊕ U⊥ ∼= An, where An is the
direct sum of n copies of A.
In more detail, An = A⊕ . . .⊕ A︸ ︷︷ ︸

n

as a vector space, the action is

given by a.(a1, . . . , an) = (aa1, . . . , aan) and the A-Hilbert product
(, )An is defined by the formula

((a′1, . . . , a
′
n), (a1, . . . , an))An =

n∑
i=1

a′ia
∗
i ,

where a, ai , a
′
i ∈ A, i = 1, . . . , n.



A-Hilbert bundles

Let (U, (, )U) be a Hilbert A-module. A Banach bundle p : E → M
is called an A-Hilbert bundle with typical fiber (U, (, )U) if

1) p is a Banach bundle with fiber (U, | |U),

2) each fiber p−1({m}) is equipped with a Hilbert A-product
(, )m such that (p−1({m}), (, )m) isomorphic to the fixed
(U, (, )U) as a Hilbert A-module via a bundle chart of p,

3) there exists an atlas of bundle charts of p the elements of
which satisfy the above item and such that its transition maps
are Hilbert A-module automorphisms of (U, (, )U), i.e.,
elements of AutA(U).



Sections and completions

p : E → M be an A-Hilbert bundle
space of smooth sections Γ(M, E)
The space of sections admits a left action of A
(a.s)(m) = a.(s(m)) for a ∈ A, s ∈ Γ(M, E) and m ∈ M.
M is compact
Riemannian metric g on M and a volume element volg for this
metric
An A-product on Γ(M, E) is defined by

(s ′, s)0 =

∫
m∈M

(s(m), s ′(m))m(volg )m,

where (, )m denotes the Hilbert A-product in fiber p−1({m})
Γ(M, E) pre-Hilbert A-module
We denote the completion of the normed space (Γ(M, E), | |0) by
W 0(E) and call it the zeroth Sobolev type completion



Sobolev completion

Let us denote the Laplace-Beltrami operator for g by 4g .
For each t ∈ N0, we define an A-product (, )t on Γ(M, E)

(s ′, s)t =

∫
m∈M

(s ′(m), (1 +4g )ts(m))m(volg )m s ′, s ∈ Γ(M, E).

We denote the completion of Γ(M, E) with respect to the norm | |t
induced by (, )t by W t(E) and call it the Sobolev type completion
(of order t).
Sobolev type completions form Hilbert A-modules.



Differential operators

1) Differential operators in A-Hilbert bundles, in local
coordinates D = cα∂

α, cα ∈ EndA(U)

2) Possess continuous extensions to the Sobolev type completions

3) Their extensions to the Sobolev type completions are
adjointable

4) Ellipticity (of complexes) is defined as in the finite rank case
and is called the A-ellipticity (Mishchenko, Fomenko;
Solovyov, Troitsky)



Hodge Theory for C ∗-bundles

Theorem: Let A be a unital C ∗-algebra and (pi : E i → M)i∈N0 be
a sequence of finitely generated projective A-Hilbert bundles over a
compact manifold M. If D• = (Γ(M, E i ),Di )i∈N0 is an A-elliptic
complex of differential operators and for each k ∈ N0, the image of
the rk -th extension of the associated Laplacian 4k to the Sobolev
type completion W rk (Ek) is closed, then for any i ∈ N0,

1) H i (D•,A) ∼= Ker4i as Hilbert-A-modules

2) H i (D•,A) is a finitely generated projective Hilbert A-module.

Theorem: Let (M2n, ω) be a compact symplectic manifold
admitting a metaplectic structure and ∇ be a Fedosov connection.
Then the kernel of P is a finitely generated projective Hilbert
End(S)-module.
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